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Observer design for hybrid systems
with linear maps and known jump times

G. Q. B. Tran, P. Bernard, L. Marconi

Abstract This chapter unifies and develops recent developments in observer de-
sign for hybrid systems with linear dynamics and output maps, whose jump times
are known. We define and analyze the (pre-)asymptotic detectability and uniform
complete observability of this class of systems, then present two different routes
for observer design. The first one relies on a synchronized Kalman-like observer
that gathers observability from both flows and jumps. The second one consists in
decomposing the state into parts with different observability properties and coupling
observers estimating each of these parts, possibly exploiting an extra fictitious mea-
surement coming from the combination of flows and jumps. These observers are
based on a Linear Matrix Inequality (LMI) or the Kazantzis-Kravaris/Luenberger
(KKL) paradigm. A comparison of these methods is presented in a table at the end.

1 Introduction
Consider a hybrid system with linear maps

(H{szx+uc (x,uc) € C Ve = Hex o

xt=Jx+uy (x,uq) €D ya = Hgx

where x € R™~ is the state, C and D are the flow and jump sets, y. € R™-< and
yaq € R™-4 are the outputs known during the flow intervals and at the jump times
respectively, u. € R™ and uz € R are known exogenous input signals, as well
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as the dynamics matrices F,J € R~ and the output matrices H. € R".c*x,
H, € R™-@*"x which are all known and possibly time-varying. Models of the form
(1) include not only hybrid systems with linear maps described in the setting of [23],
but also switched and/or impulsive systems with linear maps where the active mode
is seen as an exogenous signal making (F,J, H., Hy) time-varying (see [1, 17, 25]
among many other ones), and continuous-time systems with sporadic or multi-rate
sampled outputs where the “jumps” correspond to sampling events, J = 1d, ug = 0,
ve =0, and y, the outputs available at the sampling event [21, 12, 24]. See [23, 28]
for some examples of those classes of systems set in the framework of (1).

The goal of this chapter is to present in a unified and more complete way recent
advances concerning the design of an asymptotic observer for system (1), assuming
that its jump times are known or detected. In practice, we may be interested in
estimating only certain trajectories of “physical interest”, initialized in some set
Xo € R and with exogenous terms (F,J, H., Hy, u., ug) in some set U of interest.
We then denote S¢/ (X, U) as the set of those maximal solutions of interest. Because
we look for an asymptotic observer, we assume maximal solutions are complete as
stated next.

Assumption 1 Given Xj and U, each maximal solution in S¢((Xp, U) is complete.

Since the jump times of system H in (1) are known, it is natural to strive for a
synchronized asymptotic observer of the form

2=W.(2, ye ue) when H flows
H " =Ya(Z ya, ua) when H jumps 2
X = Y(zs Yes Yds Ues Md)

where Z € R"= is the observer state (with n, > n, in general), Y : R": X R™-< X
R™.d xR™ xR"™ — R™ is the observer output map, ¥, : R"z xR"-c xR — R"=
and ¥, : R xR™-4 xR"™ — R"= are respectively the observer flow and jump maps
designed such that each maximal solution (x, Z) to the cascade H — H initialized in
Xo X R"™= with inputs in U is complete and verifies

lim — |x(z, /) - £(z, /)| = 0. (€)
t+j—+o0
(t,j) edom x

The knowledge of the jump times is not only used to trigger the observer jumps
at the same time as those of the system, but it can also be used to design the observer
maps ¥, and ;. The way this information is exploited varies depending on whether
these maps rely on:

* Gains that are computed offfine (for example via matrix inequalities), according
to all possible lengths of flow intervals in between jumps, i.e., they depend on
each individual flow length, not the particular sequence of them. This is the path
taken by [1, 18, 12, 24, 22, 6, 29];

e Or, gains that are computed online along the time domain of each solution of
interest, i.e., they depend on the sequence of flow lengths in each particular
solution. This is the path taken by all Kalman-like approaches in [17, 26, 28].
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In the former case, the design requires some information about the possible duration
of flow intervals between successive jumps in each solution of interest (at least after
a certain time) as defined next. In the context of switched (resp. sampled) systems,
this corresponds to information about the possible switching (resp. sampling) rates.

Definition 1 (Set of flow lengths of a hybrid arc)

For a closed subset 7 of [0,+c0) and some j,, € N, we say that a hybrid arc
(t, ) ¥ x(t, j) has flow lengths within I after jump j,, if

e 0<t—tj(x) <supd forall (¢, j) € domux;
* tjz1(x) —t;(x) € I holds for all j € N with j > j,, if supdom; x = +c0, and for
all j € {jm, jm+1,...,supdom; x — 1} otherwise.

In brief, 7 contains all the possible lengths of the flow intervals between succes-
sive jumps, at least after some time. The first item is to bound the length of the flow
intervals not covered by the second item, namely possibly the first ones before j,,,
and the last one, which is dom, x N [#,(y), +o0) where ¢ (y) is the time when the last
jump happens (when defined). If 7 is unbounded, the system may admit (eventually)
continuous solutions and the observer should correct the estimate at least during
flows, while 0 € 7 means the hybrid arc can jump more than once at the same time
instance or have flow lengths going to zero (including (eventually) discrete and Zeno
solutions) and the observer should reduce the estimation error at least at jumps.

From there, one may design either:

* A flow-based observer with an innovation term during flows only, exploiting the
observability of the full state during flows from y. when O ¢ 7 [1, 6];

* A jump-based observer with an innovation term at jumps only, exploiting the
detectability of the full state via the combination of flows and jumps from y,
available at the jumps only when 7 is bounded [6, 17, 12, 24, 26];

* An observer with innovation terms during both flows and jumps, exploiting the
observability from both y. and y,; and the combination of flows and jumps:
this is done via a hybrid Kalman-like approach in [28], or via an observability
decomposition in [29], or Lyapunov-based LMIs in [22, 6].

This chapter deals with the third case, where the full state is not necessarily
instantaneously observable during flows and not observable from the jump output
only. It unifies and extends the work of [28, 29]. More precisely, in Section 2, we
start with an observability analysis allowing us to exhibit necessary conditions and
sufficient conditions for observer design: first through hybrid Gramian conditions,
and then via an observability decomposition. The latter decomposes the state in two
parts: the first one is instantaneously observable through the flow output y., while the
second one must be detectable from an extended jump output featuring the available
jump output y4 and an additional fictitious one, describing how the non-observable
states impact the observable ones at jumps and become visible through y.. While the
Gramian-based analysis has led in [28] to a systematic hybrid Kalman-like design,
we show how the observability decomposition lets us design observers made of:

* A high-gain flow-based observer of the state components that are instantaneously
observable from y.;
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* A jump-based observer for the remaining components, derived from a discrete
LMI-based (resp. KKL-based) observer in Section 3 (resp. Section 4), thus re-
visiting and extending [28].

Notations: Let R (resp. N) denote the set of real numbers (resp. natural numbers,
ie., {0,1,2,...}) and Nyo = N\ {0}. We denote R™*" (resp. SQO) as the set of real
(m X n)- (resp. symmetric positive definite (n X n)-) dimensional matrices. Given
a set S, int(S) denotes its interior. Let R(z) and I(z) be the real and imaginary
parts of the complex variable z, respectively. Denote Id as the identity matrix of
appropriate dimension. Let | - | be the Euclidean norm and || - || the induced matrix
norm. Let A+ be the orthogonal complement of matrix A satisfying AA*+ = 0 and
such that (AT Ai) is invertible, and A" be the Moore-Penrose inverse of A [20]. For
asolution (¢, j) + x(z, j) of a hybrid system, we denote dom x its time domain [13],
dom; x (resp. dom; x) the domain’s projection on the ordinary time (resp. jump)
component, and for j € dom; x, ¢;(x) the unique time such that (¢;(x), j) € domx
and (¢;(x),j — 1) € domx, and 7;(x) := {t € dom, x : (¢, j) € domx} (for hybrid
systems with inputs, see [23]). The mention of x is omitted when no confusion
is possible. A solution x to a hybrid system is complete if domx is unbounded and
Zeno if itis complete and sup dom; x < +oo. Letdiag(Ay, Az, .. ., 4,) be the diagonal
matrix with entries A;, 7 = 1,2, ..., n. Occasionally, * denotes the symmetric part,
i.e.,*x"P = PTPorsometimes x' QP = PTQP. Last, let sat, be a saturation function
with level s, i.e., satg (M) = M if ||M|| < s and satg is bounded otherwise.

2 Detectability and observability analysis

The existence of an asymptotic and synchronized observer (2) for system (1) requires
system (1) to be asymptotically detectable, in the following sense.

Definition 2 ((Pre-)asymptotic detectability with known jump times)

System (1) with known jump times, initialized in Xy, and with inputs in U is
pre-asymptotically detectable if any complete solutions x, and x; in S¢(Xo, U)
with the same inputs (F,J, H., Hg, u.,uq), such that dom x, = dom x5, and whose
flow outputs y,. ¢, ¥b.c and jump outputs y, 4, Yb.q satisfy

ya,c(ta J) = yb,c(t7j)’ Vt € int((];(xa)), Vj e domjxa’ (4a)
)’a,d(tjsj_1)=Yb,d(tj,j_1), VjEdOmj.xa,jZ 19 (4’b)
verify
lim — |xa (2, ) = x5(1, j)| = 0. o)
t+j—+00

(t,j)edom x,

If in addition, all solutions in S¢;(Xp, U) are complete, then we have asymprotic
detectability. The set Xy (resp. U) may be omitted if the property holds for any initial
condition in Xy = C U D (resp. any input).
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Remark 1 In Definition 2, when all the flow intervals have non-empty interior (i.e.,
int(7;(x,)) # 0 for all j € dom; x,), condition (4a) is equivalent to

ya,c(taj) zyb,c(tvj)» V(l,j) € domx,, ©6)

by the continuity of ¢ - y. (¢, j) during flows for all j € dom; x,. On the contrary,
when a solution admits consecutive jumps, condition (4a) is required only on the
flow intervals with a non-empty interior since it holds vacuously on the other ones.
In other words, the equality of y. is only required when the system is flowing.

The necessity of asymptotic detectability is typically obtained as follows. First, by
definition of a synchronized asymptotic observer initialized in Xy with inputs in U,
all solutions in S¢;( Xy, U) must be complete. Then, pick a pair of solutions (x,, xp)
as in Definition 2 verifying (4). A solution £ produced by observer (2) fed with outputs
(Ya,c» Ya,a) shares the same time domain and must converge asymptotically to x,;
but, £ is also a solution to observer (2) fed with outputs (yp.¢, ¥b.4) according to (4),
so that it must also converge asymptotically to x;,. It follows that x, and x; necessarily
converge asymptotically to each other, thus giving us asymptotic detectability. Note
that compared to [5], Definition 2 is restricted to pairs of complete solutions with
the same time domain because the knowledge of the jump times is used to trigger the
jumps of the observer so that only complete solutions with the same time domain
and the same outputs are required to converge asymptotically to each other.

For observer design, one typically requires stronger observability assumptions
depending on the class of observers and the required observer properties [3]. Ob-
servability typically means that the equality of the outputs in (4), possibly over a
large enough time window, implies that the solutions x, and x;, are actually the same
or said differently, there does not exist any pair of different solutions with the same
time domain and the same outputs in the sense of (4). Actually, in the context of
observer design, a more relevant property is the ability to determine uniquely the
current state from the knowledge of the past outputs over a certain time window
A > 0, which is typically called backward distinguishability [27] or constructibility
[15]. In other words, for all (¢, j) in the domain such that ¢ + j > A, the equality of
the outputs (y., vq) along x, and x;, at all past times (¢’, j) in the domain such that
0< (t+j)—(t'+j’) < Aimplies that x,(t, j) = xp (¢, j) (see later in Section 2.1).
For continuous-time systems, this property is equivalent to observability over a time
window because of the uniqueness of solutions in forward and backward time. How-
ever, they cease to be equivalent in discrete-time or hybrid systems when the jump
maps are not invertible: a system could be constructible without being observable
(see [15, Section 2.3.3] for a detailed discussion on those notions).

