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Abstract

Motivated by demand-responsive parking pricing systems, we consider
posted-price algorithms for the online metric matching problem. We give
an O(log n)-competitive posted-price randomized algorithm in the case
that the metric space is a line. In particular, in this setting we show how
to implement the ubiquitous guess-and-double technique using prices.
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1 Introduction

In this paper we are generally interested in addressing a particular difficulty
that arises in the design of posted-price algorithms, which is a type of online
algorithm that uses prices to incentive clients to take actions that increase the
social good. Namely, we are interested in the “guess and double” technique
that is ubiquitous in the online algorithms literature [11], but is challenging to
implement with prices. In particular we will address this difficulty within the
context of the problem of online metrical matching on a line metric, with the
hope that the algorithmic techniques that we develop will be of use in addressing
this difficulty in the setting of other online problems. Before giving more details,
we need to give some background information.

As a motivating application for online metric matching, and for posted-price
algorithms, let us consider SFpark, which is San Francisco’s system for managing
the availability of on-street parking [3, 2, 13]. The goal of SFpark is to reduce
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the time and fuel wasted by drivers searching for an open parking spot. The
system monitors parking usages using sensors embedded in the pavement and
distributes this information in real-time to drivers via SFpark.org and phone
apps. SFpark periodically adjusts parking meter pricing to manage demand, to
lower prices in under-utilized areas, and to raise prices in over-utilized areas.
Several other cities in the world have similar demand-responsive parking pricing
systems. For example, Calgary has had the ParkPlus system since 2008 [1].

The problem of centrally assigning drivers to parking spots to minimize
time and fuel usage may be reasonably modeled by the online metric matching
problem. The setting for this problem is a collection of servers S = {s1, . . . , sn}
(the parking spots) located at various locations in a metric space. In the case
that the metric space is a line, we name the servers so that s1 ≤ s2 . . . ≤ sn.
Over time a sequence R = {r1, . . . , rn} of requests (the cars) arrive at various
locations in the metric space. Upon the arrival of each request (car) ri, the
online algorithm must irrevocably be assigned ri to an available server (parking
spot) sσ(i), which results in sσ(i) being unavailable going forward. Conceptually
think of the request (car) ri moving to server (parking spot) sσ(i). Thus the cost
incurred by such an assignment is the distance d(sσ(i), ri) between the location
of sσ(i) and the location where ri arrived. The objective is to minimize the total
cost of matching the requests (cars) to the servers (parking spots).

However, in order to be implementable within the context of SFpark, online
algorithms must be posted-price algorithms. In this setting, posted-price means
that before each car arrives, the algorithm sets a price on each available parking
spot without knowing the next car’s arrival location. We assume each car is
driven by a selfish agent who moves to the available parking spot that minimizes
the sum of the price of that parking spot and the distance to that parking spot.
The objective remains to minimize the aggregate distance traveled by the cars.
It is important to note that conceptually the objective of the parking pricing
agency is minimizing social cost (or equivalently maximizing social good), not
maximizing revenue.

Research into posted-price algorithms for online metrical matching was ini-
tiated in [12], as part of a line of research to study the use of posted-price
algorithms to minimize social cost in online optimization problems. As a posted-
price algorithm is a valid online algorithm, one cannot expect to obtain a better
competitive ratio for posted-price algorithms than what is achievable by online
algorithms. So this research line has primarily focused on problems where the
optimal competitive ratio achievable by an online algorithm is (perhaps approx-
imately) known, and seeks to determine whether a similar competitive ratio can
be (again perhaps approximately) achieved by a posted-price algorithm. The
higher-level goal is to determine the increase in social cost that is necessitated
by the restriction that an algorithm has to use posted prices to incentivize selfish
agents, instead of being able to mandate agent behavior.

Essentially all results in the posted-price online algorithms literature use one
of two algorithmic design techniques. The simpler algorithmic design paradigm
is called mimicry. A posted-price algorithm A mimics an online algorithm B if
the probability that B will take a particular action is equal to the probability
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that a self-interested agent will choose this same action when the prices of
actions are set using A. However, many online algorithms are not mimickable.
So another algorithmic design paradigm, called monotonization, first seeks to
identify a sufficient property for an online algorithm to be mimickable, and then
seeks to design an online algorithm with this property. In all the examples
in the literature, the identified property involves some sort of monotonicity in
the behavior of the algorithm. In particular, for online metric matching on
a tree metric (which includes a line as a special case), an online algorithm A
is mimickable if and only if it is monotone in the sense that as the request
location moves closer to the location of an available server the probability that
the request is matched to that server cannot decrease [9].

There are three online algorithms for online metric matching on a line that
interest us here:

• The Robust Matching (RM) algorithm is a deterministic primal-dual algo-
rithm that is Θ(logn)-competitive [22]. The Robust Matching algorithm
is not mimickable [8], and intuitively seems far from being mimickable.

• The Harmonic (H) algorithm is a randomized algorithm that is Θ(log ∆)-
competitive, where ∆ is the ratio of the distance between the furthest
pair of servers and the distance between the closest pair of servers [15].
The Harmonic algorithm chooses between the first available server to the
left of the request and the first available server to the right of the request
with probability inversely proportional to the distance from the request
to these servers. [12] showed that the Harmonic algorithm is mimickable,
thus obtaining an O(log ∆)-competitive posted-price algorithm.

• The Doubled Harmonic (DH) algorithm is a randomized algorithm that
is O(log n)-competitive. Doubled Harmonic combines a variation of Har-
monic that uses an estimation Z of the optimal cost (between the requests
and the servers), with a standard guess-and-double technique for main-
taining a good estimate of the current optimal cost to date [15]. We show
in Appendix B that Doubled Harmonic is not mimickable.

Thus the specific research question that we address is whether we can design
a monotone variation of Doubled Harmonic that is O(log n)-competitive, thus
leading to an O(log n)-competitive posted-price algorithm. But, even though it
is the title of the paper, obtaining a better competitive ratio is only a secondary
motivation for this research. Our primary motivation is to determine whether
in this setting we can implement guess-and-double monotonically, with the hope
that this will provide insights into designing posted-price algorithms in other
settings where the standard online algorithms use the ubiquitous guess-and-
double technique. To understand why answering this research question isn’t
completely straightforward, we need to first understand the Doubled Harmonic
algorithm.

Firstly, for ease of presentation, we will make some simplifying assumptions,
namely:
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• No pair of servers is closer than 1 unit of distance from each other. We
show that this is without loss of generality in Appendix A.1.

• All requests arrive at the location of some server. We show that this is
without loss of generality in Appendix A.2.

Intuitively Doubled Harmonic modifies Harmonic in following ways 1. Firstly,
if the distance between consecutive servers is small (less than Z/n2), where
Z is the estimate of optimal maintained by the algorithm, then this distance
is artificially inflated (to Z/n2). Secondly, if the actual optimal cost between
the requests and servers becomes at least the estimate Z, then the estimate
Z is increased geometrically until it exceeds the current optimal cost, and the
algorithm conceptually reruns itself on all the requests to date with this new
estimate to compute which servers it would ideally like to be available now. The
algorithm then continues forward imagining these servers are available, and then
correcting to the actually available servers using some optimal matching between
the imaginary available servers and the actually available servers. Unfortunately
the full algorithm, with corner cases, is a bit more complicated.

