
ar
X

iv
:2

30
2.

11
63

7v
2

 [
cs

.C
G

]
 2

4
Se

p
20

23

Hitting Sets when the Shallow Cell Complexity is

Small ⋆

Sander Aarts1[0000−0003−1852−9116]

David B. Shmoys1[0000−0003−3882−901X]

September 26, 2023

Abstract. The hitting set problem is a well-known NP-hard optimiza-
tion problem in which, given a set of elements and a collection of subsets,
the goal is to find the smallest selection of elements, such that each sub-
set contains at least one element in the selection. Many geometric set
systems enjoy improved approximation ratios, which have recently been
shown to be tight with respect to the shallow cell complexity of the set
system. The algorithms that exploit the cell complexity, however, tend
to be involved and computationally intensive. This paper shows that
a slightly improved asymptotic approximation ratio for the hitting set
problem can be attained using a much simpler algorithm: solve the linear
programming relaxation, take one initial random sample from the set of
elements with probabilities proportional to the LP-solution, and, while
there is an unhit set, take an additional sample from it proportional
to the LP-solution. Our algorithm is a simple generalization of the ele-
gant net-finder algorithm by Nabil Mustafa. To analyze this algorithm
for the hitting set problem, we generalize the classic Packing Lemma,
and the more recent Shallow Packing Lemma, to the setting of weighted
epsilon-nets.

Keywords: Hitting set · Set cover · Approximation algorithms · Com-
putational geometry · Shallow cell complexity · Wireless coverage

1 Introduction

The input to the hitting set problem is a finite set system – a ground set X of
m elements, or points, and a collection R of n subsets, or ranges, of X . This
can also be understood as a hypergraph, with vertices X and hyper-edges R. A
hitting set is a subset of elements H ⊆ X such that every set R ∈ R is hit by H ,

⋆This material is based on work supported by the NSF under Grant CNS-1952063.

1

http://arxiv.org/abs/2302.11637v2

2

i.e. R∩H 6= ∅, for all R ∈ R. This is a vertex cover under the hypergraph view.
The set system can be encoded as a set-element incidence matrix A ∈ {0, 1}n×m,
in which the (i, j)th entry aij is 1 if range Ri contains point xj , and 0 otherwise.
The IP of the minimum hitting set problem is

min
y

∑

j:xj∈X

yj

s.t.
∑

j:xj∈X

aijyj ≥ 1, ∀i : Ri ∈ R; (1)

yj ∈ {0, 1}, ∀j : xj ∈ X,

where variable yj ∈ {0, 1} indicates whether element xj is in the solution H .

Hitting sets and set covers are intimately connected; a hitting set for A is a
set cover of AT . Both problems’ decision versions are NP-complete [10]. There
exists an O (logm)-approximation algorithm, and this bound is tight unless P
= NP [9,13]. However, there are algorithms that exploit additional structure
in A to attain improved approximation ratios1. Indeed, our work is motivated
by the problem of exploiting structure when covering large numbers of wireless
LoRaWAN transmitters with wireless receivers. Transmitters can be viewed as
points, which are considered to be covered if they are in the line of sight of a
wireless receiver, which in turn drives transmission quality in LoRaWAN [22].
The area in the line of sight of a receiver roughly resembles a simple shape.

Many geometric set systems enjoy better approximation ratios via epsilon-
nets, or ǫ-nets. A set system is said to be geometric whenever its elements can
be encoded as points in Euclidean space, and sets are derived from containment
of the points in geometric shapes, such as half-spaces, balls or rectangles2. The
seminal work of Brönnimann and Goodrich [3], and Even et al. [8], connects the
approximability of a hitting set instance to the size of weighted ǫ-nets. Given
non-negative weights on the points, µ : X → R≥0, a weighted ǫ-net with respect
to weights µ is a subset H ⊆ X that hits all ǫ-heavy sets:

∀R ∈ R with µ(R) ≥ ǫ · µ(X) : R ∩H 6= ∅, (2)

where the weight of any subset S ⊆ X is defined as µ(S) =
∑

x∈S µ(x). Even
et al. [8] reduce the problem of finding a small hitting set to finding a small
ǫ-net via a reformulation of the linear programming relaxation of the hitting set
problem (1). The reformulated LP (3) is a program for finding the largest ǫ, and
corresponding weights µ, subject to the constraint that an ǫ-net with respect to

1 For example when A has bounded row or column sums [2,6].
2 Some definition allow for uncountably many geometric shapes in R, e.g. all squares.
However, because the number of points X is finite, there are nevertheless a finite
number of unique sets induced by these shapes.