2.1 Hybrid observability Gramian

Consider a pair of solutions x, and x, in Sg(Xo, U) with the same inputs
(F,J,H:,Hg,uc,ug) such that domx, = domx; := D. Then, for all hybrid times
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(¢, j), (t,))) € Dx D, we have

Xa (t9 .]) - .Xb(l, .]) = CDF,J((t’ ])’ (t” j/))(xa(t,s ]/) - Xb(l/, j/))’ )
where @ ; is a hybrid transition matrix defined as

j+1

OF (1, ), (', j) = pr(t. tjs1) H GF (trsr, 1) (tr, k= 1) [@p(tjr41,17), (8)

k=j

ift >t and j > j’, and, if the jump matrix J is invertible at the jump times,

7
Or s ((1, ), (', j) = ¢r(t.1)) H OF (te-1, ) It k = 1) | @p(tj 1)), (9)

k=j+1

ift <t"and j < j’, with the domain of F and J inherited from D, where ¢ denotes
the continuous-time transition matrix associated with F, i.e., describing solutions
to x = Fx. By summing and integrating squares, it follows that the equality of the
outputs (y., yq) along x, and x;, between time (¢/, j') € D and a later time (7, j) € D
is equivalent to

(xu(tlv ]/) - )Ch(t,, j,))Tg(F,J,HC,Hd) ((t,7 j,)7 (t7 j))(-xa(t,7 ]/) - xb(tlv ]/)) = 07
(10)
or, assuming the invertibility of J at the jump times,

alte ) =56 (L DTG i iy (00 (1 ) (at ) =3 (1)) = 0, (11)

whete G(r. 1.1, (', J'). (1)) (resp. GUP, o (1, ). (1. ))) s the ob-
servability Gramian (resp. backward observability Gramian) between those times as
defined next.

Definition 3 (Observability Gramians)

The observability Gramian and backward observability Gramian of a quadruple
(F,J,H., Hy) defined on a hybrid time domain D, between time (¢, j') € D and a
later time (¢, j) € D, are defined as

g(F,J,Hc,Hd) ((t/’ .].1)9 (t’ ])) =
i—1

tjrsl J Tt
[ @ds e 3 [T A @ s
v k=j'+1 Y Ik
J-1 t
b3 R a0, )+ [R5 (s, (12)
k=j’ 1

J

and, when J is invertible at the jump times,
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Gl om0 (1)) =

1y j-1 Ti+l
[ s e 3 [, 1 s

k=j'+1 Y1k

J-1 '
b 3w (e 0. (000 + [ (). (i), (13)
k=j’ I

respectively, where

lI"C((s» k)’ (t’ ])) = HC(S’ k)(I)F"]((S, k)5 (15 .]))’ (14&)
LI’d((l‘k+l9 k), (t’ ])) = Hd(tk+l’ k)q)F,J((tk+le k)’ (t’ ]))’ (14b)

with all the jump times determined from D.

According to (10), we deduce that the observability between times (¢’, j’) and
(t, j), namely the ability to reconstruct the initial state x(¢’, j") from the knowledge
of the future output until (¢, j), is equivalent to the positive definiteness of the
observability Gramian over this period. On the other hand, when J is invertible at the
jump times, the ability to reconstruct the current state x(¢, j) from the knowledge of
the past output until (¢/, j), i.e. the backward distinguishability or constructibility,
is characterized by the positive definiteness of the backward observability Gramian
over this period according to (11). Actually, in that case, both notions are actually
equivalent but the backward observability Gramian tends to appear more naturally
in the analysis of observers.

Remark 2 Note that unlike for purely continuous- or discrete-time linear systems,
the inputs (u., u4) involved in the hybrid dynamics (1) may impact the observability
properties since they may change the domain of the solutions and thus the Gramian.

For observer design, the invertibility of the Gramian is typically assumed to be
uniform, leading to the following hybrid uniform complete observability, extending
the classical UCO condition of the Kalman and Bucy’s filter [16].

Definition 4 (Uniform complete observability (UCO))

The quadruple (F,J, H., Hy) defined on a hybrid time domain D is uniformly
completely observable with data (A, u) if there exists A > 0 and g > 0 such that for
all ((¢, '), (t,j)) € DxD verifying (t —¢') + (j — j’) = A, we have

g(F,J,H(,,Hd)((t,’j,)’(t’j)) ZHId (]5)

In [28], this condition is stated with G?* replacing G because the former ap-
pears directly in the analysis. They are actually equivalent, assuming the uniform
invertibility of J at the jump times and the boundedness of F and J. In [28], this
UCO condition is exploited to design a systematic hybrid Kalman-like observer of
the form
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£=Ff+u.+PHIR'(y. — H.%)
P=AP+FP+PFT — PHTR- H,p | When H flows
(16a)
)€+=J)€+ud+JK(yd—Hd)€) .
Pt =y (1 - KH)PIT when H jumps
with
K = PH)(HaPH) +Ra)™", (16b)

where 4 > 0 and y € (0, 1] are design parameters, R, € S:"B"‘ and Ry € S:g’d

are (possibly time-varying) weighting matrices that are positive definite and are
uniformly upper- and lower-bounded. In [28], it is shown that the estimation error:

» Converges asymptotically to zero under UCO and the boundedness of the system
matrices along each of the considered solutions in S¢((Xo, U);

» Is exponentially stable with an arbitrarily fast rate and robustly stable (as defined
in [2] but for hybrid systems) after a certain time, under UCO and the boundedness
of the system matrices uniformly across the considered solutions in S¢((Xo, U),
when additionally A is sufficiently large and vy is sufficiently small.

Example 1 Consider a pendulum equipped with an IMU and bouncing on a vertical
wall, with angular position @ € R3. The IMU contains a gyroscope measuring its
angular velocity @ € R? and an accelerometer measuring its proper acceleration
(linear acceleration minus gravity) y, € R3 in the IMU frame, modulo an unknown
constant bias b, € R>. We assume its tilt £ € R3 is measured at the jump times
(when the mass impacts the wall) and that the linear velocity » € R3 in the sensor
frame can be deduced from the gyroscope measurement via kinematics [31]. We
also assume the velocity magnitude is reduced by an unknown constant restitution
coefficient ¢ € (0, 1] at each impact. With these in mind, we model the system in
hybrid form with state x = (¢, v, b,, c) as (see [31] for the flow dynamics)

[ =—[w]xt =t
b= —[w]xv+ys — by +gt _ vt =—cv _

ba — O yC - D, b:l- — ba )’d - (v7 t)9 (17)
¢=0 ct=c

0 —Ww3 w2

where [w]x =| w3 0 —w; |and g is the gravitational acceleration, with the flow
—W2 W1 0
and jump sets depending on the wall configuration. This system takes the form (1)
-[w]lx O 00 Idoo O 0
gld —[w]x-1d0 000 —yao Ya
where F = 0 0 0 0,J= 001d 0 Ve = 0,andud=0,
0 0 00 000 1 0

! Note that J is not invertible at jumps, but it can be made invertible by considering an alternative
jump map v* = v+ cya,p — Ya,» and seeing —yq , as part of ug. Simulations have shown that this
invertibility may not be necessary for the Kalman-like observer.
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with y4 , the v-component of y;. We would like to estimate both b, and ¢. Assuming
the system is persistently not at rest (with external excitation if ¢ < 1), itis observable
over each period of time containing at least one jump and a flow interval, because

e ¢ is available at jumps and its dynamics are independent of the other state com-
ponents, making it observable, independently of the input signal [w]«;

e v and b, are both instantaneously observable during flows from y. once ¢ is
known, also independently of [w]x;

e cis observable at jumps by seeing v as a known input, because v is measured.

It follows that if the pendulum velocity is uniformly lower-bounded (thanks to an
appropriate input in the mechanical system, whose effects are in fact contained in
Yq in the IMU frame), the observability Gramian computed over a time window A
larger than the maximal length of flow intervals would be uniformly positive definite.
Then, assuming the boundedness of F' and J, a Kalman-like observer (16) fed with
(Ye» Ya»> 0, ¥q) can be designed for system (17). Now, consider the case where there
is an unknown constant bias by € R? in the gyroscope measurement. As a result,
[w]x insystem (17) is replaced by [wp, —bg]x, Where w,, is the biased measurement.
Assume an estimate l;g of by is available such that l;g — b, asymptotically vanishes.
Then, the dynamics (17) may be re-written as

% =Fx+(F-F)x, (18)
where [wy, — 5g]x replaces [wm, — bg]x in F'. Consider the previous Kalman-like
observer, but designed with the known F instead of F. According to our observability
analysis above, the observability of the quadruple (F,J, H., Hz) does not depend
on F and therefore still holds for (F ,J, He, Hyg). The robust stability of the Kalman-
like observer [28, Theorem 3] then ensures that the error converges asymptotically
to zero because: (i) The UCO condition holds with £ replacing F, and (ii) The
“disturbance” (F — F)x vanishes asymptotically thanks to 5g converging to bg and
the boundedness of x. In other words, we only need to find an asymptotic estimate
of bg and feed it to the hybrid Kalman-like observer of x. For that, notice that the
pendulum position @ verifies the hybrid dynamics

.G:wm—bg o {0+=0 ‘—e |
{bgzo Ye=0o pr=p, Ya=t (19)
with the flow and jump sets depending on the wall configuration. In other words,
6 has continuous-time dynamics, but with sampled measurement at each impact
obtained via the impact condition. Because system (19) has linear maps and only the
jump output, we can design a jump-based observer with a constant gain using LMIs
on the equivalent discrete-time system sampled at the jumps (see [6, Corollary 5.2]).
All in all, still if the pendulum velocity is uniformly lower-bounded away from zero
and (F,J) upper-bounded, an observer of x is obtained by the cascade of a jump-
based observer of bg and a Kalman-like one for system (17) fed with [w, — 5g]x
instead of [w]x.
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In what follows, we attempt to analyze more precisely the observability/detectability
of the system by decomposing the state according to the different sources of observ-
ability. Beyond a finer comprehension, this allows for the design of observers when
UCO is not satisfied, for instance under mere detectability properties, or to design
observers of smaller dimensions through decoupling (see Table 1 for a comparison).

2.2 Observability decomposition

In the case where the full state is instantaneously observable during flows via the
flow output y. and the system admits an average dwell time, a high-gain flow-based
observer (using only y.) can be designed (see [6, Section 4]); and when the full
state is observable from the jump output y, only, a jump-based observer based on an
equivalent discrete-time system can be designed if the jumps are persistent (see [6,
Section 5]). We are thus interested here in the case where observability rather comes
from the combination of flows and jumps and/or the combination of (y., ys). The
idea of the decomposition is thus to isolate state components that are instantaneously
observable during flows from y., from other ones that become visible thanks to y,
or the combination of flows and jumps. It follows that both the flow and jump outputs
may need to be fully exploited to reconstruct the state and that neither (eventually)
continuous nor discrete/Zeno trajectories are allowed: both flows and jumps need to
be persistent at least after a certain time, unlike in Section 2.1, as assumed next.

Assumption 2 There exists j,, € N such that solutions have flow lengths within a
compact set I C [y, Tas] Where 7, > O after jump j,,.

Assumption 2 means that, for all solutions x € S;(Xo, U), the hybrid arc (¢, j) —
(x(t, j),t —t}) is solution after some time to the hybrid system

*=Fxvue (x,7)eCT Ve = Hex
JT=1
H xt=Jx+uy (202)
=0 }(x,T)GDT Ya = Hax
with the flow and jump sets
C" =R™ x [0, 1p], DT =R"™x 1T, (20b)

where 7 € Ris a timer keeping track of the time elapsed since the previous jump. Note
that H™ admits (after the first j,, jumps) a larger set of solutions than S¢(Xo, U)
since the information of the flow and jump sets are replaced by the knowledge of
flow lengths in 7 only (as long as the inputs (F, J, H., Hg, u., ug) are defined along
the time domains of those extra solutions). But, as discussed in Section 1, when
the observer contains gains that are computed offline, based on the knowledge of
the possible flow lengths only, it is actually designed for H™ instead of H and
it is thus the detectability/observability of ™ that is relevant. In that case, the
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design depends only implicitly on the sets Xy, U, C, and D through the choice of I
satisfying Assumption 2.

In view of observer design and motivated by [10], we start by proposing a change
of variables decomposing the state x of " into components associated with different
types of observability. In order to guarantee the existence of the decomposition, we
assume in the next section that the flow pair (F, H.) is constant. However, the
subsequent results of this chapter still hold with (F, H.) varying, as long as the
transformation into the decomposition form exists and is invertible uniformly in
time as explained in Remark 3.

2.3 Observability from y. during flows

Assume (F, H.) is constant. Let the (flow) observability matrix be
O :=row(H¢, H.F, ..., H.F™=1), (21)

and assume it is of rank n, := dimIm O < n,. Consider a basis (v;)|<;j<n, of R™
such that (v;)1<i<n, is a basis of the observable subspace and (v;)n, +1<i<n, 1S @
basis of the non-observable subspace ker O. Then, we define the invertible matrix
D = (D, Dno) Where

Dy = (v1 ... Uy,) € RN, (22a)
Doo = (Vs - Un, ) € RI*¥n0, (22b)

which by definition satisfies for all T > 0,
0Dyo =0,  Hee" "Dy, =0. (23)

V, )
(Vn() ’
so that V,,x represents the part of the state that is instantaneously observable during
flows (see [9, Theorem 6.06]).