Definition 1.1. We define the pseudo-distance pd (si, si+1) between two adja-
cent servers si and si+1 to be ∞ if si+1−si ≥ Z, to be Z/n2 if si+1−si ≤ Z/n2,
and si+1 − si otherwise; here Z will be a parameter in the algorithms. We then
define the pseudo-distance between two arbitrary servers si and sj , where i < j

to be
∑j−1

h=i pd (sh, sh+1).

Definition 1.2 (Doubled Harmonic Algorithm Description).

Until a request arrives at a location where there is not an available server,
the request is assigned to the available server where it arrives. When the first
request rt arrives at a location where there isn’t an available server, the Doubled
Harmonic algorithm maintains the following invariants:

• An estimate Z = 10j, for some integer j, such that optimal cost to date
is at least Z/10 and is strictly less than Z.

• A set of imaginary servers Sι = {sι(1), . . . sι(k)} that in some sense the
algorithm imagines are available (but which may or may not actually be
available). Sι is initialized to S − {sσ(1), . . . , sσ(t−1)}.

• The set Sρ = {sρ(1), . . . sρ(k)} of servers that are really available.

• An arbitrary optimal matching M between Sι and Sρ.

Then it responds to the arrival of a request rt in the following way:

1Technically our description of Doubled Harmonic differs in some ways from how it is
described in [15], but we believe that our description is a bit simpler, and the same analysis
holds.
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• If rt is triggering, meaning that it causes the optimal cost to date to be at
least Z, then the estimate Z is set to 10j where j is the minimum integer
that will reestablish the invariant on Z, and the algorithm then performs
what we call an adjustment operation (which we define below) up through
request rt−1.

• If there is an imaginary server sι(i) at the location of rt then no action is
taken (later we will think of this as an imaginary move of length 0).

• If there is no imaginary server to the left of rt then it moves to the first
imaginary server to its right. This is called an imaginary move.

• Else if there is no imaginary server to the right of rt then it moves to the
first imaginary server to its left. This is called an imaginary move.

• Else let sι(h) and sι(h+1) be the first imaginary servers to the left and right
of rt, respectively. Then rt moves to sι(h) with probability

L(sι(h), rt, sι(h+1)) =
pd(rt, sι(h+1))

pd(rt, sι(h)) + pd(rt, sι(h+1))

and rt moves to sι(h+1) with probability

R(sι(h), rt, sι(h+1)) =
pd(rt, sι(h))

pd(rt, sι(h)) + pd(rt, sι(h+1))

So the algorithm chooses between the imaginary server to the left and the
imaginary server to the right with probability inversely proportional to
the pseudo-distance. Let us call this movement imaginary movement.

• After the imaginary movement of the request to a server in sι(j) ∈ Sι, the
request continues moving to the server in sρ(h) ∈ Sρ that sι(j) is matched
to in M , which we call a corrective move, and sι(j) is removed from Sι.

Definition 1.3 (Adjustment Operation Description).

This algorithm takes as input a request rt. The algorithm simulates Doubled
Harmonic on all requests up to rt, sets Sι to be the servers that would be
available at the end of this simulation, and recomputes an optimal matching
M .

There are two reasons why modifying Doubled Harmonic to be monotone
isn’t straightforward (and presumably why this wasn’t done in [12]):

1. The first is that the behavior of the algorithm is quite different depending
on whether the new request is triggering or not, which is challenging to
implement with prices because the prices have to be set before the location
of the request is known.

2. The correction moves used by Doubled Harmonic are intuitively not co-
ordinated with the imaginary moves.
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Our main contribution is an algorithm that we call Modified Doubled Har-
monic (MDH) that circumvents these issues by modifying Doubled Harmonic
in the following way:

1. Triggering requests rt are just assigned as though they had appeared at a
location x near rt where rt would not have been triggering had it arrived
at location x. Intuitively because triggering requests are rare, it’s not
particularly critical that they be handled cheaply.

2. During the correction step the request moves in same direction as it would
in Doubled Harmonic, but stops at the first available server. Note that this
correction step cannot be implemented by any fixed matching, as Doubled
Harmonic does.

One big hurdle in naturally extending poly-log competitiveness results on
posted-price algorithms for online metric matching on a spider metric [9, 10] to
tree metrics is the seeming need to be able to implement guess-and-double in a
monotonic way on a tree, which was the main motivation for considering how to
accomplish this on a line [8]. So our takeaway is that this result suggests trying
to design the correction step for a tree to be as flexible as possible, so as to make
it as easy as possible to monotonically blend with the imaginary movement.

1.1 Additional Related Work

Online metric matching was first studied in [17, 18], and each showed indepen-
dently that (2n− 1)-competitive is the optimal competitive ratio for determin-
istic algorithms in a general metric space. The best known competitive ratio
for a randomized algorithm against an oblivious adversary is O

(

log2 n
)

[20, 7],
and the best known lower bound is Ω(logn).

In this paper, we focus on matching on the line, which is perhaps the most
interesting case. [4] gave the first deterministic, o(n)-competitive algorithm for
this problem. [19] showed that the Generalized Work Function algorithm is
Ω(logn) and O(n) competitive. [21] showed that no randomized algorithm can
achieve a competitive ratio of o

(√
logn

)

for online matching on the line.
[14] shows how to set prices to mimic the O(1)-competitive algorithm Slow-

Fit from [5, 6] for the problem of minimizing makespan on related machines.
Monotonization is used in [16] to obtain an O(1)-competitive posted-price algo-
rithm for minimizing maximum flow time on related machines.

2 Modified Doubled Harmonic Description

We explain the Modified Doubled Harmonic algorithm mainly in terms of how
it differs from Doubled Harmonic. Modified Doubled Harmonic makes the same
initial assumptions about the instance, and maintains the same invariants, as
does Doubled Harmonic. Intuitively Modified Doubled Harmonic modifies Dou-
bled Harmonic in the following ways. Firstly, it handles a triggering request (by
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pretending it arrived at a nearby point where the request wouldn’t have been
triggering if it arrived there) before doing the double step of guess-and-double.
Secondly, during the correction step the request moves in same direction as it
would in Doubled Harmonic, but stops at the first available server. Unfortu-
nately the details of both of these two modifications are a bit complicated.

Note that the optimal matching M between Sι and Sρ partitions the real
line into subintervals of three different types:

Left Islands are maximal subintervals that contain points x where an sι(j) ∈
Sι to the right of x is matched to a sρ(h) ∈ Sρ to the left of x in M .

Right Islands are maximal subintervals that contain points x where an sι(j) ∈
Sι to the left of x is matched to a sρ(h) ∈ Sρ to the right of x in M .

