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Data Summarization beyond Monotonicity:
Non-monotone Two-Stage Submodular Maximization

Shaojie Tang

Naveen Jindal School of Management, The University of Texas at Dallas

The objective of a two-stage submodular maximization problem is to reduce the ground set using provided
training functions that are submodular, with the aim of ensuring that optimizing new objective functions
over the reduced ground set yields results comparable to those obtained over the original ground set. This
problem has applications in various domains including data summarization. Existing studies often assume
the monotonicity of the objective function, whereas our work pioneers the extension of this research to
accommodate non-monotone submodular functions. We have introduced the first constant-factor approxi-

mation algorithms for this more general case.

1. Introduction

In this paper, we are motivated by the application of data summarization (Wei et al.

2013, Mirzasoleiman et alll2016, Wei et ali[2015, [Lin and Bilmes 2011) and tackle the two-
stage submodular optimization problem. In these applications, we are often faced with
multiple user-specific submodular functions, which are used to evaluate the value of a set

of items. A typical objective is to select a set of k items to maximize each submodular

function (Krause and Golovin 2014). While maximizing a single submodular function has

been widely explored in the literature, the feasibility of existing solutions diminishes when
confronted with a substantial number of submodular functions and items. Consequently,
our objective is to reduce the size of the ground set in a manner that minimizes the loss
when optimizing a new submodular function over the reduced ground set, as compared to
the original ground set.

The problem at hand can be framed as a two-stage submodular maximization problem,

as initially introduced in (Balkanski et al)[2016). While the majority of prior studies in

this domain presume that each submodular function exhibits monotone non-decreasing

behavior, real-world scenarios often involve objective functions that are non-monotone.

These instances include feature selection (Das and Kempe [2008), profit maximization
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Tang and Yuan [2021), maximum cut (Gotovos et al! 2015), and data summarization

Mirzasoleiman et al.l2016). A significant contribution presented in our work is the develop-
ment of the first constant-factor approximation algorithm for the non-monotone two-stage
submodular maximization problem, with an approximation ratio of 1/2e. Remarkably,

when the objective function is monotone, our algorithm achieves an improved approxima-

tion ratio of (1 —1/e?)/2, thereby recovering the result presented in (Stan et alll2017).

1.1. Related Work

The problem of non-monotone submodular maximization has garnered substantial atten-

tion in the literature (Gharan and Vondrak 2011, Buchbinder et al) 2014, [Tang 2021,

2022, Tang and Yuan [2022). The current state-of-the-art solution for this problem, espe-

cially when accounting for a cardinality constraint, is a 0.385-approximation algorithm

Buchbinder and Feldman 2019). However, it is noteworthy that even though each indi-
vidual objective function considered in our problem exhibits submodularity, the overall
objective function is not submodular in general. As a result, the existing findings on non-

monotone submodular maximization do not directly apply to our specific setting.

The most closely related work to our research is the study by (Balkanski et al) 2016,

Mitrovic et all2018) and (Stan et al/l2017). They have developed constant-factor approx-
imation algorithms, primarily tailored for the monotone case. Our work builds upon and

extends their results to address the more general and challenging non-monotone scenario.

To achieve this goal, we have integrated the “local-search” approach (Stan et all[2017)

with “sampling” technique (Tang 2021) in a non-trivial way, resulting in the creation of
a novel sampling-based algorithm. Furthermore, we have incorporated a trimming phase
into our algorithm, enabling us to attain the first constant-factor approximation ratio for

the non-monotone case.

2. Problem Formulation

The input of our problem is a set of n items (). There is a group of m non-monotone
submodular functions fi,- -+, f : 29 = Rsg. Let Aj(x, A) = fi({x} U A) — fi(A) denote the
marginal gain of adding x to the set A when considering the function f;. Here we say
fi is submodular if and only if A;(z, A) > A;(z, A’) for any two sets A and A’ such that
ACA CQ, and any item z € Q such that = ¢ A'.
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Our objective is to compute a reduced ground set S of size [, where [ < n, such that it
yields good performance across all m functions when the choice is limited to items in S.

Formally, let
F(S) = max_ fi(A) (1)

£~ ACS:|A|<k
i€[m]

where k is the size constraint of a feasible solution. Our goal is to find an optimal solution
O C ) that maximizes F, i.e.,
O € argmax F'(5). (2)
SCo:|S|<i

It is worth mentioning that the objective function F'(-) is typically non-submodular, as

observed in (Balkanski et al. [2016). Consequently, classical algorithms designed for sub-

modular optimization may not provide any approximation guarantees.