A first idea could be to stop the decomposition here and design a sufficiently fast
high-gain observer for V,,x while estimating the rest of the state V,,,x through y,4
and detectability. However, as noticed in [10, Proposition 6], the fact that V,x and
V,0x possibly interact with each other during flows prevents achieving stability by
further pushing the high gain. The case of such a decomposition where V,x and
“V,0x evolve independently during flows is exploited in a more general context in
[30]. Here, because the maps are linear, we can go further and solve this possible
coupling by more efficiently decoupling the state components as follows.

Indeed, the estimation of any state that is not instantaneously observable during
flows needs to take into account the combination of flows and jumps. That is why it
is relevant to exhibit explicitly this combination via the change of coordinates

We denote V := D! which we decompose consistently into two parts V =: (
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_ [ %0 ) _ -Fr_ _ Vo -Ft
R R

whose inverse transformation is
X =e DZ =e D Zo t+ D Z 25
( o<o no -no), ( )

and which, according to (23), transforms H7 into

20 = Go(T)ue
Zno = Gno (Tt
=1
(26a)
Z: = J{)(T)Zo + Jono (T)Zno + Vouq
Z;U = Jnoo (T)Zo + Jno (T)Zno + Vaolta
™ =0,
with the flow and jump sets
R™ x R™ x [0, Tp], R" x R™e x T, (26b)
and the measurements
Ye = HC,O(T)ZO’ Ya = Hd,o (T)Zo + Hd,no (T)Zno’ (26¢)

where G, (1) = Ve F7, Gro(t) = Ve ™7, Jo(7) = V,JeF "D, Jono (1) =
(VnJeFTDnm Jnoo(T) = (VnoJeFTZ)m Jno(7) = (VnojeFTDnm H., (r) = HceFTZ)m
Hyo(t) = Hge""D,, and Hy ,0(7) = Hyef " D,,. This idea of bringing at the
jumps the whole combination of flows and jumps is similar to the so-called equiv-
alent discrete-time system exhibited in [6] for jump-based observer designs. Notice
that by definition and thanks to linearity, the observability decomposition through
V ensures that the flow dynamics of z, and y. are totally independent of z,,,
which only impacts z,, at jumps. In other words, the whole dependence of the ob-
servable part on the non-observable part via flows and jumps has been gathered at
the jumps. Besides, z,, is by definition instantaneously observable from y.. More
precisely, for any 6 > 0, there exists @ > 0 such that the observability Gramian of
the continuous-time pair (0, H. ,(7)) satisfies

t+6 t+8
/ H! ,(s)Hc o(s)ds = / D] e " HIH.e"D,ds > a1d, vt > 0.
t t

27
Indeed, this Gramian corresponds to the observability Gramian of the pair (F, H.)
projected onto the observable subspace. This condition is thus related to the uniform
complete observability of the continuous-time pair (0, H. ,(7)) in the Kalman lit-
erature [16] (continuous-time version of the one in Definition 4), but here with an
arbitrarily small window ¢. Since z,, is observable via y., we propose to estimate
Z, sufficiently fast during flows to compensate for the interaction with z,,, at jumps.
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Then, intuitively from system (26), information about z,, may be drawn from two
sources: the jump output y; and the part of z,, impacting z, at jumps, namely
Jono(T)Zno, Which may become “visible” in z,, via y. during the following flow
interval. This is illustrated in Example 2 below. Actually, we show next in Section
2.4 that the detectability of z,,, comes from these two sources of information only.

Example 2 Consider a hybrid system of form (1) with state x = (x1,xp,x3,X4),
u. =0, ug =0, and the matrices

0-100 0010
1000 0000

F=100 0=l H.=(1000), J= 0010l H;=(0010), (28)
002 0001

with random flow lengths varying in some compact set 7 C (0, %) It can be seen

that only x; and x, are instantaneously observable during flows from y., but x3
impacts x; at jumps (or y4) and x4 impacts x3 during flows. Therefore, we may hope
to estimate the full state. In order to decouple those various impacts and analyze
detectability more easily, we proceed with the change of variables (24). We obtain

_ [ cos(r) sin(r) 00 _ (00 cos(27) sin(27)
o (— sin(7) cos(7) 0 o)x’ fno = (0 0 - sin(27) COSQT))X’ (29)

and system (26) with the matrices J, (1) = (8 8), Jono (1) = COS(()ZT) - 5“(1)(27'))’

non(®) = (00 Jn00) = (Star) contony ) Hoeas) = (cos(r) =sinto),
Hyo(t) = (00), and Hy no(7) = (cos(27) —sin(27)). It can be seen that in this
case, the terms Jono(7)Zno and Hy no(T)zno contain the same information on z,,
and both should be able to let us estimate this part.

Remark 3 In what follows, a varying pair (F, H.) can be considered as long as the
transformation into the form (26) satisfying (27) exists and is invertible uniformly
in time. This can be done with the transition matrix of F replacing the exponential
form, if the observable subspace remains the same at all times. In that case, the jump
matrices Jo, Jonos Jnoos Jno> He,0» Hd 0. and Hg o are (discrete) known inputs that
are no longer functions of 7 only, but of the (discrete) jump index, which is not
considered in this chapter. Similarly, J could vary at each jump as long as every
related condition in the rest of this chapter holds uniformly in u4.

2.4 Detectability analysis

We first provide a more specific characterization of the (pre-)asymptotic detectability
of system (26) in the case of zero inputs (u., ug). Indeed, we will see in Theorem 2
that this detectability is relevant to characterize that of the initial system .
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Lemma 1 System (26) with known jump times and zero inputs (uc,ug) is pre-
asymptotically detectable if and only if any of its complete solutions (z, T) with zero
inputs (uc, ug) and flow and jump outputs satisfying

vel(t, j) =0, vt € int(7;(z)),Vj € dom,; z, (30a)
yaltj j=1)=0, Vjedomjz.j>1,  (30b)
verifies
lim z(z,j) =0. (31)
t+j—+o00
(t,j)edomz

Proof First, assume system (26) is pre-asymptotically detectable. Let (z,7) be a
complete solution to system (26) with zero inputs (u., u4) and with outputs satisfying
(30). Notice that the hybrid arc (z’, 7), with dom z” = dom z and z’ constantly zero,
is also solution to system (26) (thanks to linearity in the maps and the inputs (u., uq)
being zero). It can be seen that this solution is complete and also satisfies (30). By the

pre-asymptotic detectability of system (26), we have lim 4400 |2(2, /)=2'(2, j)| =
(t,j)edomz
0, which implies that lim ;1100 z(?, j) = 0. Second, let us prove the converse. For
(t,j)edom z
that, assume that any complete solution to system (26) with zero inputs (u., u4) and

with outputs verifying (30) is such that z converges to zero. Consider two complete
solutions (z4, 7,) and (zp, Tp) to system (26) with dom(z,, 7,) = dom(zp, 7p), With
zero inputs (u.,uy), and with outputs satisfying (4). By definition of the flow set,
Z4 and zp jump at least once. Because the timers are both reset to zero at jumps,
we have 7,(¢, j) = 1p(t,j) := 7(¢,j) for all (¢, j) € domz, such that t > ¢; and
j = 1. By removing [0, #;] X {0} from the time domain, we see that (z, — zp, T)
is a complete solution to system (26) with outputs verifying (30) (thanks to system
(26) having linear maps in z and the flow and jump sets being independent of z).

Therefore, by assumption, we have lim 1+j—+c0 (24 — 2) (2, j) = 0, which implies
(t,j)edom z,
the (pre-)asymptotic detectability of system (26). O

Note that the equivalence of the incremental detectability as in Definition 2 with
the zero detectability as in Lemma 1 is classical for linear continuous- or discrete-
time systems, but it is not automatic for hybrid systems with linear maps due to the
flow/jump conditions. Here, it holds only because:

¢ The flow and jump conditions in system (26) do not depend on z but only on 7;

e 7 is determined uniquely after the first jump by the time domain of solutions;

e The inputs (u., uy) are removed, thus avoiding a restriction of solutions to system
(26) due to a mismatch of time domains.

Theorem 1 Assume that 0 ¢ I and I is compact. Then, the following three state-
ments are equivalent:

1. The hybrid system (20) with zero inputs (uc, ug) and known jump times is asymp-
totically detectable;
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2. The hybrid system (26) with zero inputs (u., ug) and known jump times is asymp-
totically detectable;
3. The discrete-time system defined as

Zno,k+1 = Jno(Tk)Zno,b Yk = Hd,ext(Tk)Zno,k’ (32)

Hd,no(Tk)

where H g ex (Tr) = (J (t2)
ono

detectable.

), with T, € I for all k € N, is asymptotically

Proof First, notice that all maximal solutions to systems (20) and (26) are complete
because their dynamics maps are linear and the flow and jump conditions do not
depend on the state but only on the timer. Notice also that since O ¢ 7, consecutive
jumps cannot happen, so that condition (4a) is equivalent to (6) following Remark 1.
Because systems (20) and (26) are the same system modulo a uniformly invertible
change of variables, 1. and 2. are equivalent. Then, let us prove that 2. implies 3. So
assume 2. holds and consider a solution (2,0 k) ke to system (32) with input (7 )xen
in 7, such that y; = 0 for all k € N. We want to show that (2,0 )k en asymptotically
goes to zero. For that, we build and analyze the complete solution z = (24, Zno) tO
system (26) initialized as z,(0, 0) = 0, 2,1, (0, 0) = zp0.0, and 7(0, 0) = 0 with jumps
verifying 7(¢;,j — 1) = 7j-1 € 1 for all j > 1 and zero inputs (u, ug). It follows?
from the fact that (i) z, and z,, are constant during flows, (ii) y. is independent of
Zno» and (iii) yx = 0 for all k € N, that for all j € N,

Zo(tvj) = 0’ Vt € [tj,lj+1],
Zn()(t,j) = Zno,j» YVt e [lj,tj+1],
ye(t, j) =0, Vt € [l‘j,lj.,.]],

2o(tjs1,J + 1) = Jono(T)2no,j = 0,
Zno(tj+1,J + 1) = Jno(Tj)Zno,j = Zno,j+1,
Ya(tjs1:J) = Hano(7))Zno,j = 0.

By 2. and Lemma 1, this implies lim /440 Zno (%, j) = 0. Because this solution
t,j)edomz
Zno coincides with (20 k) ken at thejlirnd;S, we deduce limg 100 Zno,k = 0, implying
3. Finally, let us prove that 3. implies 2. Consider a corlrclﬁete solution (z,7) =
(Zos Zno» T) to system (26) with zero inputs (u.,uy4) and such that (30) holds. By
definition of the jump set, for all j € dom; z, 7; := 7(¢;41,j) € I. Since 0 ¢ 1, the
solution admits a dwell time and, because we look for an asymptotic property, we may
assume without any loss of generality that the solution starts with a flow, possibly
overlooking the first part of the domain (with j = 0) in case of a jump at time 0. Since
Z, 1s instantaneously observable during flows according to (27), y. = 0 implies that
Zo is zero during each flow interval. Next, as O ¢ 7, there is no more than one jump at
each jump time so that z,, (¢, j) = Oforall (¢, j) € dom z. Besides, since 7 is compact,

2 Note that 0 ¢ 7 and the compactness of 7 are not needed to prove this direction.



16 G. Q. B. Tran, P. Bernard, L. Marconi

dom; z = N and from (26a), we then have Jono (7(j, j — 1))zno(tj, j — 1) = 0 for
all j € dom;z with j > 1. Therefore, since z,, is constant during flows and
va(tj,j—1)=0,forall j € dom;z, j > 1, we have forall j € N,

Zno(tj+1’j +1) = Jno(T(th’j))zno(tj+l,].) = Jno(Tj)Zno(tja 7
Hd,no(T(th’j))Zno(thaj) = Hd,no(Tj)Zno(tj» 7 =0,
Jono(T(th’j))zno(tjﬂ,j) = Jono(Tj)Zno(tj’ Jj)=0.

By considering the sequence (z,,(?;,j))jen solution to system (32) with input
(tj)jen in I and applying 3., we obtain limj—ic Zno(tj,j) = 0. Since z,, is
jeN
constant during flows, we have lim ;4+j+0 = 0, implying 2. according to Lemma
(t,j)edomz
1. O

We thus conclude that (at least when the inputs (u., uy) are zero) the asymptotic
detectability of system (20) requires z,, to be asymptotically detectable through the
output made of the measured output y, and the fictitious one J,,0(7)Zno, Which
describes how z,, impacts z, at jumps. We insist also that the detectability of z,,,
comes from the combination of flows and jumps and not due to jumps alone since
the useful information contained in the flow dynamics and output is gathered at the
jumps via the transformation (24).

It follows from this analysis that the design of an asymptotic observer for H
with gains computed offline from the knowledge of 7 only (without any special
consideration of Xy, U, C, or D), namely an observer for system (20), without
considering the possible restrictions of time domains by the inputs (u., u4), requires
the asymptotic detectability of the discrete-time system (32). This is because any time
domain with flow lengths in 7 is a priori possible. This will be done in Section 3 with
an LMI-based design. On the other hand, if we consider the more precise problem
of observer design with time domains restricted to that of solutions in S¢/(Xp, U),
we end up with the following sufficient condition for asymptotic detectability of H.