Stationary Islands are maximal subintervals that are disjoint from left and
right islands.

Note that this partitioning will be the same for all choices of M [22].

Definition 2.1 (Modified Doubled Harmonic).

The algorithm behaves the same way as Doubled Harmonic up until the first
request that arrives at the location of an unavailable server. The algorithm
responds to the arrival of a subsequent request rt in the following manner:

1. If rt appears at the location of a available server sρ(j), then it is assigned
to sρ(j).

2. Else if rt appears to the left of the leftmost available server sρ(1), then it
is assigned to sρ(1).

3. Else if rt appears to the right of the rightmost available server sρ(k), then
it is assigned to sρ(k).

4. Else if rt is not triggering,

(a) If rt appears in a left island, it is assigned to the first available server
to its left.

(b) Else if rt appears in a right island, it is assigned to the first available
server to its right.

(c) Else let sι(h) and sι(h+1) be the first imaginary servers to the left and
right of rt, respectively. Then rt moves to the first available server
to its left with probability

L(sι(h), rt, sι(h+1)) =
pd(rt, sι(h+1))

pd(rt, sι(h)) + pd(rt, sι(h+1))

and rt moves to the first available server to its right with probability

R(sι(h), rt, sι(h+1)) =
pd(rt, sι(h))

pd(rt, sι(h)) + pd(rt, sι(h+1))
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So the algorithm chooses between the imaginary server to the left and
the imaginary server to the right with probability inversely propor-
tional to the pseudo-distance, and then moves to the nearest available
server in that direction.

5. Else (Comment: rt is triggering)

(a) Let sρ(h) and sρ(h+1) be the first available servers to the left and right
of rt, respectively.

(b) Let yℓ be defined in the following way: If one moves from rt to the
left, let yℓ be the first point x that one comes to where either rt would
not have been triggering if it had arrived at x, or x is the location of
sρ(h).

(c) Let yr be defined in the following way: If one moves from rt to the
right, let yr be the first point x that one comes to where either rt
would not have been triggering if it had arrived at x, or x is the
location of sρ(h+1).

(d) Let m be the midpoint between sρ(h) and sρ(h+1).

(e) If R(sρ(h), yr, sρ(h+1)) < 1
2 then mimic the assignment of a request

appearing at yr.

(f) Else if R(sρ(h), yℓ, sρ(h+1)) > 1
2 then mimic the assignment of a re-

quest appearing at yℓ.

(g) Else if rt < m then mimic the assignment of a request appearing at
yℓ.

(h) Else rt ≥ m, and mimic the assignment of a request appearing at yr.

6. If rt was triggering (this could happen in Cases 1, 2, 3, or 5), the algorithm
updates the estimate Z and calls the adjustment operation up through
request rt (note the adjustment operation was defined when we defined
Doubled Harmonic).

To show Modified Doubled Harmonic is well-defined, we make the following
observations.

Observation 1. The following hold for Case 4 of the definition of Modified
Doubled Harmonic.

(a) If rt appears in a left island, then it has an available server to its left.

(b) If rt appears in a right island, then it has an available server to its right.

(c) If rt appears in a stationary island, then there are imaginary servers on
each side of rt.

Proof. The first two observations follow directly from the definitions of Left
Island and Right Island. The third observation follows from the fact that rt has
available servers on each side, and so it must have imaginary servers on each
side.
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3 Monotonicity Analysis

Note that Modified Doubled Harmonic is a neighbor algorithm, that is it al-
ways assigns requests to a neighboring server. In Lemma 3.1 we show that if a
neighbor algorithm is monotone on intervals between adjacent available servers
(

sρ(i), sρ(i+1)

)

then it is monotone. In Lemma 3.2 we analyze the probabil-

ity of a non-triggering request in
(

sρ(i), sρ(i+1)

)

being assigned to sρ(i+1). In

Lemma 3.3 we analyze the probability of a triggering request in
(

sρ(i), sρ(i+1)

)

being assigned to sρ(i+1). Then we conclude in Theorem 3.4 that Modified

Doubled Harmonic is monotone on each interval
(

sρ(i), sρ(i+1)

)

.
Let rt → sρ(j) denote the event that request rt is matched to sρ(j). We will

use the notation rt = x as shorthand for rt arrived at location x. We say a
point x on the line is a trigger point if a request arriving at location x would be
a triggering request, and otherwise we say x is a non-trigger point.

Lemma 3.1. A neighbor algorithm A is monotone if, for all intervals of adja-

cent available servers
(

sρ(i), sρ(i+1)

)

, Pr
[

rt
A−→ sρ(i+1) | rt = x

]

is non-decreasing

across
(

sρ(i), sρ(i+1)

)

.

Proof. Suppose for all intervals of adjacent available servers
(

sρ(i), sρ(i+1)

)

, Pr
[

rt → sρ(i+1) | rt = x
]

is non-decreasing across
(

sρ(i), sρ(i+1)

)

.
Let u, v, sρ(j+1) ∈ R

1 be arbitrary such that v ∈ [u, sρ(j+1)] and A has an avail-
able server at sρ(j+1). We want to show the following monotonicity condition
holds:

Pr[rt → sρ(j+1) | r = u] ≤ Pr[rt → sρ(j+1) | r = v]

We proceed by simple casework. If u = v, then we have equality; and if
v = sρ(j+1), then Pr[rt → sρ(j+1) | rt = v] = 1. Thus it remains to consider

v ∈
(

u, sρ(j+1)

)

. If sρ(j) ∈ [u, sρ(j+1)), then Pr[rt → sρ(j+1) | rt = u] = 0.
Otherwise, if there does not exist an available server to the left of u, then
Pr[rt → sρ(j+1) | rt = v] = 1. Thus, it remains to consider the case where

u, v ∈
(

sρ(j), sρ(j+1)

)

for adjacent available servers at sρ(j), sρ(j+1). We know

Pr
[

rt → sρ(j+1) | rt = x
]

is non-decreasing across this interval, and so we must
have Pr[rt → sρ(j+1) | rt = u] ≤ Pr[r → sρ(j+1) | rt = v]. Thus in all cases,
the monotonicity condition holds. If instead we pick u, v, sρ(j+1) ∈ R

1 arbitrary
with v ∈ [sρ(j+1), u], the same reasoning holds. Thus the described condition
implies A is monotone, and so it is equivalent to monotonicity for neighbor
algorithms.

Let rt
MDH−−−→ sρ(j) denote the event that request rt is matched to available

server sρ(j) using Modified Doubled Harmonic. We now fix an arbitrary interval

of adjacent available servers
(

sρ(i), sρ(i+1)

)

.

Lemma 3.2. Pr
[

r
MDH−−−→ sρ(i+1) | rt = x

]

is non-decreasing across the non-

trigger points in
(

sρ(i), sρ(i+1)

)

.

