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Abstract

In this paper, we apply the information theory to provide an approximate expres-

sion of the steady-state probability distribution for blockchain systems. We achieve

this goal by maximizing an entropy function subject to specific constraints. These

constraints are based on some prior information, including the average numbers of

transactions in the block and the transaction pool, respectively. Furthermore, we use

some numerical experiments to analyze how the key factors in this approximate ex-

pression depend on the crucial parameters of the blockchain system. As a result, this

approximate expression has important theoretical significance in promoting practical

applications of blockchain technology. At the same time, not only do the method and

results given in this paper provide a new line in the study of blockchain queueing

systems, but they also provide the theoretical basis and technical support for how to

apply the information theory to the investigation of blockchain queueing networks and

stochastic models more broadly.

Keywords: Blockchain; Information theory; Maximum entropy principle; Steady-

state probability distribution.

1 Introduction

Blockchain has become a prominent topic of discussion in recent years, revolutionizing

various aspects of life through its significant impact on many practical application fields.

For example, finance by Kowalski et al. [8]; the Internet of Things by Torky and Hassanein
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[24]; healthcare by Sudeep et al. [23]; and others. The active participation of miners in the

mining process is fundamental to ensuring the secure and stable operation of the blockchain

system, as well as guaranteeing its sustainable development. However, the inner workings

of blockchain mining are extremely obscure and challenging to examine. Conducting direct

measurements on mining networks is highly complex due to the miners’ privacy concerns,

whereas blockchain data provides a method of direct measurement. Consequently, it is

essential to develop statistical techniques using accessible blockchain data for investigating

blockchain systems.

So far blockchain research has obtained many important advances, readers may refer

to a book by Swan [22]; a key research framework shown by Daneshgar et al. [3], Lindman

et al. [13] and Risius and Spohrer [19]; decision in blockchain mining by Ma and Li [16]

and Chen et al. [2]; and others by Lu et al. [15] and Yang et al. [25].

Applying queueing theory and Markov processes to analyze blockchain systems is inter-

esting but challenging, since each blockchain system not only is a complicated stochastic

system but also has multiple key factors and a physical structure with different levels. Li

et al. [10] provided a two-stage queueing model of the PoW blockchain system, clearly

described and expressed the physical structure with multiple key factors, furthermore the

matrix geometric solution was applied to give a complete solution such that the perfor-

mance evaluation of the PoW blockchain system was established in a simple form. Seol

et al. [20] proposed an M(1, n)/Mn/1 queueing model to analyze the blockchain system

in Ethereum; Zhao et al. [26] established a non-exhaustive queueing model with a lim-

ited batch service and a possible zero-transaction service, derived the average number of

transactions and the average confirmation time of a transaction; Mis̆ić et al. [17] applied

the Jackson network to analyze the blockchain network.

Compared with the queueing theory, the Markov process is mainly used to evaluate the

throughput, confirmation time, security and privacy protection of the blockchain systems.

Huang et al. [4] proposed the Markov process with an absorption state and conducted

an analysis on the performance of the Raft consensus algorithm in private blockchains.

Srivastava [21] calculated the transaction confirmation time in blockchain systems. Li

et al. [11] discussed block access control mechanisms in wireless blockchain networks.

Nguyen et al. [18] investigated the task offloading problem in mobile blockchain with

privacy protection using Markov processes and deep reinforcement learning.

The traditional reluctance of miners to share insider information regarding their com-
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petitive advantages, leading to great difficulties for these two approaches when dealing

with more complex blockchain systems, such as those involving multiple mining pools.

The purpose of this paper is to apply the maximum entropy principle to provide an ap-

proximate expression for blockchain systems. In information theory, entropy serves as a

probabilistic measure to quantify the uncertainty of information associated with random

variables. In recent years, the information entropy has been implemented in various prac-

tical domains of blockchain technology. For example, industrial Internet of Things by

Khan and Byun [7]; renewable energy by Liu et al. [14]; fake news prevention by Chen et

al. [1]; and medical data sharing by Liang et al. [12].