Theorem 2 Suppose Assumptions 1 and 2 hold. Then, H initialized in Xy with inputs
in U is asymptotically detectable if for each x € Sq((Xo, U), the discrete-time system
(32) with input (T ) en defined as Ty = ti1(x) —tx (x) for all k € N is asymptotically
detectable.

Proof Pick solutions x, and x;, in S¢;(Xy, U) with the same inputs (F, J, He, Hg, uc, ug),
such that dom x, = domx;,, and with outputs y, ¢, Yb.c» Ya.d> Yb.a satisfying (4). By
Assumptions 1 and 2, these solutions are complete with dom; x, = dom;x; = N.

By Assumption 2, for all j > ji,, 7 := tj41(xq) = 1j(Xa) = tj41(xp) — tj(xp) € L.
Since 0 ¢ 7, the solutions admit a dwell time after the first j,, jumps. Since we
look for an asymptotic property, we may discard the first part of the solutions with

J < Jm, and assume without any loss of generality that they start with a flow interval

and have a dwell time. Then, condition (4a) is equivalent to (6) following Remark 1.
Consider the hybrid signals (z4, zp, T) defined for all (¢, j) € domx, as



Observer design for hybrid systems with linear maps and known jump times 17

T(t,j)=t—tj,

Za,o(t7j) _ Vo -Fz(t,j) i
(ZM” (t’j)) = ( (Vm,) e xa(t, ),
20t J)\ _ (Vo) —Fr@.)) ;
(Zb,no(tvj)) = ((v’w) e xp(t, J).

We see that both (z,,7) and (zp, 7) are solutions to system (26) with the same 7-
dependent matrices (G, Gno, Jo, Jono> Jnoos Inos He o, Ha,o. Ha no) and the same
inputs (uc,uq). Since z,, and zp , are instantaneously observable during flows
according to (27), ya.c = Yp,c implies that z, , = 2p,, during each flow interval.
Next, as 0 ¢ 7, there is no more than one jump at each jump time so that z, , (7, j) =
Zb.0(t, j) forall(z, j) € domx,.Besides, since u, is the same for both solutions, from
(262), we have Jono (T(2), J = 1))za.no (5 J = 1) = Jono (T(tj5 ] = 1))2bno (1, — 1)
for all j > 1. Therefore, since z,, ,, and z ,, €volve in the same way during flows
(with the same u.) and yq q(tj,j — 1) = yp,a(tj,j — 1), for all j > 1, by defining
Zno = Za.no — Zb.no» We have that Z,,, is constant during flows and for all j € N,

zno (tj+l,J' + 1) = Jno(T(th,j))zno(tjﬂ,j) = Jno(Tj)Zno(tj’j)’
Hd,no(T(th’j))Zno(tj+]’j) = Hd,no(Tj)Zno(tj’ 7)) =0,
Jono(T(tj+1»j))Zno(lj+lsj) = ]ono(Tj)Zno(tj» 7)=0.

By considering the sequence (Z,,(?;,j))jen solution to system (32) with input

(1) jen in I and using the asymptotic detectability of system (32) for the particular

sequence (Tx)ken generated by x, and x;,, we obtain limj—+e0 Zno (£, j) = 0. Since
jeN

Zno 1s constant during flows, we have lim 14 400 Zno(#, j) = 0, which means that
(t,j)€edom x,
lim t4jot00 (Zano(t, J) — 2b.no(t, j)) = 0, implying that H initialized in Xy with
(t,j) edom x,
inputs in U is asymptotically detectable according to Lemma 1. O

Unlike Theorem 1, Theorem 2 does not give a necessary condition for detectability
(and thus observer design). The reason is that the flow and jump conditions of H
are not taken into account in system (32). But it still suggests us to build observers
for H under observability/detectability conditions on system (32) for the flow length
sequences (7x)ren appearing in S¢r(Xp, U). This will be done in Section 3 and 4
through LMI- or KKL-based design.

Remark 4 Compared to the preliminary work [29], the observer designs in this
chapter do not require an extra (constant) transformation decoupling the part of z,,,
detectable from y; and the part detectable from the fictitious output Jy, (7)Zne-
We instead consider an extended output in system (32) and the decomposition (26)
proposed in this chapter is thus less conservative. For instance, Example 2 can be
cast into the decomposition (26), but fails to fall into the scope of the decomposition
of [29] unless T = {%}
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Example 3 Consider the system in Example 2. It is possible to check, by computing
the (time-varying) observability matrix of the pair (J,,, (7x), Ha no(7x)), that system
(32) is observable for any sequence (7y)xen as long as sin(7y + 7x41) # 0 at some
k € N, which is the case for 7, € I since 7 c (0, 5). This implies in particular
that system (32) is detectable. Actually, even if H; = 0, i.e., no output is available
at jumps, the pair (Jy,, (7x), Jono (Tx)) is also observable using the same arguments.
This means that z,,, is actually observable through the fictitious measurement of z,,
at jumps. We see from this example that thanks to the flow-jump coupling, by using
Z, as a fictitious measurement, state components that are not observable during flows
from the flow output may become observable via jumps even without any additional
measurements at jumps (hidden dynamics), only through the way they impact the
observable ones.

3 LMI-based observer design from discrete quadratic
detectability in observability decomposition

Inspired by the detectability analysis of Theorem 1, we propose a first observer
design under the following detectability assumption.

Assumption 3 Given 1), and J defined in Assumption 2, there exist Q, € S:’a",
Ly.no & [0,7a] — R™e*Mv.d bounded on [0, 7p7] and continuous on 7, and K, €
RneX"o guch that

Hd,no(T)

*TQno JnU(T) - (Ld’nn(T) Knn) ( J()n()(T)

))—Qm,<0, vrel. (33)

We refer the reader to Remark 5 for constructive methods to solve (33), where it
is shown that the solvability of (33) in Q,,, and (Ld,,w (1) K,w) is equivalent to that
of a reduced LMI involving Q,,, only. Consistently with Theorem 1, Assumption 3

Ha.no(7) for each frozen r € I. But
J()n() (T)

itis actually stronger because it further requires Q,,, and K, to be independent of 7. It
corresponds to a stronger version of the guadratic detectability of system (32) defined
in [32]. Actually, the detectability of Assumption 3 allows us to build an observer for
any sequence of flow lengths (7x)renw € Z and thus requires the detectability of the
discrete-time pair for any such sequences, which is still consistent with the result of
Theorem 1. Note that the reason why K,,,, is required to be independent of 7 is that
it is used to carry out another change of variables in the proof of Theorem 3 below,
allowing us to exhibit the fictitious output in the analysis.

requires the detectability of the pair (J,,o (1), (
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3.1 LMI-based observer design in the z-coordinates

Because the flow output matrix H. ,(-) varies and satisfies the observability con-
dition (27), we design a flow-based Kalman-like observer of z, during flows using
ye [7]. Its advantage over a Kalman observer is that it admits a strict Lyapunov
function, allowing for direct robust Lyapunov analysis. Besides, it provides a direct
relationship between the Lyapunov matrix and the observability Gramian. Then, as
suggested by the detectability analysis, z,, should be estimated thanks to both y,
and its interaction with z,, at jumps via a fictitious output. The latter is not available
for injection in the observer, but it becomes visible through z,, after the jump, and
thus through y. during flows. This justifies correcting the estimate of z,, during
flows with y,, via the gain K,,,. The dynamics of the observer are then given by

2'\0 =Go(T)uc + P_IH;I—,(;(T)R_I(T)()’C - H 0(1)20)
éno = Gpo(T)uc + KnopichT,o(T)Ril (T)(ye = Heo(T)20)

P=-AP+H] ,(1)R" ! (1)H, (1)

T=1
2; =J (7)20 + Jono (T)Zno +Voua (34)
2:—10 = Jnoo(T)20 + Jno(T)Zno + Violta
+ Ld,no(T) (yd - Hd,() (7)20 - Hd,nu (T)éno)

Pt =Py

™ =0,

with jumps triggered at the same time as 9 in the same way as observer (2),
Py € SZ‘&, Ko and Lg 5, given by Assumption 3, and where 7 +— R(7) € Szg"' isa
positive definite weighting matrix that is defined and is continuous on [0, 73/] to be
chosen arbitrarily. The estimate is then recovered by using (25) on Z with the global

exponential stability (GES) of the estimation error as stated next.

Theorem 3 Under Assumptions 1, 2, and 3, given any Py € S:;’), there exists 1* > 0
such that for any A > A*, there exist p1 > 0 and A; > 0 such that for any solution
x € S¢(Xo,U) and any solution (Z, P, ) to observer (34) with P(0,0) = Py,
7(0,0) = 0, and jumps triggered at the same time as in x, (Z, P, T) is complete and

we have
Ix(z, ) = £(z, )| < p1]x(0,0) = £(0,0)[e~ 1+ V(z,j) € domx,  (35)
with % obtained by % = e" T D2 with D defined in (25).

Proof Consider a solution x € S¢(Xy, U) and a solution (Z, P, T) to observer (34)
with P(0,0) = Py and 7(0,0) = 0, and jumps triggered at the same time as in x. By
Assumption 1, it is complete and so is (Z, P, 7). Following (24), define

2(t,)) = Ve ™Dyt /), V(,j) € domx, (36)
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and consider the error Z = (Z5, Zno) = (2o — Zo» Zno — Zno)- Because the flow lengths
of x are in 7 by Assumption 2 after the first j,, jumps only, the proof consists of two
parts: first, we use Lemma 2 to show the exponential convergence of 7 starting at
hybrid time (¢}, ,, j») by putting the error dynamics into the appropriate form, and
then, we analyze the behavior of the error before (¢,,, jn) using Lemma 3. Consider
first the solution (Z, P, 7) starting from (¢;,,, jm). According to Assumption 2 and
since the observer’s jumps are synchronized with those of H, (Z, P, 7) is solution to

.Zo = - P_IHZ,O(T)R_I(T)HC,O(T)ZO

Zno = = KnoP ' H. ,())R™ (1) He (1) 2,
P=-AP+H] ,(0)R" (1)H¢,0(7)
=1

ZZ = JO(T)ZO + Jono(T)Zno
Z:—lo = (Jnoo (T) - Ld,no (T)Hd,o (T))Zo + (Jno(T) - Ld,no (T)Hd,no (T))Zno

Pt =P,
™ =0,
(37a)
with the flow and jump sets
R x R™e x R x [0, tpr], R0 x RMne x R"*Me x T (37b)
We next perform the change of variables
77 = Zno - nozo’ (38)
which transforms the error system (37) into
ZLo- = - P_]HLT,O(T)R_I (T)He,0(7)Z0
n=0
P=—-AP+H] ,(1)R™ (1)Hc o (7)
T=1
(39)

ZZ = 73(7)20 +Jono (1) .