9



Proof. Note that the interval
(

sρ(i), sρ(i+1)

)

can be expressed as the union of a
left island, a stationary island, and a right island (any two of which could pos-
sibly be empty). Since [22] guarantees they must appear in this order, the fact
that MDH assigns a request rt in a stationary island to sρ(i+1) with probability
inversely proportional to its pseudodistance from sρ(i+1) yields the result.

Lemma 3.3. For all subintervals (xL, xR) ⊆
(

sρ(i),m
)

∪
(

m, sρ(i+1)

)

contain-

ing only trigger points, where m is the midpoint of
(

sρ(i), sρ(i+1)

)

, we have

Pr
[

rt
MDH−−−→ sρ(i+1) | rt = x

]

is constant across (xL, xR).

Proof. Let (xL, xR) ⊆
(

sρ(i),m
)

∪
(

m, sρ(i+1)

)

containing only trigger points be
arbitrary. Note that the only information used to make the assignments of trig-
gering requests are the adjacent non-trigger points (or endpoints of the interval)
and the arrival location of the triggering requests relative to the midpoint. Since
(xL, xR) contains no non-trigger points and is entirely contained on one side of
m, all of this information is identical. Thus, all requests in (xL, xR) have the
same probability of being assigned to sρ(i+1).

Theorem 3.4. Modified Doubled Harmonic is monotone.

Proof. The non-trigger points in
(

sρ(i), sρ(i+1)

)

, along with m, partition the

interval into subintervals for which Pr
[

rt
MDH−−−→ sρ(i+1) | rt = x

]

is constant via

Lemma 3.3. Further, Lemma 3.2 shows that Pr
[

rt
MDH−−−→ sρ(i+1) | rt = x

]

is

non-decreasing across non-trigger points, and Case 5 of Definition 2.1 ensures
that the probability of assigning a triggering request to sρ(i+1) is sandwiched
between the probability of assigning its neighboring non-trigger points to sρ(i+1).
So, Lemma 3.1 implies that MDH is monotone.

4 Cost Analysis

In this section we prove Theorem 4.1, which states that Modified Doubled Har-
monic is O(log n)-competitive.

Theorem 4.1. MDH is O(log n)-competitive for online matching on the line.

We first break the execution of Modified Doubled Harmonic into phases,
where each phase terminates with a triggering request. We show in Lemma 4.3
that the aggregate cost of the nontriggering requests during a phase is at most
O(log n) times the current estimate of the optimal cost plus the imaginary cost
that Doubled Harmonic would have incurred during that phase. We accomplish
this by showing that for each nontriggering request, the cost of the optimal
matching between the imaginary and available servers decreases by at least the
amount that the cost for Modified Doubled Harmonic exceeds the imaginary cost
that Doubled Harmonic would have incurred on that request. In Lemma 4.9
we bound the cost to Modified Doubled Harmonic for a triggering request by
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twice the greedy cost (which can be seen to be O(log n) times OPT via the
traingle inequality) and the cost to Modified Doubled Harmonic if the request
had arrived at a nearby non-trigger point. Once we have established Lemma 4.3
and Lemma 4.9, the bounding of Modified Doubled Harmonic’s cost proceeds
as in [15].

4.1 Cost Analysis Definitions

We first need some definitions. Let Sι(t) be the set of imaginary servers before
the arrival of rt, and let Sρ(t) be the set of available servers before the arrival
of rt. Let D (Sι(t), Sρ(t)) be the optimal cost of matching Sι(t) and Sρ(t). Let
sσ(t) be the available server that Modified Doubled Harmonic used for request
rt. For a nontriggering request rt, if rt appeared in a left island or a right
island, let sγ(t) be the imaginary server that would be selected if one selected
a neighboring imaginary server to either the left or right of rt with probability
inversely proportional to the pseudo-distance. If instead rt appeared in a sta-
tionary island, then if one moves from rt in the direction of sσ(t), let sγ(t) be
the first imaginary server one hits. Define a phase as the sequence of requests
which appear while MDH has the same estimate Z on the optimal cost. Phases
begin with a sequence of nontriggering requests, and terminate with a single
triggering request, after which the estimate Z inflates.

Let OPT(t) be the optimal cost of matching the first t requests to the servers,
and suppose that OPT(n) ∈

[

10ℓ, 10ℓ+1
)

. For ease of presentation, suppose
that before the estimate Z is instantiated during execution of MDH, it holds a
default value of 1. Then the estimate Z runs through Z = 10ki for 0 = k0 <
k1 < k2 · · · < km = ℓ + 1. Let Zi = 10ki for each 0 ≤ i ≤ m. We now introduce
some definitions which allow us to partition the requests according to Zi. Let

• τi be the maximum index t such that OPT(t) < Zi for each 0 ≤ i ≤ m.

• ρi be the i’th triggering request, which upon appearance causes OPT(t)
to increase from < Zi−1 to ≥ Zi−1. Equivalently ρi = rτi−1+1.

• Bi be the sequence of requests rt arriving after ρi and before ρi+1.

Let B0 and Bm be the sequence of requests appearing before ρ1 and after
ρm, respectively. This allows us to decompose the full request sequence as
B0, ρ1, B1, ρ2, . . . , Bm−1, ρm, Bm. The phase of the algorithm associated with
Zi is given by the pair (Bi, ρi+1). We now introduce some definitions which
allow us to partition MDH’s assignments and DH’s underlying imaginary moves
according to Zi. Let

• Wi =
⋃

rt∈Bi
{
(

rt, sσ(t)
)

} be the set of assigned edges for the requests
in Bi.

• Xi =
⋃

rt∈Bi
{
(

rt, sγ(t)
)

} conceptually be the set of chosen imaginary

moves for the requests in Bi.

11



Conceptually, Xi is a set of possible imaginary moves of Doubled Harmonic.
These imaginary moves are relevant for us because we bound the cost of Modified
Doubled Harmonic’s assignments against the cost of these imaginary moves.
We are also interested in how MDH / DH simulates request assignments during
an adjustment operation. For this reason, define sµ(i,t) to be the imaginary
server chosen for the request rt during the adjustment operation triggered by
ρi. Of course, sµ(i,t) is only defined for t ≤ τi−1, because the adjustment
operation which occurs after the estimate inflates to Z = Zi only simulates
request assignments up to the triggering request ρi = rτi−1+1. Now, let

• Yi =
⋃τi−1

t=1 {
(

rt, sµ(i,t)
)

} be the set of simulated assignments of the
requests for the adjustment operation triggered by ρi.

• ei = {
(

rt′ , sσ(t′)
)

} be the assigned edge of ρi. Here t′ = τi−1 + 1.

• fi = {
(

rt′ , sγ(t′)
)

} conceptually be the chosen imaginary move for ρi.
Here t′ = τi−1 + 1, and sγ(t′) is a neighboring imaginary server to ρi
chosen with probability inversely proportional to the pseudodistance after
the adjustment operation triggered by ρi is performed.

• Ei = {e1, e2, . . . , ei} be the set of assigned edges for the triggering
requests up through ρi.