3

weights µ is a hitting set.

max
ǫ,µ

ǫ

s.t.
∑

j:xj∈X

aijµj ≥ ǫ, ∀i : Ri ∈ R;

∑

j:xj∈X

µj = 1; (3)

µj ≥ 0, ∀j : xj ∈ X.

The first constraint requires that each set R is ǫ-heavy; the second constraint
normalizes the weights. Let (ǫ∗, µ∗) denote an optimal solution to LP (3), with
µ∗ = (µ∗

1, . . . , µ
∗
n). Let z∗ be the optimal value to the LP relaxation of the

original program (1). The first constraint ensures that an ǫ∗-net with respect to
weights µ∗ is a hitting set. Moreover, the reciprocal optimal value 1/ǫ∗ is equal
to the optimal LP value z∗ [8]. In particular, an ǫ∗-net of size g(1/ǫ∗) for some
function g(·) is a hitting set of size of g(z∗). Hence, to find a small hitting set it
suffices to solve LP (3) and find a small ǫ∗-net with respect to weights µ∗.

Haussler and Welzl [12] show that set systems with bounded VC-dimension
admit small ǫ-nets, and develop a simple algorithm to find them. The VC-
dimension is a measure of the set system’s complexity. Given a subset S ⊆ X ,
the projection of R to S is the set system formed by elements S and sets
R|S = {R ∩ S : R ∈ R}. The VC-dimension of R is the size of the largest
subset S ⊆ X such that R|S shatters S, i.e. the largest set S such that R|S
contains all subsets of S. In particular, Clarkson [7], and Haussler and Welzl
[12], show that any set system with VC-dimension d has a weighted ǫ-net of size
O
(
d
ǫ log

1
ǫ

)
. This is remarkable, as the size is independent of both the size of

X and R. Moreover, the algorithm for finding such an ǫ-net is simple: Select a
subset H ⊆ X by sampling each element x in X independently.

Theorem 1 (ǫ-net Theorem [12,14]). Let (X,R) be a set system with VC-
dimension d, and let µ : X → R≥0 be element weights with µ(X) = 1. Then for
any ǫ, γ ∈ (0, 1):

H ← pick each x ∈ X with probability min

{

1,
2µ(x)

ǫ
·max

{

log 1
γ , d log

1
ǫ

}}

is a weighted ǫ-net with respect to weights µ with probability at least 1− γ.

Throughout, we define µ(S) =
∑

x∈S µ(x) for all subsets S ⊆ X . For general
set systems of VC-dimension d, this bound is tight in expectation [14]. However,
there are alternative ways to parameterize the complexity of set systems.

1.1 Shallow Cell Complexity

The shallow cell complexity (SCC) is a finer parameterization of the complexity
of set systems. [1,4,21]. Readers are referred to Mustafa and Varadarajan [20]

4

for more background. A cell in a binary matrix A is a collection of identical
rows. A cell has depth k if the number of 1’s in any of its rows is exactly k, i.e.,
if each set in the cell contains k elements. For a non-decreasing function ϕ (·, ·)
we say binary matrix A has shallow cell complexity (SCC) ϕ (·, ·) if, for all
1 ≤ k ≤ l ≤ m, the number of cells of depth at most k in any submatrix A∗ of A
of at most l columns, is at most ϕ (l, k). A set system (X,R) is said to have SCC
ϕ (l, k) if its set-element incidence matrix A does. Often ϕ (l, k) = O (ϕ (l) kc)
for some constant c > 0 and single-variable function ϕ (·), in which case the
dependence on k is can be dropped and the SCC denoted by ϕ (l). Examples of
geometric set systems with small shallow cell complexity are discs in the plane
with ϕ (l, k) = O (k), and axis-parallel rectangles with ϕ (l, k) = O

(
lk2
)
[18].