ﬁ+ = (Jmm(T) - Ld,no(T)Hd,o(T))Zu + J,](T)ﬁ
Pr=0

™ =0,

with the same flow and jump sets where Jo (1) = Jo(T) + Jono (1) Knos Inoo(T) =
Jnoo (1) no (1) Kno—KnoJo (t)=KnoJono (t) Knos Ha,o () = Ha,o (T)+Hd,no (7) Kno»
and J;,(7) = Jno(7)=La no(T)Ha no (7) =KnoJono (7), with the flow set R"e xR x
[0, Taz] and the jump set R" X R™w< x 1. From Assumption 3, J,(7) is Schur for
all T € 7, and more precisely, there exists 0, € S:g” such that

Ty (D)0 ydy (1) =0y <0, Vrel. (40)
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Using Lemma 2, we proceed to prove the GES of the error (Z,, 7j) with respect to the
value (Z,,7)(t},,, jm). Then the GES with respect to (Z,,77)(0,0) is proven using
Lemma 3. Last, because the transformations (24) and (38) are linear with 7 +— ef'7
bounded with a strictly positive lower bound on the compact set [0, 7a7], we obtain
: 5 7)) — Vo -Fr N

(35) observing that (Z,,7) = ((Vm} 3 Knu(Va) e T (x = X). O
Remark 5 Applying Schur’s lemma and then the elimination lemma [8] to (33), we
see that Q,,, € Szg" exists if and only if there exists a solution to the LMI

(Hd,n() (T))J_T Q (Hd,n() (T))J_

Jono(T) o JLEV:;(? >0, Vrel. (41)
d,no
Qno]no(T) ( Junn(T) ) Ohno

If such a Q,, is obtained, the gains L4 ,,(-) and K, are then found by using
(33) with Q,, known. If 7 is infinite, then there is an infinite number of LMIs to
solve. Actually, it is worth noting that the exponential term ¢/ contained in all the
7-dependent matrices in (41) can be expanded using residue matrices [12], as

r

o, M; Tj_l
eFT = Z R[je/liT

o (j-D!

o M i—1
Z Z MIT(R(R;;) cos(I(A1)7) - S(Rij) sin(S(/l,-)‘r))h,
i=1 j=1 ’

(42)

where o and o are the numbers of distinct real eigenvalues and complex conjugate
eigenvalue pairs; m; and m{ are the multiplicity of the real eigenvalue 4; and
of the complex conjugate eigenvalue pair 4;, A7 in the minimal polynomial of F;
R;; € R™"~ are matrices corresponding to the residues associated to the partial
fraction expansion of (sI—F)~!. This in turn allows e/’ to be written as a finite sum of
matrices affine in N scalar functions 8;; = eti77/71, y;; = &R W7 cos (I () 7)1/ 71,
and y}; = X7 gin(I(A;)7)T/ 7. It then implies that (41) can be solved in a
polytopic approach, i.e., the LMIs are satisfied for all T € 7 compact if they are
satisfied at the finite number 2V of vertices of the polytope formed by these scalar
functions when 7 varies in 7. Alternatively, the LMIs can be solved in a grid-based
approach followed by post-analysis of the solution’s stability as in [32], possibly with
a theoretical proof extended from [24].
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3.2 LMI-based observer design in the x-coordinates

In this section, we show that the observer can equivalently be implemented directly
in the original x-coordinates, with dynamics given by

£=Ff+uc+PHIR ' (7)(ye — HeR)
P=AP+FP+PFT —PH R ' (1)H.P
=1
(43)
t=Uk+ Ug + DnoLd,no(T)(yd - Hd)e)
P+ = (DU + DnoKno)P(;l(Do + ‘Z)I’l()Kn())T
™ =0,

with jumps still triggered at the same time as 9. The GES of the error is proven in
Theorem 4.

Theorem 4 Under Assumptions 1, 2, and 3, given any Py € S:‘(’), there exists * > 0
such that for any A > A*, there exist p1 > 0 and A1 > 0 such that for any solution
x € Sy (Xo,U) and for any solution (£, P, 1) to observer (43) with P(0,0) =
(D, + Z),wl(,,o)Pal (Do + DnoKno)T, 7(0,0) = 0, and jumps triggered at the same
time as in x, (X, P, 1) is complete and we have

lx(t, /) = (1, /)] < p11x(0,0) = £(0,0)[e™ ) v(z,j) e domx.  (44)

Proof Pick a solution x € Sg(Xo, U) and a solution (£, P, 7) to observer (43)
with P(0,0) = (D, + Z)n(,l(m,)Pal (Do + DyoKno) ™, and 7(0,0) = 0, with jumps
triggered at the same time as in x. Consider (Z, P, 7) solution to observer (34), with
2(0,0) = ¥x(0,0), P(0,0) = Py, and 7(0, 0) = 0, with jumps triggered at the same
time as in x. First, notice from its dynamics that 7 = 7. Then, applying Theorem 3,
we get

lx(t, ) = £(t, /)] < p11x(0,0) = £(0,0)[e™ 1) v(z, j) € domx,

where £ = e’ "D3. The proof consists in showing that £ = £, thus obtaining (44).
Observe that
X=Ff+uc+Lc(P,7)(ye — Hek), (452)

during flows and
' =J2+uq+ La(t)(ya — Had), (45b)

at jumps where

P'H] (1R (1)
KnoP 'HT (T)R7'(7)

c,0

= " (Dy + DypoKno) P Dl " THIR (1), (462)

Lo(P,7)y=el"D

and
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0
Ld,no(T)

From (23), L. (P, ) can be re-written as L.(P,7) = PH R~ (1) where

Ly(t) =D ( ) = DpoLano (7). (46b)

P =" (Do + DyoKno) P~ (Do + DuoKino) Te ™. (47)

Calculating 2 while noting that the time derivative of P! is —P~!PP~!, we obtain
the same flow/jump dynamics as # in observer (43). Besides, £(0,0) = £ (0, 0), so
P = P thanks to the uniqueness of solutions. We deduce that £ follows the same
dynamics as X, and since

£(0,0) = D’2(0,0) = £(0,0),
we have £ = £, which concludes the proof. O

It is interesting to see that the observability provided at jumps by the fictitious
output in the non-observable subspace Dy, is stored into P at jumps. This allows the
use of y. to correct the estimate in the non-observable subspace during flows, while
the Riccati dynamics of P instead excites only the observable directions provided by
(27). In terms of implementation, observer (43) is of a larger dimension than that in
observer (34) but it allows us to avoid the online inversion of the change of variables.
Actually, observer (43) has the same dimension and the same flow dynamics as the
Kalman-like observer proposed in [28]. The difference lies in (i) the jump dynamics,
which here contains a priori gains K, and L, instead of dynamic gains computed
online via #, and (ii) the quadratic detectability assumption (3) which replaces the
UCO in [28].

Remark 6 Denote Lg(7) = DpoLano(t) and observe that Ly no(7) = VioLa (7).
Similarly, denote K, = D,,Kno and observe that K,,, = V,,,K;,,. The conditions
in Assumption 3 for the design of Lg ,,(-) and K, are equivalent to solving for

L,(-) and K], , directly in the x-coordinates and for all T € 7,

*701oVao(J = La(t)Hy — K}y Vod)eF "Dy — Qo < 0, (48a)
V,La(t) =0, (48b)
VK], =0. (48¢c)

Actually, these are projections of more conservative LMIs (where variables have the
full dimensions corresponding to the plant) onto the observable subspaces.

Example 4 The spiking behavior of a cortical neuron may be modeled with state
n=(m.m) € R* as

2 _
i = 0.0477 +527b1 + 1_40 : 2 + Lext when 71 < o,
. m—1n2 (49)
nt= m+d when 1 = vy,
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where 171 is the membrane potential, 77, is the recovery variable, and I represents the
(constant) synaptic current or injected DC current [14]. We pick here the parameters
as Iexe = 10, a = 0.02, b = 0.2, ¢ = =55, d = 4, and v,,, = 30 (all in appropriate
units), thus characterizing the neuron type and its firing pattern [14]. The solutions
of this system are known to have a dwell time with flow lengths remaining in a
compact set I = [1,,, Tpr | where 7, > 0, and the jump times can be detected from
the discontinuities of the measured output y. = 7. Since y. = 11 is known during
flows, we treat 0.047]% + 140 + Iex as a known term that can be compensated using
output injection with u. = (0.04y?+140+Ie, 0). On the other hand, in the jump map
of (49), we assume ¢ and d are unknown and include them in the state to be estimated
along with (771,12). We show here that, using the decomposition in this paper, we
can design a flow-based observer using the knowledge of y. = 1 during flows only,
although the flow dynamics are not observable. In other words, we take y; = 0, which
comes back to not using any output injection at jumps. We re-model system (49)
extended with (c, d) into the form (1) with x = (x1,x2,x3,x4) = (71,7m2,¢,d) € R*
and the matrices

5 -100 0010
ab -a 00 0101

F=1"0" 0 ool H.=(1000), J= 0010l Hy=(0000). (50)
0 000 0001

We see that x| and x;, are instantaneously observable from y. and following (24),

H1(7) u2(7) 00 0010

_ 2 _ _ 2
we get 7, = (#3(7_) 1a(7) OO)x € R, 2o = (0001 x = (x3,x4) € R-, and the

. . 0 0 10 00
form (26) with matrices J, (1) = (ﬂS(T) ,116(7))’ Jono(T) = (0 1), Jnoo(T) = (0 0),
10
Jno (T) = s Hc,o(T) = (ﬂ7(T) /JS(T))a Hd,o(T) = (O 0), and Hd,no(T) = (O 0)’
01
where y;, i = 1,2, ...,8 are known exponential functions of 7. We see that for any

T € I, z,, cannot be seen from y, because Hy no(7) = 0, but it can be accessed

through z, via J,p, (7) (hidden dynamics). Solving (33), we obtain K,,, = ((1) (1))

withany Q,,, € Sio and any Lg . (+). Let us then take L ,,, = 0. In this application,
we see that (x3,x4) is estimated thanks to its interaction with z,, at jumps, the latter
being estimated during flows, namely we exploit the hidden observability analyzed
in Theorem 1. Then, an LMI-based observer as in observer (34) or (43), with the
mentioned gains K,, and Lg ,,, a weighting matrix taken as R = Id, and a large
enough A, can be designed for this system.
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4 KKL-based observer design from discrete uniform backward
distinguishability in observability decomposition

The idea of this section is to replace the LMI-based design of the observer for
the z,, part with a systematic KKL-based one. To do that, following [27], we
exploit a discrete-time KKL observer design for the discrete-time linear time-varying
system (32), for which observability is assumed as suggested by Theorem 2. The
main reasons for relying on this discrete-time design, as opposed to a discrete-time
Kalman(-like) design, for instance, are two-fold:

e Compared to a Kalman design [11], it admits a strict Input-to-State Stable (ISS)
Lyapunov function, allowing for an interconnection with the high-gain flow-based
observer of z,;

e Compared to a Kalman-like design [34], its gain with respect to the fictitious
output in system (32) is constant, allowing us to re-produce in the analysis a
similar change of variables as (38) in the LMI-based design of Theorem 3.

For this method, we make the following assumption.

Assumption 4 Given asubsetJ C [0, +o0), the matrix J,,, (7) is uniformly invertible
forall T € T, i.e., there exists s; > 0 such that ||/} (7)|| < s; forall T € T.

Remark 7 Contrary to discrete-time systems, the jump map of a hybrid system has
little chance of being invertible since it is not a discretization of some continuous-
time dynamics. However, here thanks to the transformation (24), the flow dynamics
are somehow merged with the jumps and thus it is reasonable to expect J,,, (7) to be
invertible for all 7 € 7. On the other hand, the ability to deal with the non-invertibility
of the dynamics has been studied in [19] (in the linear context). With hybrid system:s,
it can even be coped with using the non-uniqueness of system representation (see for
instance [28, Example 2]). Note that while simulations suggest that the invertibility
of the jump dynamics is typically not necessary in the Kalman-like design of [28],
and may only be for theoretical analysis, it is needed here to implement observer
(60) below, namely to compute 77 correctly.

4.1 Discrete-time KKL observer design for system (32)

Consider the discrete-time system (32) with 7, € 7 for all k¥ € N. Following the
KKL spirit, we look for a transformation (7} )xen such that in the new coordinates
Nk = TkZno k, System (32) follows the dynamics

Nk+1 = YAk + Byk, (€29)

where A € R"7*"7 is Schur, B € R"7*"d.ext where ng e := ny,q + N, such that the
discrete-time pair (A, B) is controllable, and y € (0, 1] is a design parameter. It then
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follows that the transformation (7% )xen must be such that for every (7x)xen With
T € 1 forall k € N,

Tis1Jno (k) = YAT + BH g exi (1), (52)

with Hg exi(+) defined in system (32) in Theorem 1. The interest of this form is that
an observer for system (32) in the r-coordinates is a simple filter of the output

fAks1 = VAN + Byk, (53)
making the error 7jx = 1 — 7 verify
Mkl = Y ATk, (54

and thus is exponentially stable. Then, if (Ti)gen is uniformly left-invertible, the
estimate defined by Zn,.x = T}, where (T;)ken is a bounded sequence of left
inverses of (T )xen verifying T; Ty = Id for all k > k* for some k* € N, is such that
for any (7 )xen With 7 € I for all k € N, there exist ¢; > 0 and ¢; € (0, 1) such
that for any initial conditions z,,,0 and Z,, 0 and for all k € N,

. k .
|Zn0,k - Zno,k| < Clcz|zno,0 - Zno,0|~ (55)

From [27, Corollary 1], we know that this is possible under the uniform backward
distinguishability of system (32) as defined next.

Definition 5 (Uniform backward distinguishability of system (32))

Given (i )ren With 7 € I for all k € N, system (32) is uniformly backward
distinguishable if for each i € {1,2,...,n4.x} its output dimension, there exists
m; € Ny such that there exists «,, > 0 such that for all k > max; m;, the backward
distinguishability matrix sequence (@Z“}) ke defined as

d ext

0¥ = (0%%,0%%,...,08 ) e R(Em™ mi)xno, (56a)

nd exts

where

Haext,i (Tk=1) g (Tk=1)
Ha ext,i (Tk=2)Tg (Tk2) T (Tic=1)
oy :=|... , (56b)
Ha ext,i (Tk=(mi=1)) g (Tk=(my=1)) + - - o (Th=1)
Hd,ext,i (Tk—m,-)-];,}(Tk—m,-)-];i(‘rk—(mi—l)) s J}’:{%(Tk_l)

where Hg ex.i (-) denotes the i™ row of the extended output matrix H, d.ext () of system
(32), has full rank and satisfies OQWTQZ“’ > a,,1d > 0.