This allows us to decompose the full assigned edge set W = (
⋃m

i=0 Wi)∪Em

in the order W = W0, e1,W1, e2, . . . ,Wm−1, em,Wm. We can further decompose
the chosen imaginary moves in the order X = X0, f1, X1, f2, . . . , Xm−1, fm, Xm.
Lastly, for an edge set U , let |U | be the sum of the lengths of the edges in U .

4.2 Bounding Non-Trigger Costs

Before proving Lemma 4.3, we establish a useful fact about how the cost of
the optimal matching between the available and imaginary servers will change
during the nontriggering requests of a phase (i.e. during the requests of a Bi).

Lemma 4.2. Let P,Q be two finite sets of points in R
1 with the same number

of elements. Suppose P = {p1, p2, . . . , pm} and Q = {q1, q2, . . . , qm}, where
the points have been written in increasing order of location. Let D(P,Q) be the
optimal cost of matching P and Q. Further, let P ′ = P \{pg} and Q′ = Q\{qh}
for arbitrary g, h ∈ [1,m]. Then

D (P ′, Q′) −D(P,Q) ≤
{

(ph − pg) − |ph − qh| g ≤ h
(qg − qh) − |qg − pg| g > h

Proof. We know via [22] that

D(P,Q) =

m
∑

k=1

|pk − qk|

Suppose g ≤ h. Then we have

12



D (P ′, Q′) =

g−1
∑

k=1

|pk − qk| +

h−1
∑

k=g

|pk+1 − qk| +

m
∑

k=h+1

|pk − qk|

Thus

D (P ′, Q′) −D(P,Q) =





h−1
∑

k=g

|pk+1 − qk| − |pk − qk|



− |ph − qh|

≤





h−1
∑

k=g

|pk+1 − pk|



− |ph − qh|

=





h−1
∑

k=g

(pk+1 − pk)



− |ph − qh|

= (ph − pg) − |ph − qh|

For g > h, the proof follows identically, only with P,Q and g, h switched.

Lemma 4.3. Consider an arbitrary phase, and renumber the nontriggering
requests Bi in that phase to r1, r2, . . . , rk. With probability one the expression

D(Sρ(t), Sι(t)) +
t−1
∑

j=1

(

d(rj , sσ(j)) − d(rj , sγ(j))
)

is a non-increasing function of t.

Proof. Define g(t) to be the above expression for the chosen phase, and let
t ∈ [1, k] be arbitrary. Then we have

g(t+1)−g(t) = D(Sρ(t+1), Sι(t+1))−D(Sρ(t), Sι(t))+d(rt, sσ(t))−d(rt, sγ(t))

where Sρ(t+1) = Sρ(t)\{sσ(t)} and Sι(t+1) = Sι(t)\{sγ(t)}. Write Sρ(t) =
{sρ(1), sρ(2), . . . , sρ(ℓ)} and Sι(t) = {sι(1), sι(2), . . . , sι(ℓ)} where the servers in
each set have been ordered left-to-right. Suppose sσ(t) = sρ(a) and sγ(t) = sι(b).

Now, suppose a < b. Then because sρ(a) < sρ(b) and MDH is a neighbor
algorithm, we must have rt < sρ(b). Further, because sι(a) < sι(b) and sι(b)
is a neighboring imaginary server to rt, we must have rt > sι(a). The final
observation is the trickiest to notice: rt ≤ sρ(a), meaning that a < b implies
MDH cannot assign rt leftwards. We can show this through simple casework on
the description of Modified Doubled Harmonic. The only cases where leftward
assignment is possible are Case 3, Case 4a, and Case 4c. However, in all of these
cases, we must have a ≥ b. Indeed, in Case 3, a = ℓ ≥ b. In Case 4a, rt is in a
left island, and so [22] shows rt must have more available servers than imaginary
servers on its left, forcing a ≥ b. In Case 4c, rt is in a stationary island, and

13



so [22] shows there must be an equal number of available and imaginary servers
to the left of (and including the location of) rt. By definition of sγ(t) when
rt is in a stationary island, we must have a = b. Thus given a < b, leftward
assignment of rt is not possible, and so rt ≤ sρ(a). Finally, we can deduce
sι(a) < rt ≤ sρ(a) < sρ(b). Simple computation yields

g(t + 1) − g(t) = D(Sρ(t + 1), Sι(t + 1)) −D(Sρ(t), Sι(t)) + d(rt, sρ(a)) − d(rt, sι(b))

≤
(

sρ(b) − sρ(a)
)

− d(sρ(b), sι(b)) +
(

sρ(a) − rt
)

− d(rt, sι(b))

=
(

sρ(b) − rt
)

−
(

d(sρ(b), sι(b)) + d(rt, sι(b))
)

= d(sρ(b), rt) −
(

d(sρ(b), sι(b)) + d(rt, sι(b))
)

≤ 0

The first inequality follows from Lemma 4.2. If a = b, direct computation
gives the same result. If a > b, applying the same reasoning as before gives
sρ(b) < sρ(a) ≤ rt < sι(a), and the same result follows. Thus in all cases,
g(t+ 1)− g(t) ≤ 0 giving g(t+ 1) ≤ g(t). Thus g(t) is a non-increasing function
of t, completing the proof.

Let i ∈ [0,m] be arbitrary. We now pursue the goal of bounding |Wi|, the
total cost of the non-trigger assignments while Modified Doubled Harmonic has
estimate Z = Zi. We start by recalling an important result from [15], which
gives a cost bound on the imaginary moves and the simulated assignments from
the adjustment operation.

Lemma 4.4. [15] E [|Xi| + |fi| + |Yi|] ≤ C · Zi for C = O(log n).

Moving forward, we will use C to refer to the specific O(log n) function which
is used in Lemma 4.4. Because |Xi| is properly bounded by O(Zi logn), our goal
now becomes bounding |Wi| − |Xi|, the amount Modified Doubled Harmonic
exceeds the imaginary cost that Doubled Harmonic would have incurred on the
requests in Bi.

Let t̂i = τi−1 +2 be the time of the first request in Bi. To bound |Wi|− |Xi|,
we will bound D

(

Sρ

(

t̂i
)

, Sι

(

t̂i
))

, which will be sufficient for our purposes upon

application of Lemma 4.3. We do so by constructing a matching Mi : Sι

(

t̂i
)

→
Sρ

(

t̂i
)

whose cost is appropriately bounded.

Lemma 4.5. [15] There exists a bijection Mi : Sι

(

t̂i
)

→ Sρ

(

t̂i
)

such that

cost (Mi) ≤ |fi| + |Yi| + |Ei| +

i−1
∑

j=0

|Wj |

Proof. [15] Cover the line with {fi}∪Yi and
(

⋃i−1
j=0 Wj

)

∪Ei. For all imaginary

and available servers at the same location, match them together. Otherwise,
for each remaining imaginary server in Sι

(

t̂i
)

, follow the edges of this covering
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until an available server in Sρ

(

t̂i
)

is reached, and match them together. Via

the triangle inequality, the induced matching Mi : Sι

(

t̂i
)

→ Sρ

(

t̂i
)

has

cost (Mi) ≤ |fi| + |Yi| + |Ei| +

i−1
∑

j=0

|Wj |

Lemma 4.6. E [|Wi|] ≤ C · Zi + E

[

|Ei| +
∑i−1

j=0 |Wj |
]

.