As is true for VC-dimension, there are algorithms that find hitting sets or
ǫ-nets with sizes bounded in terms of the shallow cell complexity. A prominent
example is the quasi-uniform sampling algorithm of Chan et al. [4]. Given non-
negative weights µ : X → R≥0, and a value ǫ > 0, the algorithm finds a hitting
set while maintaining an upper bound on the probability of selecting any given
element.

Theorem 2 (Quasi-uniform sampling [4]). Suppose a set system defined by
A has SCC ϕ (l, k) = ϕ (l)kc for some c > 0. Then there is a randomized poly-
time algorithm that returns a hitting set of expected size O (max{1, log(ϕ (m))})
times the LP optimum.

The algorithm attains the optimal approximation ratio with respect to the SCC3.
However, the sampling procedure is involved, and may require enumeration over
all sets R, of which there can be n = Ω(mc) for some constant c > 0 [17].

Taking a different approach, Mustafa and colleagues [16,17,19] develop a
net-finder for asymptotically optimal-sized unweighted ǫ-nets with respect to
the SCC. The algorithm is remarkably simple: Take an initial sample from X ,
and while there are unhit sets, choose an unhit set arbitrarily, and add O (1)
randomly chosen elements from this set to the original sample. The algorithm as-
sumes access to an oracle that returns an unhit set. This oracle is called at most
O (1/ǫ) times in expectation. While the size of the returned ǫ-net is asymptoti-
cally on par with the quasi-uniform sampling algorithm, there are large constants
in the upper bound [17].

This algorithm is not directly applicable to the hitting set problem via the
LP-reduction above, although it can be used via a standard reduction. The anal-
ysis of the algorithm applies to only uniform weights, and the optimal weights µ∗

of the LP-formulation (3) are not generally uniform. Nevertheless, it is possible
to reduce the problem of finding a weighted ǫ-net to that of finding a uniform ǫ′-
net following a standard reduction, in which an expanded instance is generated
by copying each element xj ∈ X a number of times roughly proportional to its
weight µ∗(xj) [3,4]. This can generate Ω(m) copies of each element, which can

3 In addition, it is worth noting that this algorithm can solve the more general weighted
hitting set problem, in which each element has a given weight, and the goal is to
find the minimum weight hitting set.

5

have notable consequences. First, to achieve a weighted ǫ∗-net in the original in-
stance, one must use a smaller value ǫ′ for the expanded instance, on the order of
O (ǫ∗/m). This results in an approximation ratio of O (logϕ (O (m))). Secondly,
generating copies can increase the number of elements from m to Ω(m2). This
can increase the runtime considerably. In particular, repeatedly sampling from
sets of size Θ(m2) can become prohibitive on large instances such as the wireless
coverage problem motivating our work.

1.2 Our Contributions

This paper generalizes the elegant net-finder algorithm of Mustafa [17] to the
setting of weighted ǫ-nets, in order to produce a fast and simple algorithm for
the hitting set problem, which attains asymptotically optimal approximation ra-
tios with respect to the shallow cell complexity. The algorithm enjoys a faster
runtime that makes solving larger instances, such as LoRaWAN receiver place-
ment at scale, feasible. This is achieved by combining the weighted ǫ-net finder
with the reduction of Even et al. [8]. In doing so, we also improve on the asymp-
totic approximation ratio from max{1, logϕ (m)} to max{1,O (logϕ (O (z∗)))}
where z∗ is the optimal value to the linear relaxation of the hitting set program
(1). While in the worst case z∗ = m, it is often the case that z∗ ≪ m. How-
ever, the multiplicative constants in our analysis are relatively large, matching
those of Mustafa [17]. In addition to the algorithm, our analysis generalizes the
classic Packing Lemma of Haussler [11], as well as the Shallow Packing Lemma
of Mustafa et al.. [19], to the weighted setting, which may be of independent
interest.