The degree of randomness in a random variable can be measured by applying max-

imum entropy when its information is most uncertain. For example, a large amount of

information can only be partially obtained and utilized. For random variables, Jaynes [5,6]

initially proposed the maximum entropy principle, which offers an approximate compu-

tational approach for unknown probability distributions. Such an approach provides a

uniquely correct self-consistent method of inference for estimating probability distribu-

tions based on the available information.

The main contributions of this paper are twofold. The first one is to apply the maxi-

mum entropy principle to study blockchain queueing systems for the first time. Different

from previous works for applying queueing theory or Markov processes, we just need to

take statistical techniques by simple observation on miners. The second contribution of

this paper is to provide the approximate expression of the steady-state probability distri-

bution for blockchain systems. So far, numerous categories of blockchain systems have yet

to be thoroughly analyzed using queueing theory or Markov processes due to difficulties in

the expression of the steady-state probability distributions. Therefore, the results of this

paper give new insights into applying the maximum entropy principle to more complex

blockchain systems. For example, the PoW blockchain system with multiple mining pools,

the PBFT blockchain system of dynamic nodes, the DAG-based blockchain systems, the

Ethereum, and the large-scale blockchain systems with either cross-chain, side-chain, or

off-chain.

The rest of this paper is organized as follows. Section 2 introduces the blockchain

queueing model briefly. In Section 3, we apply the maximum entropy principle to give

the approximate expression of the steady-state probability distribution for the blockchain

system. We also conduct numerical experiments to analyze how the key factors of the

3



approximate expression depend on some crucial parameters in Section 4. Finally, the

whole work is concluded in the last section.

2 Model Distribution

In this section, we describe a blockchain system as two stages of asynchronous pro-

cesses: block-generation and blockchain-building, which is depicted in Fig. 1. To ensure

clarity, we review the blockchain queueing model and adopt the notations of Li et al. [10]

briefly .

Figure 1: A blockchain queueing system.

Arrival processes: Transactions arrive at the blockchain system according to a Pois-

son process with arrival rate λ. Each transaction must first enter and queue up in a

transaction pool with infinite size.

Block-generation processes: Each arrival transaction first queues up in the trans-

action pool and then waits to be mined into a block successfully. We assume that the

block-generation times are i.i.d. and exponential with service rate µ1. The transactions

are chosen into the block, but they are not completely based on the First Come First

Service (FCFS) from the order of transaction arrivals.
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Block capacity: To avoid the spam attacks, we assume that the maximum size of each

block is limited to b transactions. If there are more than b transactions in the transaction

pool, then the b transactions are selected to form a full block while the rest of transactions

are still waiting in the transaction pool and may be used to construct another block.

Blockchain-building processes: The block with a group of transactions will be

pegged to a blockchain. We assume that the blockchain-building times are i.i.d. and

exponential with the service rate µ2.

Independence: We assume that all the random variables defined above are indepen-

dent of each other.

Let I(t) and J(t) be the numbers of transactions in the block and in the transaction

pool at time t, respectively. Then, (I(t), J(t)) may be regarded as a state of the blockchain

system at time t. The state space of this blockchain system is

Ω = {(i, j) , 0 ≤ i ≤ b, 0 ≤ j ≤ ∞} .

The following lemma provides a necessary and sufficient condition under which the

blockchain system is stable. Here, we only restate it without proof, while readers may

refer to Chapter 3 of Li [9] and Li et al. [10] for more details.

Lemma 1 The blockchain system is stable if and only if

bµ1µ2

µ1 + µ2
> λ. (1)

In what follows we assume that the stable condition (1) is satisfied, then this blockchain

system is stable. The limit

lim
t→+∞

p {I(t) = i, J(t) = j}

exists and is unique. Let

p(i, j) = lim
t→+∞

p {I(t) = i, J(t) = j} .