Proof. t̂i is the time of the first request in Bi, and τi + 1 is the time of the
(i + 1)’st triggering request ρi+1. Thus t̂i ≤ τi + 1 and so Lemma 4.3 implies
g (τi + 1) ≤ g

(

t̂i
)

. Thus

D (Sρ (τi + 1) , Sι (τi + 1)) + (|Wi| − |Xi|) ≤ D
(

Sρ

(

t̂i
)

, Sι

(

t̂i
))

This gives

|Wi| ≤ |Xi| + D
(

Sρ

(

t̂i
)

, Sι

(

t̂i
))

−D (Sρ (τi + 1) , Sι (τi + 1))

≤ |Xi| + D
(

Sρ

(

t̂i
)

, Sι

(

t̂i
))

≤ |Xi| + cost(Mi)

≤ |Xi| + |fi| + |Yi| + |Ei| +

i−1
∑

j=0

|Wj |

The third inequality follows from the fact that D
(

Sρ

(

t̂i
)

, Sι

(

t̂i
))

is the

optimal cost of matching Sρ

(

t̂i
)

and Sι

(

t̂i
)

. The last inequality follows from
Lemma 4.5. Applying Lemma 4.4 gives the desired result.

4.3 Bounding Trigger Costs

We now prove a sequence of lemmas with the eventual goal of proving Lemma 4.12.
We begin by introducing some basic functions to compute assignment costs. In
Lemma 4.9, we bound the cost to Modified Doubled Harmonic for a triggering
request by twice the greedy cost (which is clearly O(log n) times OPT) and
the cost to Modified Doubled Harmonic if the request had arrived at a nearby
non-trigger point. We bound the greedy cost of ρi in Lemma 4.10, and the
cost bound on the non-trigger points is a simple corollary from Lemma 4.6.
Combining these results, we prove Lemma 4.12.

First, we introduce some basic functions for computing assignment costs.
The function Lh(x) is the linear transformation of

(

sρ(h), sρ(h+1)

)

onto (0, 1)
(which maps sρ(h) to 0 and sρ(h+1) to 1). The function N(α, γ) = α(1−γ)+(1−
α)γ is a “normalized” assignment cost, where we assume the adjacent available
servers exist at 0 and 1. The following lemma makes these ideas rigorous.
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Lemma 4.7. Suppose request rt appears in between adjacent available servers
sρ(h) and sρ(h+1). Further, suppose rt assigns to sρ(h), sρ(h+1) with probabilities

1−p, p. Then the expected cost of rt’s assignment is
(

sρ(h+1) − sρ(h)
)

N(Lh(rt), p).

Proof. The proof follows directly from simple computation.

The utility of decomposing rt’s assignment cost in this way comes from
the fact that we may now concern ourselves with studying N , the normalized
assignment cost, which simplifies much of the computation. Next, we establish
some useful facts about the function N . Each fact will be used in bounding the
cost in each subcase of Case 5 of Definition 2.1.

Lemma 4.8. The following facts hold for all α, β, γ ∈ [0, 1].

(a) If α ≤ β and γ ≤ 1
2 , then N (α, γ) ≤ N(β, γ).

(b) If α ≥ β and γ ≥ 1
2 , then N (α, γ) ≤ N(β, γ).

(c) If β ≤ α ≤ 1
2 and γ ≤ 1

2 , then N (α, γ) ≤ 2 max (α,N(β, γ)).

(d) If β ≥ α ≥ 1
2 and γ ≥ 1

2 , then N (α, γ) ≤ 2 max (1 − α,N(β, γ)).

Proof.

(a) This follows directly via simple computation.

(b) This follows directly via simple computation.

(c)
N(α, γ)

α
=

γ + α− 2γα

α
≤ γ + α

α
= 1 +

γ

α

N(α, γ)

N(β, γ)
=

γ + α− 2γα

γ + β − 2γβ
≤ γ + α

γ + β(1 − 2γ)
≤ γ + α

γ
= 1 +

α

γ

Because min
(

γ
α
, α
γ

)

≤ 1, we know N(α, γ) ≤ 2α or N(α, γ) ≤ 2N(β, γ).

Thus N (α, γ) ≤ 2 max (α,N(β, γ)).

(d) Via direct computation, N(α, γ) = N(1 − α, 1 − γ) and N(β, γ) = N(1 −
β, 1 − γ). Thus upon application of (c), we have

N(1 − α, 1 − γ) ≤ 2 max(1 − α,N(1 − β, 1 − γ))

N(α, γ) ≤ 2 max(1 − α,N(β, γ))

Lemma 4.9. Consider a triggering request rt. Let sj be the available server
closest to rt. Let yℓ and yr be defined as in the Modified Doubled Harmonic algo-
rithm, and let sℓ and sr be the available servers that Modified Doubled Harmonic
would have assigned a request arriving at yℓ and yr, respectively. Then

E
[

d
(

rt, sσ(t)
)]

≤ 2 max (E [d (yℓ, sℓ)] ,E [d (yr, sr)] , d (rt, sj))
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Proof. We proceed by showing the claim holds in each potential trigger case
of Definition 2.1. In Cases 1, 2, and 3, the claim trivially holds, because ρi
is assigned greedily to sj . It remains to consider Case 5. Suppose ρi ap-
peared in between adjacent available servers sρ(h) and sρ(h+1), and let m be

the midpoint of
(

sρ(h), sρ(h+1)

)

. Suppose that under the linear transformation

Lh :
(

sρ(h), sρ(h+1)

)

→ (0, 1), ρi maps to α, yℓ maps to βℓ, and yr maps to

βr. Further, m trivially maps to 1
2 . In comparing the costs of assignments in

(

sρ(h), sρ(h+1)

)

, it suffices to compare the costs of the normalized assignments
in (0, 1), given the normalization factor of sρ(h+1) − sρ(h) is always the same.

Let pℓ = R(sρ(h), yℓ, sρ(h+1)) and pr = R(sρ(h), yr, sρ(h+1)). Lemma 4.8
cleanly handles each subcase of Case 5.

(a) If pr < 1
2 , then ρi mimics the assignment of a request arriving at yr. We

know α ≤ βr, and so N (α, pr) ≤ N (βr, pr).

(b) Else if pℓ > 1
2 , then ρi mimics the assignment of a request appearing at

yℓ. We know α ≥ βℓ, and so N (α, pℓ) ≤ N (βℓ, pℓ).

(c) Else if ρi < m, then ρi mimics the assignment of a request appearing at yℓ.
We know βℓ ≤ α ≤ 1

2 and pℓ ≤ 1
2 , and so N (α, pℓ) ≤ 2 max (α,N(βℓ, pℓ)).