Note that the forward version (@f:w)keN of (OZ"’)keN, which is much easier to
compute, can be considered as in [27, Remark 3], under the additional assumptions
that the m; are the same for i € {1,2,...,n4.eq} and Jy, is uniformly invertible,
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namely there exists ¢; > 0 such that (J;1(7x)) T/, (74) > ¢;1d for all k € N.

Theorem 5, which is a particular case of [27, Theorems 2 and 3], states the existence
and uniform left-invertibility of (T} )en solving (52).

Theorem 5 Consider n,, € N5g, v > 0, and a pair (A, B) € R"7*" x R'n>Mdex,
Under Assumption 4, for any (ty)xen with 1y, € I forallk € Nandany Ty € R"7*"no,
the transformation (Ty) ke initialized as Ty and satisfying (52) uniquely exists under
the following closed form

k-1 k-1 k-1
Ti = (YA To [ [ 1o (@) + D (v A P BHg e (0p) [ [ 1ab (). (5T)
p=0 p=0

r=p

Moreover, for any (ti)reny with 7, € I for all k € N such that system (32) is
uniformly backward distinguishable for some m; € Nyo, i € {1,2,...,04.ext} and
any controllable pairs (A;, B;) € R™>*™ x R™ with A; Schur, i € {1,2,.. ., N ext}s
there exists 0 < y* < 1 such that for any 0 <y < y*, there exist k* € N>, ¢, > 0,
and ¢ > 0 such that (T )gen in (57) with

A = diag(Ay, Ay, ... Ay, ) € R, (58a)
B =diag(By, By,.... B, eprrnae (58b)

where n,, = Z?:dl‘e“ my, verifies T Ty > ¢, 1d for all k > k* and ||Ti|| < cr for all
k eN.

In other words, for y sufficiently small, (7T} )xen is uniformly left-invertible and
upper-bounded after k*. Note that the dependence of y*, ¢, ¢, and k&* on (Tx)ken
and 7y is only through a,, and the m; coming from the uniform backward distin-
guishability and the upper bounds of 7j and J;, (-). Note also that the (non-uniform)
injectivity of 7' can be obtained from non-uniform distinguishability conditions, as
seen in [27, Example 1], which may suffice in some cases to ensure the convergence
of the KKL observer.

Proof These results are the particular case of [27, Theorems 2 and 3]. Note that
by continuity, T + J;,,(7) is uniformly invertible on 7 because 7 is compact, and
T+ Hg no(7) is uniformly bounded on the compact set [0, a]. O

Remark 8 Interestingly, Definition 5, whose nonlinear version is defined in [27,
Definition 1], coincides with the uniform complete observability (UCO) condition
required by the discrete-time Kalman(-like) filter (see [11, Condition (13)], [34,

Hd,no (T) : :
J()nu (T) ’ which is

the discrete-time version of that in Definition 4 above, i.e., there exist m; € Nyg
and ¢, > 0 such that for all (1)xen With 7, € I for all k € N, we have for all
k > max; m;,

Assumption 3], or [33, Definition 3]), on the pair (J,w (1), (

Nd ext k-1

D A Haeni(mp) b (1p) - g (i) (141) 2 €0 1d > 0. (59)

i=l p=k-m;
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It is thus interesting to compare these two discrete-time observers. In terms of
dimensions, the complexity of the Kalman filter is Tno Uno*D) o Nno, While that of

the KKL observer is (Z:’:"i“‘ m,-) Hno + Z:’:l‘”‘ m;. Therefore, the Kalman filter is

advantageous in dimension compared to the KKL observer. However, the advantage
of the latter (besides being applicable in the nonlinear context) is that there exists a
strict ISS Lyapunov function of quadratic form that allows us to prove exponential
ISS, unlike the discrete-time Kalman filter [11] whose Lyapunov function is not
strict. This advantage is then exploited in the next part, where we design a KKL-
based observer to estimate the z,, part in the hybrid system (26) while the error
in z,, is seen as a disturbance. Note that a discrete-time Kalman-like observer [34]
could seem like a possible alternative to the KKL-based one since it also exhibits
a strict Lyapunov function. However, the gain multiplied with the fictitious output
in the observer must be constant during flows for us to perform the analysis (see
Ky, in (33)), which is not the case in a Kalman-like observer (unless the pair
(Jno(7), Ha.no(7)) at the jump times is UCO, so without the need for the fictitious
output). This is ensured in KKL design since it relies on a transformation into a
linear time-invariant form (see below in the proof of Theorem 6).

Next, in Section 4.2, we exploit this section’s results for the hybrid system (26).

4.2 KKL-based observer design for system (26)

The KKL-based observer we propose for system (26) has the form

éo =Go(T)uc + P_IHZ,O(T)R_I (T)(ye = He,o(T)20)
ﬁ = (TGno(1) = BonoGo (1))

P=-AP+H] ,(1)R" (1)H, (1)

T=0

=1

A A A 60a
Zz = JO(T)ZO + Jono(T)Zno +Voutq ( )
ﬁ+ = (T+Jn00 (r) + YABono — BonoJo (T))fv

+ ’)’AT]A + (T+(vn0 - B()n{)(v())ud + Bd,nn (yd - Hd,{)(T)zr))
Pt =P
T = (yAT + Bd,noHd,no(T) + BonoJono (7)) satg, (‘]ZO (1))
™ =0,
with
Zno = satg; (TT)(ﬁ + Bonozo), (6Ob)

with jumps triggered at the same time as 9 in the same way as observer (2),
Py e S, 7 R(1) € S:i)‘ is a positive definite weighting matrix that is defined
and is continuous on [0, 7p7] to be chosen only for design purpose, v € (0, 1], and

(A, Ba.no> Bono) are design parameters to be chosen. Following similar reasoning
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as in Section 3.1, those dynamics are picked so that 7 coincides with the (Ty ) ey in
Section 4.1 at jumps and so that the corresponding discrete-time KKL error dynamics
(54) appear after a certain change of coordinates, modulo some errors on z, (see
(66) below). The difficulty comes here from the fact that the discrete-time output
Vi in the discrete-time KKL dynamics (51) is not fully available at jumps since it
contains the fictitious output.

Assumption 5 Given j,, defined in Assumption 2, there exist m; € N.( for each
i=1,2,...,n4eand @, > 0suchthat for every complete solutionx € S¢/(Xo, U),
the sequence of flow lengths (7;)ew, ), Where 7; = f;1 — t; is such that system
(32), scheduled with that (7;)jew, j>,,, is uniformly backward distinguishable with
the parameters m; and a,, following Definition 5.

Nd ext

Theorem 6 Suppose Assumptions 1, 2, 4, and 5 hold. Define ny = 2., m; and
consi{ierfor eachi € {1,2,...,n4.ex} a controllable pair (A;, B;) € R™>Xmi x R™Mi
with A; Schur. Define then

A =diag(Ay, Ay, ..., Ap,,,) € R, (61a)
Bd,no = diag(l?l, Ez, e ny d) € Rn,,xnv ‘l (61b)
Bono = diag(B‘ny,dH, Bnyvd+2s o nd eXI) € R, (61C)

Given any Ay > 0, any Py € SZj, and any Ty € R"7*"™, there exists 0 < y* <1
such that there exists A* > 0 such that for any 0 < y < y* and any 1 > A1*, there
exist j € Nsg, saturation levels st > 0, s; > 0, and scalar p1 > 0 such that for
any solution x € S¢1(Xo, U) and any solution (Z,,1, P, T, 7) to observer (60) with
P(0,0) = Po, T(0,0) =Ty, 7(0,0) = O, the chosen (A, B no, Bono), Sats,. at level
st, saty, at level s, and jumps triggered at the same time as in x, (2,,19, P,T,7) is
complete and we have

lx(t, j) = 2t )| < pilx(t;, J) = £(t7, Ple™ D V(2, j) € domx, j > ],
(62)
with % obtained by % = e" T Dz with D defined in (25).

The parameter j is related to j,, in Assumption 4 and to the number of jumps
needed to get the uniform left-injectivity of (7% )xen in Theorem 5.

Proof First, according to Assumption 2, the flow lengths of solutions in S¢;(Xy, U)
are in the compact set [0, Tps], so there exists ¢7 ,, > 0 such that for every solution
x € S¢;(Xoy, U) and any solution (3,, 7, P, T, T) to observer (60) with P(0,0) = Py,
7(0,0) =Ty, 7(0,0) = 0, and any y € (0, 1], with jumps triggered at the same time
asinx, we have ||T(¢, j)|| < ¢r.m, forall (¢, j) € domx such that j < j,,. Then, from
Assumptions 2, 4, and 5, and according to Theorem 5 starting from jump j,,, there
exists 0 < ¥ < I such that forall 0 <y < y(’)‘, there exist j* € Ny, ¢, > 0, and
cr > 0 such that for every solution x € Sg/(Xo, U), the solution (7}),en, >, t0
(52) with 7; = t41 — t;, initialized at any T, verifying ||Tj, || < €7,m. is uniformly
left-invertible for all j > j,, + j* and umformly bounded for all j > j,,, i.e.,
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T'T;2cpld,  Vjzjm+j* Tl <, Vj2jm

It follows that (TJ.T)TT;.r < Ci Id, for all j > j,, + j*, and there exists a saturation
=T

level s7 > 0 such that satST(T;f) = T]T for all j > ju, + j*. Pick 0 <y < ¥
and consider a solution x € S¢;(Xy, U) and a solution (2,7, P,T,7) to observer
(60) with P(0,0) = Py, T(0,0) =Ty, 7(0,0) = 0O, the chosen (A, By no» Bono), the
saturation level s7, and jumps triggered at the same time as in x. Following (24),
define
2(t,)) = Ve ™Dyt /), V(,j) € domux,

and consider the error Z = (Zo,Zn0) = (2o = Zo>Zno — Zno). As justified above,
1T (t},., jm)ll < €T m. Since T = 0 during flows, the sequence (T(tj, J))jen,j>jm
coincides with the sequence (7)en, >, solution to (52) with 7; = t;,1 — ¢; for all
Jj € Nwith j > j,,. Therefore,

T (¢, )T(t, ) = cr1d, Y(t,j) €domx,j > jn+j*. (63)

We now use Corollary 1 to show exponential convergence of 7 starting at hybrid time
(tj,.+j*» Jm + j*) by putting the error dynamics into the appropriate form. In order
to exploit the KKL design, we define

n(t, j) =T(t, )zno(t, ) = BonoZo(t, j), V(1)) € domux. (64)

Notice that n verifies 77 = (TGpno(7) — BonoGo(7))uc during flows. From As-
sumptions 2 and 4, after hybrid time (¢, j,) We get satg, (Ji. (1)) = J!,(r) and
T30 (7)o (1) = 1d 50 that at jumps,

n+ = (T+‘,nl)() (T) + )/AB()H() - B()nl)j()(T))Z()
+yAn+ (T+(Vn0 = BonoVo)ua + Ba,noHa,no (T)zZno. (65)

Given the dynamics of 7j in observer (60), the error 7j := 1 — #j verifies 77 = 0 during
flows and at jumps (after hybrid time (¢;,,, jm)),

ﬁ+ = (T+Jnoo(T) +7vABono — BonoJO(T) - Bd,noHd,no(T))Zo + Y A7, (66)

which is a contracting dynamics in 77. After (¢, 4+, jm + j*), we have (i) T'T =1d
sothat 2o = T+ T Bonoze, and (ii) saty, (T7) = TT so that 2,5 = TTH+T  BonoZo.
Therefore, after (¢, 1%, jm + j*), (Zo0.1], P, T) is solution to
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20_ - P_IH;—,O(T)R_I(T)HC,O(T)ZO
7=0

P=-AP+H] ,(1)R" (1)H, (1)
=1

(67a)
Z: = 70(7)20 + J()m)(T)TTﬁ
ﬁ+ = (T+Jnao(7') +YABono — BonoJo(T) — BanoHa no (1))Zo + yAR
Pt =P,
™ =0,

where J, (1) = J, (1) + JonoT ' Bono, with T* seen as a uniformly bounded input,
and with the flow and jump sets

R x R x R"™*" x [0, 1], R’ x R x R"*"o x T (67b)

Since A is Schur, let 0, € S:g be a solution to the inequality ATQ,A — Q) <
0. Using Corollary 1, we prove that there exist 2* > 0 and 0 < y* < 1 such
that we have the arbitrarily fast GES of the error (Z,,77) with respect to the value
(Zo, ) (tjsj*» Jm + J*) when 4 > 2* and 0 < y < y*. Then the GES in the
z-coordinates with respect to (Zo, Zno)(;,,+j*» jm + j*) is obtained thanks to the
uniform left-invertibility of 7. Last, the arbitrarily fast GES is recovered in the x-
coordinates after hybrid time (77, J) where j = j,, + j* by seeing that 7 = Ve F7x
with 7 € [0, p7]. O

Remark 9 Note that it is the rate of convergence that can be arbitrarily fast and not
the convergence time since we must anyway wait for j,, jumps for the flow lengths
to be in 7 and, more importantly, for the max; m; jumps giving us uniform backward
distinguishability (see Definition 5). Furthermore, speeding up the rate may make T
poorer conditioned, thus increasing the bound p;, which is the well-known peaking
phenomenon. This type of result is typical in high-gain KKL designs (see [27]).
Note though that this arbitrarily fast convergence rate is an advantage compared to
the LMI-based design in Section 3 where the rate is fixed once the LMI is solved:
Corollary 1 does not apply in that case because the parameters a and Q, in (84) are
not independent, i.e., O, is not such that (84) holds for any a > 0.