Then, p(i, j), (i, j) ∈ Ω is the steady-state probability distribution of the blockchain sys-

tem.

By using the matrix-geometric solution, we can write the steady-state probability

distribution under the stable condition (1), see Li et al. [10]. In the next section, we will

introduce the maximum entropy principle to provide the approximate expression of the

steady-state probability distribution for the blockchain system.
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3 Maximum Entropy in Blockchain Systems

In this section, we provide an entropy function and some prior information, and use

Lagrange method of undetermined multipliers to give the approximate expression of the

steady-state probability distribution.

3.1 Entropy Function

Based on the steady-state probability distribution p(i, j), we introduce the entropy

function

H(p) = −
∑

(i,j)∈Ω

p(i, j) ln p(i, j)

or

H(p) = −

∞
∑

j=0

b
∑

i=0

p(i, j) ln p(i, j). (2)

The maximum entropy principle states that of all distributions satisfying the con-

straints supplied by the given information, the minimally prejudiced distribution p(i, j), (i, j) ∈

Ω is the one that maximizes the entropy function of the blockchain queueing system.

3.2 Prior information

To approximate the steady-state probability distribution p(i, j), (i, j) ∈ Ω using the

maximum entropy principle by maximizing (2), we need to provide some prior information

as follows:

(i) The normalisation:
∑

(i,j)∈Ω

p(i, j) = 1. (3)

(ii) The average number of transactions in the block:

b
∑

i=0

i

∞
∑

j=0

p(i, j) = I. (4)

(iii) The average number of transactions in the transaction pool:

∞
∑

j=0

j

b
∑

i=0

p(i, j) = J. (5)
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Remark 1 Note that the statistics of prior information selected always may be known nu-

merically via system measurements during finite observation periods or can be determined

symbolically via known analytic formulae based on operational or stochastic assumptions.

For example, blockchain data has the advantage of providing direct measurements, as the

fields of a block are filled by the miner of that block.

3.3 The maximum entropy principle

The steady-state probability distribution p(i, j) is considered as an independent vari-

able. We maximize the entropy function (2) subject to constrains (3)-(5), the optimization

model of the maximum entropy principle can be written as

max H(p) = −

∞
∑

j=0

b
∑

i=0

p(i, j) ln p(i, j),

s.t.



































∞
∑

j=0

b
∑

i=0
p(i, j) = 1,

b
∑

i=0
i

∞
∑

j=0
p(i, j) = I,

∞
∑

j=0
j

b
∑

i=0
p(i, j) = J.

The following theorem provides the approximate expression of the steady-state prob-

ability distribution for the blockchain system by the maximum entropy principle.

Theorem 1 For the steady-state probability distribution p(i, j) of blockchain systems,

there exists a tuple of positive numbers x, y and z that satisfy

p̃(i, j) = xyizj .

Proof: By introducing β0, β1 and β2 to equations (3)-(5), we write Lagrangian function

as

L(p, β0, β1, β2) =−

∞
∑

j=0

b
∑

i=0

p(i, j) ln p(i, j) + β0



1−

∞
∑

j=0

b
∑

i=0

p(i, j)





+ β1



I −
b

∑

i=0

i
∞
∑

j=0

p(i, j)



 + β2



J −
∞
∑

j=0

j
b

∑

i=0

p(i, j)



 , (6)

where β0, β1 and β2 are the Lagrange multipliers corresponding to constraints (3)-(5),

respctively.
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To find the maximum entropy solution p(i, j), maximizing (2) subject to constraints

(3)-(5) is equivalent to maximizing (6).

The Lagrangian function L(p, β0, β1, β2) is a multivariate function with respect to

variables p(i, j), β0, β1 and β2. To obtain the maximum entropy solutions, we take the

partial derivatives of L(p, β0, β1, β2) with respect to p(i, j) and then set the results equal

to zero, i.e., ∂L/∂p(i, j) = 0.