Note that α is simply the normalized greedy assignment of ρi.

(d) Else ρi ≥ m, and ρi mimics the assignment of a request appearing at yr.
We know βr ≥ α ≥ 1

2 and pr ≥ 1
2 , and so N (α, pr) ≤ 2 max (1 − α,N(βr, pr)).

Note that 1 − α is simply the normalized greedy assignment of ρi.

Given ρi assigns rightwards to sρ(h+1) with probability p, in all cases, we
have

N(α, p) ≤ 2 max (N (βℓ, pℓ) , N (βr, pr) ,min(α, 1 − α))

Multiplying both sides by the normalization factor of sρ(h+1) − sρ(h) gives
the desired result.

It remains to bound the cost of all individual non-trigger assignments and
the greedy assignment. First, we obtain a bound on the greedy assignment of
ρi.

Lemma 4.10. For a triggering request ρi, let s be the available server nearest

to ρi. Then E [d (ρi, s)] ≤ C · Zi + E

[

|Ei−1| +
∑i−1

j=0 |Wj |
]

.

Proof. Run the adjustment operation on all requests up to ρi = rτi−1+1 to
generate simulated assigned servers s′

µ(i,t) and a set of simulated assignments

Y ′
i =

⋃τi−1

t=1

{(

rt, sµ(i,t)′
)}

solely for the purposes of our argumentation. This
produces a set of imaginary servers S′

ι. Cover the line with the edges in Y ′
i

and the assigned edges
(

⋃i−1
j=0 Wj

)

∪ Ei−1. This covering partitions the line
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into disjoint intervals for which each interval has the same number of requests,
servers in Y ′

i , and previously assigned servers in {sσ(1), sσ(2), . . . , sσ(τi−1)}. By
extension, each partition must have the same number of imaginary servers in S′

ι

and available servers in Sρ.
Now pick an imaginary server s′γ(t′) for the triggering request ρi in the same

way we picked sγ(t′), where here t′ = τi−1 +1. This gives a generated imaginary

move f ′
i =

{(

rt′ , s
′
γ(t′)

)}

, and add f ′
i to this covering. From ρi, follow f ′

i ,

reaching a (previously) imaginary server s′ι(g) ∈ S′
ι. Some available server must

exist within the partition containing s′
ι(g), and so the triangle inequality ensures

that some available server exists at most distance |f ′
i |+|Y ′

i |+|Ei−1|+
∑i−1

j=0 |Wj |
from ρi. Given s is the available server nearest to ρi, we must have

E [d (ρi, s)] ≤ E



|f ′
i | + |Y ′

i | + |Ei−1| +

i−1
∑

j=0

|Wj |





≤ C · Zi + E



|Ei−1| +

i−1
∑

j=0

|Wj |





where in the final step we apply Lemma 4.4.

Next, we obtain a bound on assignments of requests appearing at non-trigger
points, which is a direct corollary from Lemma 4.6.

Corollary 4.11. For a non-trigger point y, let s be the available server that
Modified Doubled Harmonic would have assigned a request arriving at y, given

the estimate is currently Z = Zi−1. Then E [d(y, s)] ≤ C·Zi−1+E

[

|Ei−1| +
∑i−2

j=0 |Wj |
]

.

With all of the pieces in place, we establish a cost bound on E [|ei|].

Lemma 4.12. E [|ei|] ≤ 2
(

C · Zi + E

[

|Ei−1| +
∑i−1

j=0 |Wj |
])

.

Proof. The proof follows directly from application of Lemma 4.9, Corollary 4.11,
and Lemma 4.10. Note that we apply Corollary 4.11 when the estimate is
Z = Zi−1 because ρi causes the estimate to inflate from Z = Zi−1 to Z = Zi.

4.4 Proving Theorem 4.1

We now make the recursive bounds on E [|Wi|], E [|ei|] established in Lemma 4.6,
Lemma 4.12 explicit through induction. The key idea is that although E [|Wi|]
and E [|ei|] are bounded in terms of all previous assignments and imaginary
moves, the geometrically increasing nature of Zi ensures their costs are simply
on the order of C · Zi.

Lemma 4.13. E [|Wi|] ≤ 8C · Zi and E [|ei|] ≤ 5C · Zi for all i ∈ [0,m].
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Proof. First, note that for all i ∈ [0,m− 1],

i
∑

j=0

Zj =
i
∑

j=0

10kj ≤
ki
∑

h=0

10h =
1

9
·
(

10ki+1 − 1
)

≤ 1

9
· 10ki+1 =

1

9
· Zi+1

We now proceed by induction on i. The base case of |W0| = 0 is trivial, and
simply define |e0| = 0. Let i ∈ [0,m − 1] be arbitrary, and assume the claim
holds for all j ∈ [0, i]. Then

E [|ei+1|] ≤ 2



C · Zi+1 + E



|Ei| +

i
∑

j=0

|Wj |









= 2C · Zi+1 + 2 ·
i
∑

j=0

E [|ej |] + 2 ·
i
∑

j=0

E [|Wj |]

≤ 2C · Zi+1 + 10C ·
i
∑

j=0

Zj + 16C ·
i
∑

j=0

Zj

= 2C · Zi+1 + 26C ·
i
∑

j=0

Zj

≤ 2C · Zi+1 +
26C

9
· Zi+1

≤ 5C · Zi+1

and

E [|Wi+1|] ≤ C · Zi+1 + E



|Ei+1| +

i
∑

j=0

|Wj |





= C · Zi+1 +
i+1
∑

j=0

E [|ej|] +
i
∑

j=0

E [|Wj |]

≤ C · Zi+1 + 5C ·
i+1
∑

j=0

Zj + 8C ·
i
∑

j=0

Zj

= 6C · Zi+1 + 13C ·
i
∑

j=0

Zj

≤ 6C · Zi+1 +
13C

9
· Zi+1

≤ 8C · Zi+1

completing the induction.
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Finally, we now prove Theorem 4.1. The O(log n)-competitiveness of Modi-
fied Doubled Harmonic is a direct consequence of Lemma 4.13 and the fact the
geometric sums are asymtotically equal to their largest summand.

Proof of Theorem 4.1. Aggregating the edges W = (
⋃m

i=0 Wi) ∪ Em, we have

E [|W |] = E

[(

m
∑

i=0

|Wi|
)

+ |Em|
]

=

m
∑

i=0

E [|Wi|] +

m
∑

i=1

E [|ei|]

Applying Lemma 4.13,

m
∑

i=0

E [|Wi|] +

m
∑

i=1

E [|ei|] ≤ 8C ·
m
∑

i=0

Zi + 5C ·
m
∑

i=0

Zi = 13C ·
m
∑

i=0

Zi

Simplifying yields

13C ·
m
∑

i=0

Zi ≤
13C

9
· 10km+1 ≤ 1.5C · 10ℓ+2 = 150C · 10ℓ ≤ 150C · OPT(n)

Recalling C = O(log n) completes the proof.
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A Remedying Some Assumptions

A.1 Minimum Distance 1 Between Servers

First, note that we may always assume the minimum distance between servers
at different locations is 1, which can be easily remedied by a suitable scaling.
Thus to resolve the assumption that the minimum distance between adjacent
servers is 1, the important piece to resolve is that no two servers exist at the
same location.