3. Algorithm Design and Analysis

Before presenting our algorithm, we need some additional notations. For each i € [m], we
define the gain associated with removing an item y and replacing it with = as V;(x,y, A) =
fi{z}UA\{y}) — fi(A). Then for each i € [m], we define the largest possible gain brought
by x, through local-search, with respect to an existing set A as V;(x, A). Here the local-
search can be realized either by directly adding = to A (while maintaining the cardinality

constraint) or by substituting it with an item from A. Formally,

0 iteeA
Vi(z, A) = § max{0, max,c Vi(z,y, A),Ai(z, A)} ifx¢ Aand |[A] <k (3)
max{0, max,ea Vi(z,y,A)} if x¢ Aand |Al=k

Let Rep,(x, A) represent the item in A that, when replaced by z, maximizes the incre-

mental gain while maintaining feasibility. Formally,
(

0 if Vi(z,A) >0 and |A| <k

and max,c Vi(z,y, A) < Aj(x, A
Rep (¢, 4) = eV A REA )
argmaxyeca Vi(z,y, A) if V,(x,A) >0 and |[A| <k

and maxyec Vi(z,y,A) > A;(x, A)

argmaxyea Vi(z,y,A) if Vi(x,A)>0 and |A| =k

\
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Now we are ready to present the design of our algorithm Sampling-Greedy (Algorithm
). Throughout the process, Sampling-Greedy maintains a solution set denoted as S, along
with a set of feasible solutions T; C S for each function f; (all of which are initially set to
empty). In each iteration, it first computes the top [ items M from the extended ground
set ) based on its combined contribution to each f;, indicated by > ", V;(x,T;). That is,

M = argmaxzzvi(:ﬂ,Ti). (5)

ACAI1 57

Then it randomly selects one item, say z*, from M and adds z* to S. Sampling-Greedy
then verifies if any of the sets T; can be improved. This can be achieved by either directly
adding z* (while adhering to the cardinality constraint) or substituting it with an item
from T;. For each i € [m], we update 7; if and only if V,;(z*,T;) > 0.

Note that there might exist some i € [m] and = € T; such that f;(T;) — f:(T; \ {z}) < 0. In
other words, certain subsets T} could contain items that provide negative marginal utility to
the set T;. Consequently, we introduce a “trimming” phase (Algorithm ) to refine each T;
and ensure that no item contributes negative utility to it. This can be achieved through an
iterative process of evaluating the marginal utility of each item within 7T; and subsequently
removing any items with negative marginal utility. By the submodularity of f;, we can
show that after this trimming phase, T; does not contain any items whose marginal utility
if negative. It is also easy to verify that the trimming phase does not decrease the utility of

our solution. A formal description of these properties is presented in the following lemma.

Algorithm 1 Sampling-Greedy
1. S 0,T;+ O(Vi € [m])
2. for je[l] do
3 M =argmax,co =X e 2o Vil@, Th).
4. randomly pick one item z* from M, S+ SU{z*}

5. for ie[m] do

6: if V,(z*,T;) >0 then

7: T; < T;\ Rep,;(z*,T;) U {x*}
8: T; < Trim(T;, f;)

9: return S, 11,75, ---,T,,
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Algorithm 2 Trim(B, f;)
1: A« B

2: for xr€ A do
if fi(A)— fi(A\{z}) <0 then
A+ A\ A{z}

5: return A

®

=~

LEMMA 1. Consider any set of items B C Q and a function f;. Assume A is returned

from Trim(B, f;), we have f;(A) > fi(B) and for all x € A, we have f;(A)— f;(A\{z})>0.

Proof: The proof that f;(A) > f;(B) is straightforward, as it follows from the fact that the
trimming phase only eliminates items with a negative marginal contribution. We next prove
that for all x € A, we have f;(A) — fi(A\ {z}) > 0. We prove this through contradiction.
Suppose there exists an item y € A such that f;(A) — fi(A\ {y}) < 0. Let’s denote the
solution before considering the inclusion of y as A’. In this case, it must hold that f;(A") —
fi(A”\ {y}) > 0, as otherwise, the trimming phase would eliminate y from the solution.
Furthermore, it is straightforward to confirm that A C A’. As a consequence, based on
the assumption that f; is a submodular function, we have f;(A4) — fi(A\{y}) > fi(A) —
fi(A"\{y}). This, together with f;(A) — fi(A"\{y}) = 0, implies that f;(A) — fi(A\{y}) =
fi(A") — fi(A"\ {y}) > 0. This contradicts to the assumption that f;(4) — f;(A\ {y}) <O0.
O