If (i, j) is determined, then

∂

∂p(i, j)



−

∞
∑

j=0

b
∑

i=0

p(i, j) ln p(i, j)



 = − ln p(i, j) − 1.

It is clear that for all (i, j), i 6= i and j 6= j,

∂

∂p(i, j)
p(i, j) ln p(i, j) = 0.

Thus, we obtain

∂L

∂p(i, j)
= [− ln p(i, j) − 1]− β0 − β1i− β2j = 0,

which indicates

ln p(i, j) = −1− β0 − β1i− β2j. (7)

It follows from (7) that

p(i, j) = exp [− (1 + β0)] exp (−β1i) exp (−β2j) . (8)

Let

x = exp [− (1 + β0)] , y = exp (−β1) and z = exp (−β2) .

Then, we rewrite (8) as

p(i, j) = xyizj . (9)

Substituting (9) into (3) and utilizing algebraic knowledge, we have

x =
(1− y)(1− z)

1− yb+1
. (10)

Similarly, substituting (9) into (4) and (5), respectively, we have

yb+1 −

b
∑

n=1

1

b− I
yn +

I

b− I
= 0 (11)
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and

z =
J

1 + J
. (12)

Therefore, if the average number of transactions in the block and the transaction pool

can be provided, respectively, the positive numbers x, y and z exist to give the approximate

expression for p̃(i, j). This completes the proof.

Remark 2 The theoretical expressions of the mean values I and J given by Li et al. [10]

are restricted to Poisson arrival processes and exponential service times, meaning that

these expressions are only theoretically applicable in this particular case. Nevertheless, the

maximum entropy principle is not dependent on this assumption of the Poisson arrival

processes and the exponential service times. It can be applied to non-Poisson arrival

processes and non-exponential service times, as long as I and J can be provided, the non-

linear equations can be solved to derive the approximate expression of the steady-state

probability distribution for the blockchain queueing system. Therefore, the approximate

expression derived in Section 3.3 has broad applicability.

4 Numerical experiments

In this section, we provide some numerical examples to verify computability of our

theoretical results and analyze how the key factors y and z of the approximate expression

depend on some crucial parameters of the blockchain queueing system.

Taking the situation of the Poisson arrival processes and the exponential service times

in Li et al. [10] as an example, since the theoretical expressions of the mean values I and

J are composed of the crucial parameters λ, µ1, µ2 and b, we can observe the relation

between the key factors and crucial parameters. Note that x is represented by y and z

according to equations (10)-(12), we just need to focus on how y and z depend on these

crucial parameters through numerical examples.

In the Examples 1 and 2, we take some common parameters: The maximum block size

b = 80, the block-generation service rate µ1 = 6, 7.5, 10, blockchain-building service rate

µ2 = 2 and the arrival rate λ ∈ (1, 3.5).

Example 1 We analyze how y depends on λ and µ1. From Fig. 2, it is seen that y

decreases as λ increases, while it also decreases as µ1 increases.
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Figure 2: y vs. λ for three different values of µ1.

Example 2 We analyze how z depends on λ and µ1. From Fig. 3, it is seen that z

increases as λ increases, while it increases as µ1 decreases.

Figure 3: z vs. λ for three different values of µ1.

Example 3 We specifically observe how y and z depend on the maximal block size b,

respectively. We take some common parameters: The arrival rate λ = 1.5, the blockchain-

building service rate µ2 = 2, the maximum block size b = 40, 80, 160 and the block-

generation service rate µ1 ∈ (1, 2.5). From Fig. 4 and Fig. 5, it is seen that y and z

decrease as µ1 increases, while they increase as b increases.
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Figure 4: y vs. µ1 for three different values of b.