Suppose we have a monotone neighbor algorithm A which is α-competitive
under the assumptions that all servers exist at different locations, and requests
appear at server locations. We will construct a monotone neighbor algorithm B
which is 2α-competitive and removes the first assumption.

Again we may assume the instance given to B has minimum distance 1
between adjacent servers at different locations, which can be easily remedied by
a suitable scaling. We do this primarily for ease of analysis. Let ǫ = 1

5n . On
the instance given to B, construct an instance for A by first placing one server
per server location; and then perturbing the extra servers at the same location
by at most ǫ (so that all servers are now at distinct locations). B then services
request r in the following way.

• If r appears at an available server s in the instance of B, place a simulated
request r̃ at an available server s̃ in the same “ǫ-window” in the instance

of A. Then r
B−→ s and r̃

A−→ s̃.

• Otherwise, let t be the location of r’s appearance. Place a simulated

request r̃ at t in the instance of A. Given r̃
A−→ s for an available server s,

then r
B−→ s.

It is easy to see that B is a monotone neighbor algorithm given A is a
monotone neighbor algorithm. It remains to show B is 2α-competitive. Note
that each assignment in ONB and OPTB can differ from the corresponding
assignment in ONA and OPTA by at most ǫ. Thus

ONB ≤ ONA + nǫ = ONA +
1

5

and

OPTB ≥ OPTA − nǫ = OPTA − 1

5

If OPTB = 0, then ONB = 0, because all requests appeared at available
servers. Otherwise, OPTB > 0, and so some request is forced to match to a
server at a different location. Because the minimum distance between adjacent
servers (at different locations) is 1, we must have ONB ≥ OPTB ≥ 1. The same
property holds for the instance of A (where some request is forced to assign
outside of its “ǫ-window”), and so ONA ≥ OPTA ≥ 1 − 2ǫ ≥ 3

5 . Thus
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E [ONB]

OPTB

≤ E [ONA] + 1
5

OPTA − 1
5

≤
(

1 + 1
3

1 − 1
3

)(

E [ONA]

OPTA

)

≤ 2α

and so B is 2α-competitive, as desired.

A.2 Requests Appear at Server Locations

Suppose we have a monotone neighbor algorithm B which is β-competitive under
the assumption that requests appear at server locations. We will construct a
monotone neighbor algorithm C which is (2β + 1)-competitive and makes no
such assumption. Specifically, C services request r in the following way.

• Let t be the server closest to r, regardless of whether t is available or not.

• Place a simulated request r̃ at the location of t in the running instance of
B.

• Given r
B−→ s for an available server s, then r

C−→ s.

Let S = {s1, s2, . . . , sn} be the set of servers in the instance and R =
{r1, r2, . . . , rn} be the set of requests. Without loss of generality, assume the
servers of S and the requests of R have been written, according to their loca-
tions, in increasing order of coordinate value. Let ti be the server nearest to ri,
regardless of whether it is available or not upon appearance of ri. Then the set
T = {t1, t2, . . . , tn} is written as “ordered” as well.

First, we show C is (2β + 1)-competitive. Suppose B assigns r̃i to sσ(i)
for each i. Then OPTB =

∑n
i=1 d(ti, si), ONB =

∑n
i=1 d(sσ(i), ti), OPTC =

∑n

i=1 d(ri, si), and ONC =
∑n

i=1 d(sσ(i), ri), where the structure of OPTB and
OPTC is given by [22]. Note OPTC ≥

∑n

i=1 d(ri, ti) since ti is the nearest server
to ri for each request ri. Then we have

OPTC =
1

2
(OPTC + OPTC)

≥ 1

2

(

n
∑

i=1

d(ri, si) +

n
∑

i=1

d(ri, ti)

)

≥ 1

2

(

n
∑

k=1

d(ti, si)

)

=
1

2
OPTB

and

ONC =
n
∑

i=1

d(sσ(i), ri) ≤
n
∑

i=1

d(sσ(i), ti) +
n
∑

i=1

d(ri, ti) ≤ ONB + OPTC
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Thus

E [ONC ]

OPTC

≤ E [ONB] + OPTC

OPTC

≤ E [ONB]
1
2OPTB

+ 1 = 2

(

E [ONB]

OPTB

)

+ 1 ≤ 2β + 1

as desired. Further, it is easy to see that C is a neighbor algorithm given
B is a neighbor algorithm. Lastly, we must show C is monotone. Indeed, the
sets of points closest to si for each server si partition the real line into disjoint
intervals (where all servers at the same location are understood to share the
same interval). Any requests appearing within the same interval are treated
identically in C. This discretization ensures that because B is monotone and
thus satisfies the condition in Lemma 3.1, C satisfies the same condition, and so
it is also monotone.

B Proof that Doubled Harmonic is Not Mono-

tone

Consider the following instance.

s1 s2 s3 s4

4 7 20

Suppose that r1 arrives at s2. Then, r1
DH−−→ s2. Next, suppose r2 arrives

at s2. Then the optimal matching of r1 and r2 has cost 4, the estimate Z is
set to 10, the set of imaginary servers is set to Sι = {s1, s3, s4}, and the set of
available servers is set to Sρ = {s1, s3, s4}. Clearly the optimal matching M
between Sι and Sρ just assigns each server to itself. Suppose DH then performs
the imaginary move r2 → s1 and the subsequent corrective move s1 → s1. This
leaves Sι = {s3, s4} and Sρ = {s3, s4}. Now, we show that the assignment of r3
is not monotone.

Suppose that r3 appears at s1. Then, the optimal matching of the requests
has cost 7. DH performs the imaginary move r3 → s3 and the subsequent
corrective move s3 → s3, and so DH assigns r3 to s3 with probability 1.

Suppose that r3 instead appears at s2. Now, the optimal matching of the
requests has cost 11. The estimate Z is then set to 100, and the adjustment
operation is performed. With probability 4

11 , DH simulates assigning r1 to s2
and r2 to s3. The imaginary move of r3 is then to s1 with probability 27

31 , and
the subsequent corrective move assigns r3 to s3. The imaginary move of r3 to s4
has probability 4

31 , and the subsequent corrective move assigns r3 to s4. Thus
with nonzero probability, DH assigns r3 to s4 (and thus NOT to s3) in this case.

Thus the probability that DH assigns r3 to s3 is higher for arrival at s1
(probability 1) than for arrival at s2 (probability < 1). Further note that this
violation of monotonicity is induced by the fact that an adjustment operation
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will not occur if r3 arrives at s1, but it will occur if r3 arrives at s2. Thus DH
is not monotone.
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