3.1. Performance analysis

First, it is easy to verify that Sampling-Greedy requires O(l(mkl+ mn)) function evalua-
tions. This is because Sampling-Greedy comprises [ iterations, where each iteration involves
mkl function evaluations in Line Bl of Algorithm [Il along with an additional mn function
evaluations in Algorithm 21 In the following theorem, we show that the expected utility of

our solution is at least a constant-factor approximation of the optimal solution.

THEOREM 1. Sampling-Greedy returns a random set S of size at most | such that

where O represents the optimal solution.
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The rest of this section is devoted to proving this theorem. The basic idea behind the
proof is to establish a lower bound on the expected marginal utility achieved by adding
x* to set S after each iteration. We demonstrate that this utility increment is substantial
enough to guarantee a 1/2e approximation ratio. Consider an arbitrary round t € [I] of
Sampling-Greedy, let S and Ti,---,T,, denote the solution obtained at the end of round t.
By the design of Sampling-Greedy, we randomly pick an item z* from M and add it to S,
hence, by the definition of M, the expected marginal utility of adding z* to S before the
“trimming phase” is

m

i=1 zeA i=1

—_

Recall that the trimming phase does not decrease utility. Therefore, the ultimate
expected utility increment after each iteration is at least E,«[> " V,(z*,T;)]. Moreover,
because F' is a monotone function, it is safe to assume that the size of the optimal solution
is [, i.e, |O| =1. We next provide a lower bound on E,[>""  V;(z*,T;)].

Observe that

B () Vile' T = max PHNACES
i=1 €A i=1
ZZ ~>=%ZZV1-(:E,T2~) (8)
€0 =1 ze0 i=1

Let O; C O represent a subset with a maximum size of k items, chosen to maximize f;,

ie., O;=argmax o, 4)<k fi(A). Inequality (8) implies that

1 m
E,- [Z (x*,T)] > = ZZV x,T;) E?Z:: Vi(z,T;). (9)

i=1 xEO =1

It is easy to verify that there is a mapping m between O; and T; such that every item of
O;NT; is mapped to itself, and every item of O, \ T; is mapped to either the empty set or
an item in 7; \ O;. We next give a lower bound of V;(x,T;).

LEMMA 2. For all i€ [m] and x € O;, we have

Vi(z,Ti) = Ai(x, Ty) = Ai(m (), Ti \ {m(2)}). (10)
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Proof: We prove this lemma in three cases. We first consider the case when x ¢ T; and

m(xz) # (. In this case, the following chain proves this lemma.

Vi(z,Ti) = fi({z} UL\ {n(x)}) — fi(T) (11)
= Ai(z, Ty) = Ai(m(x), Ti U {z} \ {m(2)}) (12)
> Ai(2,Ti) = Ai(w(2), Ti\ {7 (x)}) (13)

where the first inequality is by the definition of V;(x,T;) and the second inequality is by
the assumption that f; is a submodular function.
We next consider the case when x ¢ T; and 7(z) = (). In this case, because w(z) =0, i.e.,

x is not mapped to any item from 7T}, we have |T;| < k. Hence,
Vi(z,T;) = max{O,mafoi(aj, y, T;), Ai(z,Ty)} > Ai(x, T;). (14)
yeli
Moreover, m(x) = () implies that

Ai(m(z), Ti\{m(z)}) = 0. (15)

It follows that

Vi(z,Ti) 2 Az, Ti) = 0= Ai(z, T3) = Ay(m(2), T\ {m(2)}), (16)

where the inequality is by inequality (I4]) and the equality is by equality (I3]).

At last, we consider the case when x € T;. In this case, we have A;(x,T;) =0, and
Ai(m(x),T; \ {m(x)}) > 0, a consequence of the trimming phase (Lemma [I]). Hence,
Ai(z,T;) — Ay(m(x), T; \ {m(z)}) <0. It follows that

Vi(z,T;) 202> Ai(z, Ti) = Ai(w (), T\ {7 (2)})- (17)

[
Inequality (@) and Lemma 2 imply that

Z Z Vi(z,T;) (18)

i=1 i=1 xz€0;

Z Z — Ay(m(z), Ti\ {7 (z)}))- (19)
i=1 z€0;

%
'M
Nl}—\

vV
Nl —_
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Because f; is submodular, we have
ZAi(x7E)2fi(OiUE>_fi(E>' (20)
z€0;
Moreover, no two items from O; are mapped to the same item from T;, we have
D Air(@), T\ {m(@)}) <D Ay, T\ {y}) < fi(T) (21)
ze0; yeT;

where the first inequality is by the observation that A;(y,T; \ {y}) > 0 for all y € T; and

the second inequality is by the assumption that f; is submodular.