4.3 KKL-based observer design in the (z,,Z,, )-coordinates

The rectangular shape of 7" in observer (60) makes the dimension of 7 larger than that
of z,,,, preventing us from easily writing the observer in the z-coordinates, unlike in
Section 3. Following the spirit of [4], consider a map I" : R0 — R"X (g ~"no)
such that for any T € R"7*"ne T'(T) is a full-rank matrix such that its columns are
orthogonal to those of T and I'" (T)I"(T') > Id. Such a map always exists (see Remark
10 for an explicit construction method). Then, define T, : R"7*"ne — R™*" such
that
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T.(T) = (T I(T)), (68)
which is a square matrix extension of 7', that is invertible whenever 7 is full-rank.

Remark 10 One possible way to construct I'(7) is to exploit a singular value de-
composition of 7. Indeed, given T € R"™"e with n,, > n,,, consider or-

thonormal matrices U(T) € R"™7"n and V(T) € R"e*"o_as well as a matrix
(T) = (Z (()T)) € R0 with ¥'(T) diagonal, such that T = U(T)Z(T)V™(T).

Let us split U(T) as U(T) = (Ui(T) Ux(T)) where U;(T) € R"™*™me and
Uy(T) € R™*(m=mmo) By taking I'(T) = U,(T), we see that I'(T) is orthogo-
nal to 7 and verifies " (T)I'(T) = Id.

An alternative KKL-based observer to observer (60) can then be implemented in
the (2o, Zno)-coordinates, as

2{) = G()(T)Mc + P_IHZ,U(T)R_I(T)(})C - Hc,()(T)z())
(éno, UA)) = (Gno(7)uc,0)
+ saty, ((Te (T))T)BonoP_IHZ,U (T)R_l (1) (ye = He,o(7)20)
P= — AP Y H ()R (1) He o (7)
T=0
i=1
(69)
25 =Jo(1)20 + Jono(T)zno + Voa
(2;0, (Z)Jr) = (Jnoo (1) 20 + Jno(T)2no + Viotta, 0) + satg, (T, (T+))+)
X (YAT(T)® + Ba,no(Ya — Ha,o(T)20 = Hano(T)Zno))

Pt =Py
T* = (YAT + By poHa o (7) + BonoJono (7)) sats, (J1, (7))
™ =0,

with jumps still triggered at the same time as H and initialized as in Theorem 6
with any ©(0, 0) € R™ ™" _Still in the spirit of [4], & € R™ ™" is an estimate of
some fictitious extra state w € R"7 "o defined on dom x such that w(¢, j) = 0 for all
(t,j) € domx, serving to equalize the dimension in the z,, and 1 coordinates. Note
that along the solutions to observer (69), since T is constant during flows, 7, (T) is
also constant during flows and needs to be re-computed only at jumps.

Theorem 7 Suppose Assumptions 1, 2, 4, and 5 hold. Define n,, and (A, By no, Bono)
as in Theorem 6. Given any A1 > 0, any Py € S:‘(’), and any Ty € R"7*"no | there
exists 0 < y* < 1 such that there exists 1* > 0 such that for any 0 < y < y* and
any A > A%, there exist ] € Nsq, saturation levels s, > 0, s; > 0, and scalar
p1 > 0 such that for any solution x € S¢((Xo, U) and any solution (2, O, P, T, ) to
observer (69) with &(0,0) € R"» "o P(0,0) = Py, T(0,0) = Ty, 7(0,0) = 0, the
chosen (A, Ba.no, Bono), saty,, at level st,, saty, at level s;, and jumps triggered at
the same time as in x, (Z,®, P, T, 1) is complete and we have

I)C([,j) —)’f(t,j)l < pllx(tf’.;) _)e(tj’j)le_/l](t+j)’ V(Z,]) € dOI’l’lX,j 2 .]T’
(70)



Observer design for hybrid systems with linear maps and known jump times 33
with % obtained by % = e¥' D2 with D defined in (25).

Proof First, because T in observer (69) verifies the same dynamics as in observer
(60), for the same constant cr ,, as in the proof of Theorem 6, for every solution
x € S¢((Xo, U) and any solution (£, ®d, P, T, T) to observer (69) with P(0,0) = Py,
7(0,0) =Ty, 7(0,0) = 0, and any y € (0, 1], with jumps triggered at the same time
as in x, we have ||T(t, j)|| < ¢r m for all (¢, j) € domx such that j < j,,. Moreover,
considering the same y*, j*, ¢, as in the proof of Theorem 6, T becomes uniformly
left-invertible after hybrid time (¢, 1+, jm + j*), i.e.,

Tt NT(t,)) 2 cpld, V(2 j) €domx, j > ju +j*
It follows that T, (T) also becomes uniformly invertible, since

T 0 . . L
T (DT, (T) = ( 0 FT(T)F(T)) > min{c,, 1}1d, V(1,j) € domx, j > j+/™.

After hybrid time (;,,+,+, jm + j*), we thus have

(Te(T(2, /)T (Te(T (1, )" < max {Ci 1} 1d, (71)
r

so that there exists a saturation level sy, > 0 such that satg,, ((7.(7'(t, mH =
(T.(T(t, )" = (T.(T(t,7)))~" for all (r,j) € domx such that j > j,, + j*.
Pick 0 < y < y* and consider a solution x € S¢/(Xo,U) and a solution
(2,0, P,T,T) to observer (69) with P(0,0) = Py, T(0,0) = Ty, 7(0,0) = 0, the
chosen (A, B4 no, Bono), the saturation level st,, and jumps triggered at the same
time as in x. Define for all (¢, j) € dom x the change of variables

. . n t, ] .
00.0) =00 ) (P57 = Bt ). @)
We see that for all (¢, j) € domx,

77(’, J) = T(t» j)Zno(ts ]) — Bonozo(t, j)s (73)

and hence it verifies the dynamics of 7 in the proof of Theorem 6. Let us study the
dynamics of the image of (Z,, 2,10, @) in observer (69) defined as

0.0 =000 (500 ) = Bttt (74)

We see that after hybrid time (2;,,+j%, jm + j*)s 1 = (TGpo(7) = BonoGo (1))t
during flows and at jumps,
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5+
ﬁ+ = Te(T+) ((gf) - Bonozz
= (T* T*) Unoo ()20 + o (1) 20, 0) + saty, (To(T*) ") (yAT(T)
+ By no (ya - Hg o ()20 - Hj no (7)210)) = Bono (Jo(T)Z0 + Jono (T)Zno)
= T+Jn(m (T)zr) + (VAT + Bd,n()Hd,n() (T) + B()noJomJ (T))ﬁno + VAF(T)‘Z)
+ Bd,no (yd - Hd,o (7)20 - Hd,no(T)zno) = Bono (Jo (7)20 + Jono(T)fno)
= (T+Jnoo (T) - Bono-lo(T))fo + 7A (T2n0 + F(T)QA)) + Bd,no (yd - Hd,o (7)20)

= (T+Jnoo (7) + YABono — BonoJo(7))Z0 + yAR + Ba no (ya - Hy, (1)20).
(75)

Therefore, 7j has the same dynamics as in the proof of Theorem 6 and so by proceeding
similarly, we get the results in the (z,, Zn0, w)-coordinates thanks to the uniform
invertibility of the transformation. O

4.4 KKL-based observer design in the x-coordinates

In a similar manner as in Section 3.2, the KKL-based observer can equivalently be
implemented directly in the original x-coordinates. Based on the proof of Theorem
4 by noting that 7 = 0 during flows, we can derive the dynamics of the observer in
the x-coordinates as

L =F'C+ (uc,0)+PH R (1) (ye - H.L)
P=AP+F'P+PFT-PHTR(1)H.P
T=0
=1

=08+ (ug,0) + D), satg, (To(T*))(Bano(va — Hak) + yAL(T)D)
P+ =xTP (D, + D), saty, (Te(T)")Bono) T

T = ()’AT + Bd,noHdeFTDno + Bono(VOJeFTDno) saty, (((VnoJeFTDnO)T)
™ =0,

(76)
where = (£, ®), with jumps still triggered at the same time as H, where

,_(FO ;o ,_(JO0 r _ (Do r_[Dno O
o). mema. o=[0). o= (2) o2 l)

The fact that observability is pumped from discrete time to continuous time via the
interaction of  and T at the jump is recovered, while here it is interesting to see that
instead of being reset to a constant as in Section 3.2, here £* depends on T, which
adapts to the successive flow lengths.

Theorem 8 Suppose Assumptions 1, 2, 4, and 5 hold. Define n,, and (A, By no, Bono)

no

as in Theorem 6. Given any A > 0, any Py € 87, and any Ty € R"7*""o, there
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exists 0 < y* < 1 such that there exists 1* > 0 such that for any 0 < y < y* and any
A > A%, there existf € N, saturation levels st, > 0, sy > 0, and scalar p1 > 0 such
that for any solution x € S¢(Xo, U) and any solution (£, P, T, T) to observer (76)
with P (0,0) = %" Py (D, +D},, sats,, ((Te(To)")Bono) ™, T(0,0) = Ty, 7(0,0) =0,
the chosen (A, Ba nos Bono), saty;, atlevel st,, sats, at level s ;, and jumps triggered
at the same time as in x, (£, P, T, ) is complete and we have
—(t+)) Y(t,j) € domx,j > j.
(77

(2, j) = &(t, )| < prlx(t,)) = 2(t7. f)le

Proof Define D' = (D], D),,) and its inverse V’. Consider 1*, y*, j*, ¢;, and s7,
given by Theorem 7. Pick a solution x € S;(Xo, U) and a solution (£, P, T,7) to
observer (76) with £(0,0) = *TPal (D] + Dy, saty, (T (T0))Bono) T, T(0,0) =
Ty, 7(0,0) = 0,0 < y < y*, and 2 > A*, with jumps triggered at the same time
as in x. Consider (2, @, P,T, ) solution to observer (69), with (2(0,0), ®(0,0)) =
V’£(0,0), P(0,0) = Py, T(0,0) = T(0,0), 7(0,0) = 0, and the same parameters,
with jumps triggered at the same time as in x. First, notice from their dynamics that
T =T and 7 = 7. Then, applying Theorem 7, we get

I)C([,j) _X(I’j)l < pllx(tf’.;) _i(tj’j)le_/l](t+j)’ V(Z,]) € dOIl’lX,j 2 .]T’
where £ = ef'"D2. The proof consists in showing that £ = £ where Z = (%, ), thus

obtaining (77). Denote £ = (£, &). We start by observing that £ = ¢ 7D’ (2, ®), so
that B B

£=F'E+ (ue,0)+ Le(P, T, 7) (ye = H), (782)
during flows and
E =8+ (a,0) + Ly (T (va — Had) + Ly, (1), (78b)
at jumps where
' PHT (DR (2)
L, PsT’ = FTD’ c,0 N B
C( T)=e (Satsre (T, (T))T)Bonop chT,O (1)R I (r)

= eF/T(DC/, + ﬂ,,w SEJ.tsTe ((Te (T))T)Bono)PilHI,o (T)Ril (T)’ (79a)

and
L@ =2 (satm ((Te(%m Bm) = D, saty, (Te(T"))Ba o, (79b)
L, (1) =D (7 " ((Te(OT+)) T)AF(T)) = YD}, saty,, (T.(T)) )AT(T).