Figure 5: z vs. µ1 for three different values of b.
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5 Concluding Remarks

In this paper, we apply the maximum entropy principle of the information theory

to study the blockchain queueing system, and provide an approximate expression of its

steady-state probability distribution. By obtaining this approximation, we have partially

resolved a challenging issue in the blockchain technology, i.e., how to directly express the

steady-state probability distributions of some large-scale and complex blockchain queueing

systems. On the other hand, we use numerical examples to verify the computability of our

theoretical results and analyze how the key factors of the approximate expression depend

on some crucial parameters. Along these lines, we will continue our future research in the

following directions:

• Investigating blockchain queueing systems with multiple mining pools, different con-

sensus mechanisms and so on.

• Extending the information theory to blockchain queueing networks or stochastic

models.

• Applying the information theory to provide a more accurate approximate expression

with more prior information such as the second moment and the third moment.

References

[1] Chen, C.C., Du, Y., Peter, R., et al.: An implementation of fake news prevention

by blockchain and entropy-based incentive mechanism. Soc. Netw. Anal. Min. 12(1),

114 (2022)

[2] Chen, J., Cheng, Y., Xu, Z., et al.: Decision on block size in blockchain systems by

evolutionary equilibrium analysis. Theor. Comput. Sci. 942, 93–106 (2023)

[3] Daneshgar, F., Ameri Sianaki, O., Guruwacharya, P.: Blockchain: A research frame-

work for data security and privacy. In: the International Conference on Advanced

Information Networking and Applications, Matsue, pp. 966–974. Springer (2019)

[4] Huang, D., Ma, X., Zhang, S.: Performance analysis of the Raft consensus algorithm

for private blockchains. IEEE Trans. Syst. Man. Cybern. Syst. 50(1), 172–181 (2019)

[5] Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620–

630 (1957)

12



[6] Jaynes, E.T.: Information theory and statistical mechanics II. Phys. Rev. 108(2),

171–190 (1957)

[7] Khan, P.W., Byun, Y.: A blockchain-based secure image encryption scheme for the

industrial Internet of Things. Entropy. 22(2), 175 (2020)

[8] Kowalski, M., Lee, Z.W., Chan, T.K.: Blockchain technology and trust relationships

in trade finance. Technol. Forecast. Soc. 166, 120641 (2021)

[9] Li, Q.L.: Constructive Computation in Stochastic Models with Applications: The

RG-Factorizations. Springer, Heidelberg (2010)

[10] Li, Q.L., Ma, J.Y., Chang, Y.X.: Blockchain queue theory. In: The 7th International

Conference on Computational Social Networks, Shanghai, pp. 25–40. Springer (2018)

[11] Li, Y., Cao, B., Liang, L., et al.: Block access control in wireless blockchain network:

Design, modeling and analysis. IEEE Trans. Veh. Technol. 70(9), 9258–9272 (2021)

[12] Liang, X., Chen, W., Li, J., et al.: Incentive mechanism of medical data sharing based

on information entropy in blockchain environment. Journal of Physics: Conference

Series. 1302(2), 022056 (2019)

[13] Lindman, J., Tuunainen, V.K., Rossi, M.: Opportunities and risks of blockchain

technologies – a research agenda. In: Proceedings of the 50th Hawaii International

Conference on System Sciences, Hawaii, pp. 1533–1542 (2017)

[14] Liu, Z., Huang, B., Hu, X., et al.: Blockchain-based renewable energy trading using

information entropy theory. IEEE T. Netw. Sci. Eng. 1–12 (2023)

[15] Lu, Y., Huang, X., Zhang, K., et al.: Blockchain empowered asynchronous federated

learning for secure data sharing in internet of vehicles. IEEE Trans. Veh. Technol.

69(4), 4298–4311 (2020)

[16] Ma, J.Y., Li, Q.L.: Optimal dynamic mining policy of blockchain selfish mining

through sensitivity-based optimization. J. Comb. Optim. 44(5), 3663–3700 (2022)
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