Inequalities (I9), (20) and (ZI)) together imply that

=
Eg*

<
)
’ﬂ
v
o~ =

Z = Ai(m(z), Ti\ {7 (2)})) (22)

Nl}—\

Ms IIMS

(fi(O:UT) — fi(T;) — fi(T7)) (23)

1

.
Il

(fi(O: UTy) = 2fi(Th)). (24)

Nl}—\

=1

Taking the expectation over Ti, -+, T, for both the left and right hand sides of (24]), we

have
B B ) 907 T (25)
ZETI,.HTWL[%zE(fz(o UT) ~2£(T)] (26)
:ETh...va[%éfi(OiUT ~Er,. Z 2 m) (21)
:%ETM, [i(ﬁ(o UT;))] Zfz i (28)
> 7= )Y 0) = T (T (20
= (1= D F(O) = TEr, ., [H(T)] (30)

The second inequality is by the observation that Er, ..r1,.[> i (fi(O; UT;))] > (1 —
7) >, [i(0;). To prove this inequality, recall that in each round, Sampling-Greedy ran-

domly picks an item from M to be included in S. Hence, right before entering round ¢ of
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Sampling-Greedy, each item z € Q has a probability of at most p=1— (1 — %)t of bein

included in S and consequently in 7; for all i € [m]|. By Lemma 2.2 of (Buchbinder et al.
2014), we have Er,[f;(O; UT;)] > (1 —p) £;(0;) = (1 — 1)" £;(O;) for all i € [m]. It follows that
Ery . [, (fi(O:UT)] > (1= 9)' 200, fi(O3).

Let X; denote the value of Ep, ... 1, [Eo+[>1", fi(T;)]] at the end of round ¢. Inequality
B0) implies that

Xepr— X > %(1 - %)tF(O) _ 2y, (31)
2Ky — X)) > %(1 - %)tF(O) - %Xt (32)
92X, — 2X, > %(1 - )F(0) - 1%, (33)
=2X;, > %(1 - %)tF(O) +(2— %)Xt. (34)

Based on the above inequality, we next prove through induction that 2X; > %(1 —
H)TYF(O). Note that X, =0, meaning that the utility before the start of the algorithm is

zero. The induction step is established in the following manner:

2X,11 > %(1 — l)tF(O) +(2— %)Xt (35)
=2X, 1 > %( - %)t (0)+ (1~ %)%(1 - %)HF<O) (36)
:%( _%)tF(O)-i-;(l—%)tF(O) (37)
=0 F©). (38)

It follows that the value of 2X; is at least (1 — })""'F(O), which itself is bounded from
below by (1/e) - F(O). Here, X; represents the expected utility of our algorithm upon
completion. Hence, the expected utility of our algorithm is at least X; > (1/2e) - F/(O).

3.2. Enhanced results for monotone case
For the case when f; is both monotone and submodular, we will demonstrate that the

approximation ratio of Sampling-Greedy is improved to (1 —1/e*)/2 which recovers the

results presented in (Stan et al.2017). Observe that if f; is monotone, we have f;(O;UT;) >
fi(O;). Hence, inequality (28]) implies that
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1 m
2 7Enx WD (f(OUT)] ~ ETl, T Zfz i (40)
i=1
1 - 2 -
> 7Bz, .1, D (fi(0:))] - 7B 1, D AT (41)

i=1 i=1

-1 > £(0) - 2Er, .. > H(@) (42)

F(O) = JEr,..1,, [Z fi(T))] (43)

where the first equality is because O; is a fixed set for all i € [m]. Let X; denote the value
of By ... 1y, [Ear D11 Vi(2*, T3)]] at the end of round t. Inequality (3] implies that

Yro)-2x,. (44)

X1 — X >
t+1 t2 7 ]

Previous research (Stan et all 2017) has demonstrated that by inductively solving the

equation above, we can establish that X; > ((1 —1/e?)/2)- F(O).
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