(79¢)

From (23), we actually have H.e!' "D}, = 0,s0 H.e!"' "D}, , sat, ((Te(T))")Bono =
0 and we have L..(P,T,7) = PH."R™' (1) where
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P =x"P D, + D), saty,, (To(T))Bono) e ™. (80)

Calculating P, we obtain the same flow/jump dynamics as # in observer (76).
Besides, £(0,0) = £(0,0), so £ = P thanks to the uniqueness of solutions. We
deduce that £A follows the same dynamics as £, and since

£(0,0) = D'(2,0)(0,0) = £(0,0),
we have £ = £, which implies £ = £ and concludes the proof. O
01
forall T € 7, Assumption 4 is satisfied. Since Hg »,(7) = O forall 7 € 7, we discard

the jump output and only consider the fictitious one described by the matrix Jopno (7).
We then see that with m; = my = 1, for all sequences of flow lengths (7;) e,

Example 5 Consider the same system as in Example 4. First, with J,,, (1) = (1 O)

_ 10
O?w = J""U (Tj)‘lni(Tj) = (0 1)

satisfies @?“’T@j’w = (1) (1)) > 0 for all j > max{m,my} = 1. Therefore, Assump-
tion 5 is satisfied and we can thus design a KKL-based observer where T is of
10

o1/)
Then, a KKL-based observer as in observer (60), (69), or (76), with the mentioned
(A, Ba,no> Bono), @ weighting matrix taken as R = Id, a large enough A, and a small

enough vy, can be designed for this system.

dimension 2 X 2. Let us take A = diag(0.1,0.2), an empty B no, and Bypo =

5 Conclusion

This chapter presents and discusses new results on observer design for general hybrid
systems with linear maps and known jump times. After defining and discussing the
hybrid (pre-)asymptotic detectability and uniform complete observability conditions,
we briefly presented again the Kalman-like observer in [28]. We then propose a
decomposition of the state of a hybrid system with linear maps and known jump
times into a part that is instantaneously observable during flows and a part that is not.
A thorough analysis of the asymptotic detectability of the second part is performed,
where we show that this part can actually be detectable from an extended output
made of the jump output and a fictitious one thanks to the flow-jump combination.
A high-gain Kalman-like observer with resets at jumps is proposed to estimate the
first part, while two different jump-based algorithms are proposed for the second
one. Several examples are provided to illustrate the methods.

A comparison among the mentioned designs, namely the Kalman-like observer
[28] and the two designs depending on observability decomposition, is presented
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in Table 1 at the end. While the KKL-based design requires stronger conditions
and has a larger dimension than the LMI-based one, it can provide an arbitrarily
fast convergence rate of the estimate (achieved after a certain time). Compared to
the Kalman-like design in [28], the LMI-based observer has a smaller dimension,
whereas the KKL-based one can be bigger or smaller depending on n,, versus 7.
Therefore, for a particular application, if n,, is large compared to n,,, going through
a decomposition is advantageous dimension-wise. Note also that while the Kalman-
like observer can easily deal with time-varying matrices in the system dynamics and
output, the decomposition method must additionally assume the (uniform) existence
of the transformation into system (26), for example, to solve the LMI (33) for the
gains Ly 0 (+) and K,,,. Furthermore, even though the invertibility of J,, () for all
7 € 7 assumed for the KKL-based method may seem lighter than the invertibility
of J at the jump times assumed in the Kalman-like approach [28, Assumption 2], it
may turn out stronger since J,T,O (7) is used in the KKL implementation (see observer
(60)), while J~! is used only for analysis in the Kalman-like design, not in the
implementation (see observer (16)).

Future work is to study hybrid systems with nonlinear maps (and known jump
times) by finding transformations into coordinates of possibly higher dimensions
and Lyapunov-based sufficient conditions to couple different observers [30], as well
as those with unknown jump times.

Acknowledgements We thank Florent Di Meglio and Ricardo Sanfelice for their helpful feedback.

6 Appendix: Technical lemmas
6.1 Exponential stability of the error dynamics

Consider a hybrid system of the form

z _P_IH;I—,O(T)R_I(T)HC,O(T)ZO
0
— AP+ H;F,O(T)R71 (T)HC,O(T)
1

<. Q
1l

~N
1

(81a)
z: = M{,(M, T)Z() + M,,,](M, T)ﬁ
77+ = Mno(u’ T)Zp + MII(T)ﬁ
Pt =P,
™ =0,

where u € U is the input, with the flow and jump sets

R x R™ x R"*" x [0, 73],  R" x R™ x R0 x T (81b)
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where 7 is a compact subset of [7,,, Tas] for some positive 7, and 7p4.

Lemma 2 Assume that:

1. H, , is continuous on [0, Tar] and such that the pair (0, H, , (7)) satisfies (27);
2. R is continuous on [0, 7y ] and R(t) > 0 for all T € [0, Tas];

3. My, My, and My, are bounded on U X 1 ;

4. M,, is continuous on I and there exists Q,, € S:g such that

M} (1)0,M,(1) -0, <0,  Vrel. (82)

Then for any Py € S:’(’), there exists 2* > 0 such that for all A > A*, there exist p1 > 0

and A1 > 0 such that any solution (Z,,1, P, T) to system (81) with P(0,0) = Py,
7(0,0) =0, and u € U, is complete and verifies

|Gos 1) (1, )| < pre” D |(2,,)(0,0)],  V(1, ) € dom(Z,,7, P, 7). (83)

Proof First, due to the compactness of 7 and Item 4 in Lemma 2, there exists a > 0
such that for all T € 7, (82) is strengthened into

M;(T)QUM,,(T) -0y £ -aQy, Vrel. (84)

Since P(0,0) = Py, P* = Py, and 7(0, 0) = 0, the component (¢, j) — P(t, j) of the
solution to system (81) can actually be written as a closed form of the component
(t,j) ¥ 7(t, ) by defining

.
P(t) = e 7Py + /O e T HT ()R (s)He 0 (s5)ds, (85)

namely P(t,j) = P(7(¢, j)) for all (¢, j) € domx. Note that since Py > 0, P(7) is
invertible for all T € [0, Tps]. It follows that the solution is complete and (Z,, 7, 7)
is solution to
Zo= ~P U (OH. (DR (T)He,0(1)Z0

=0

=1

(86)

ZZ =M, (u, T)Zo + Mon(u’ T)ﬁ
it = Mno(ua )0 + M,](T)ﬁ
™ =0,

with the flow set R" X R™7 x [0, 7p7] and the jump set R X R"7 x I'. Consider the
Lyapunov function

V(Zor i) = €2 TETP(1)Z0 + ke ST Q.. (87)

where k > 0 and € > 0. We have forall T € [1,,,, Tps] 2 7,
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a a T
e2"P(1) > efT/ e"l(T_s)Hlo(s)R_] ($)Hec,o(s)ds
ir
a T T
> rped’ ‘ﬁ D;eF SHZHCEFS.DOdS
ZT
R 3ttt .
> rmeZT'"‘/ D;—eF SHZHCerZ)Ods
it
4z
>eds"r,ald
4z
=ed"™mA, Id, (88)
where r,,, > 0 is a lower bound of the continuous map R on the compact set [0, 7ps]

(thanks to Item 2 in Lemma 2), @ > 0 (independent of 1) is obtained by applying
(27) with 6 = %, and A,,, := r,,@. On the other hand, from (85), for all T € [0, 7,,,],

P(1) > e ™ Py, 50 e2TP(1) > ¢4 Py. Besides, as P is continuous on the compact
set [0, Tps], there exists pys > 0 such that P(7) < pys Id for all 7 € [0, 7p4]. It then
follows that there exist p > 0 and p > 0 defined as

p = min {eig (e_’lT’"Po) , e%T”’/lm, eig (ke_”MQ,,)} , (89a)
p = max {e%TMpM,eig (ke_ET’"Qn)}’ (89b)

such that
Pl M <V (Zo1,7) < PI(Zos DI, Y(Zo,/) € R", VT € [0,70r]. (90)

During flows, for all (Z,,7) € R" and 7 € [0, /],

g2 (%P(r) ~2H (R (D) Heo(7) + P(r)) 2o = eke Q.

c,0

Il
Q
N

A
ATZI (_EP(T) - HZ,()(T)R_I(T)HC,U(T)) Zo— Eke_ETﬁTQUﬁ

IA

A
~Sed T R(Z, — eke T Q0,0

IA

P

—min{—,e} V. on
2

At jumps, for all (Z,,7) e R", u e U,and 7 € 1,

V=V = T Po(My (4, 7)Z0 + Moy (1, 7)) — €272 P(1)2,
+kxT Qq(Mqo(u, T)Zo + M,](T)ﬁ) - ke_ETﬁTQnﬁ- (92)

From Young’s inequality, (88), (84), and Items 3 and 4 in Lemma 2, there exist
non-negative constants c¢;,i = 1,2,...,5 independent of (4, k, €) such that for any
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k>0, forall (Z,,7) e R", ue U,and 7 € 1,

2 AT~
Vi-v < (cl + kcy + ke — e4Tm/1m) 70 %0

k2C5

- (k (@a=(1-e ™)) —c4 - 7' Q. (93)

We now show that this quantity can be made negative definite by successively

picking the degrees of freedom. For the 7j part, 3e* > O such that 0 < € < * =

a—(1—-e€™) > 0,3k* >0suchthatk > k* = k(a—(1—-e €™))—c4 >0,
2

and 3k* such that k > k* = k(a—(1—-e ™)) —cy — k% > 0. Then, for the

z, part, 3* > O such that 1 > A* = ¢| + kca + ke — €™, < 0. We deduce
that for any A > A*, there exist a. > 0 and ay > 0 such that for all (,,7) € R",

V< -a.V, vt e [0, Tum], (94a)
V¥ -V < —a4V, YueUNTeT. (94b)

From (90) and (94), we conclude according to [13, Definition 7.29 and Theorem
7.30] that the set A = {(Z,,7,7) € R™ X R™° X [0, 7p7] : Z, = 0,77 = 0} is GES
for system (86). |

Corollary 1 Let us now consider system (81) with M,,(t) replaced by yM, () for
vy € (0, y(’)‘ |. Under the same assumptions as in Lemma 2, for any 1. > 0 and any
Py € S:‘(’], there exists y* > 0 such that there exists 2* > 0 such that for any
0 <y <vy*andany A > A*, there exists p. > 0 such that any solution (Z,,1, P, T)
to the new system (81), with P(0,0) = Py, 7(0,0) =0, and u € U, is complete and
verifies

|(Zou 1) (1, )| < pee™ D |(Z,,7)(0,0)],  V(z, ) € dom(Z,,7, P, 7). (95)

Proof This is a modification of the proof of Lemma 2. Consider the Lyapunov
function in (87). First, let us show with an appropriate choice of € that for A sufficiently
large and y sufficiently small, we have for some a4 > 0,

. 1
V < -24, (T— + 1) Vv, Vt<V. (96)

Following the same analysis as in the proof of Lemma 2, we obtain that during flows,
V < —min{4,€e} V forall T € [0, 7y], and at jumps thanks to (82), for all u € U
andt € 7,

2 AT o
VF-vV < (cl +kcy + ke3 — e47’”/lm) 71 %0
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Let us pick € = 24, (TL + 1) and define /16‘ =41, (TL + 1). Then, the first item
in (96) holds as soon as 2 > Aj. Now define y* := min {yg, \/e‘”M}. For any
0 <y < y* wehave e €™ —y2 > ¢7€™ _ (y*)2 > (, then k, «, and A are
successively picked (based on y*) as in the proof of Lemma 2. The final A* is the
larger one between this and Aj. For any 4 > 2* and 0 < y < y*, we obtain (96).
Second, we deduce (95) from (96) and the dwell time condition. From (96), we get
a1

e ( m +1)IV(0, 0) forall (¢, j) € dom(Z,, 1, P, 7). Since the flow lengths
t+j—-1
=l
for all (1, j) € dom(Z,,7, P, 7). Therefore, V (1, j) < e*tce 21 (t+1)y(0,0), for all
(t,j) € dom(Z,, 1, P, T), implying (95). O

V(t,j)<e
of system (81) are at least 7,,, > Oforall j > 1, we have j < TL +1sothatt >

6.2 Boundedness in finite time

Lemma 3 Consider a hybrid system with state n € R and inputu € U C R™:

1 =M.(u)n (n,u) e C
{TI+ = My(u)n (n,u) € D (98)

with M., My : R — R"*"n_Consider positive scalars m¢, pg, and Ty, as well as
Jm € N. Then, there exists p > 0 such that for any solution (n, u) to system (98) with
Sflow lengths in [0, Tps] and such that ||M.(u(t, j))|| < m¢ and |Mg(u(t, )| < pa
forallu € U and (t, j) € domx, we have j,, € dom; n and

(20> Jm)| < pIn(0,0)]. 99)

Proof First, the flow lengths of system (98) are in [0, 7;,,] and solutions are both ¢-
and j-complete. During flows, the evolution of 7 is characterized by the transition
matrix Wy, () as

n(t, j) = Crr. ) weu (L tj—On(tj—r, j = 1). (100)

If M. is uniformly bounded for u € U, there exists p. > 0 such that for all
(t,j) € domn and all u € U, |n(z, j)| < pc|n(tj-1,j — 1)|. Next, we have for all
J € dom;n, |n(t;, j)| < paln(t;, j — 1)|. Therefore, for any j,, € Nso, we have

10t )| < P27 p?" 71 11(0,0)], which is (99) by seeing that p = p/"p’m~'. o
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