Key to our approach are adaptations of Mustafa’s [19] Shallow Packing
Lemma and Haussler’s [11] classic Packing Lemma that accommodate non-
uniform weights. Our main technical contribution is to allow a notion of weighted
packings. Consider any non-negative weights µ : X → R≥0 with

∑

x∈X µ(X) = 1,
and extend it to element subsets via µ(S) =

∑

x∈S µ(S).4 A (k, δ)-packing with
respect to weights µ is a collection of sets P ⊆ R in which (i) all sets R in P are
at most k-heavy, i.e., have bounded weight µ(R) ≤ k; and (ii) all pairs of sets
have symmetric differences of weight at least δ. (See Definition 1). Our weighted
shallow packing lemma upper bounds the number of sets in P as a function of
the SCC. Our approach accommodates weights µ by sampling elements from a
distribution with probability mass proportional to the weights, rather than from
a uniform distribution as in the original proofs. Moreover, our proof uses sam-
pling with replacement rather than without replacement to simplify the analysis.
While more generally applicable, our result yields the same bound on the size
of P as in the unweighted setting. An analogous sampling approach is used in
proving Theorem 1 [14]. Equipped with our generalized lemma, it is straightfor-
ward to adapt Mustafa’s [17] analysis to a weighted net-finder. A proof of our
Weighted Packing Lemma is included in the extended online version.

4 Any non-negative weights w : X → R≥0 with w(X) > 0 can be normalized as
µ(x) = w(x)/w(X).

6

2 Algorithm and Main Result

Our algorithm combines the LP-relaxation of Even et al. [8] with the generalized
sampling approach of Mustafa [17]. Our procedure is summarized in Algorithm
1. The algorithm makes use of two global constants, β and γ. These are assumed
to be positive, and to satisfy γ ≤ 1/4 and β + γ ≤ 1.

Algorithm 1: A simple hitting set algorithm with details

Data: A matrix A with VC-dim(A) ≤ d and SCC ϕ (·, ·), constants γ, β > 0
ǫ∗, (µ∗

1, . . . , µ
∗
n)← solve LP {max ǫ : Aµ ≥ ǫ, µT1 = 1, µ ≥ 0};

H ← ∅;
for xj ∈ X do

H ← H ∪ {xj} with probability

min

{

1,
2µ∗

j
(

3
4
− β

2

)

ǫ∗
·max

{

log

(

d2ϕ
(

8d
βǫ∗

, 48d
β

)2
)

, d log

(

1
(

3
4
− β

2

)

ǫ∗

)}}

end

while there is a set R ∈ R not hit by H do
Independently add each xj ∈ R to H with probability

min
{

1,
2µ∗

j

γµ∗(R)
max{log 2, d log 1

γ
}
}

end

return H

In the while loop, the weights µ∗(R) =
∑

j:xj∈R µ∗
j denote the weight of set

R under the LP optimal weights µ∗ = (µ∗
1, . . . , µ

∗
n).

Conceptually, the algorithm is simple; it randomly selects an initial set of
elements H from X , and proceeds to add additional random subsets of elements
to H until this is a hitting set. The algorithm relies on an oracle that returns
an arbitrary unhit set. This oracle is treated as a black box. Our main result is
twofold: we bound the expected size of the solution hitting set H as a function
of the cell complexity, and bound the expected number of oracle calls.

Theorem 3. Let A be a binary matrix encoding a hitting set instance with shal-
low cell complexity ϕ (·, ·) and VC-dim(R) ≤ d. Let z∗ be LP optimal value. Then
the algorithm returns a hitting set of expected size

O (z∗ ·max {1, logϕ (O (z∗) ,O (d))}) .

Furthermore it makes O (z∗) oracle calls in expectation.

Note that the algorithm always returns a hitting set; the randomness is in the
size of the solution and the runtime. This is in contrast with the net-finder in
Theorem 1. Both algorithms require knowing the VC dimension d; ours must
additionally know the shallow cell complexity ϕ (·, ·). If unknown, these can be
searched for using a standard doubling trick [17].

7

3 The Weighted Shallow Packing Lemma

The Weighted Shallow Packing Lemma is key to proving Theorem 3. This section
formally defines weighted shallow packings, states the lemma, and proves it. To
this end, fix non-negative weights µ over X , and define the weight of a subset
of elements S ⊆ X as µ(S) =

∑

j∈S µj . Assume that µ(X) = 1. To contrast, let
card(S) denote the cardinality of any set S. Note that the weights µ induce a
probability distribution over the elements X . Throughout, whenever an element
u ofX is randomly sampled, it is assumed to follow a distribution proportional to
µ(·), in which case we say u is sampled from µ(·), and denote this by u ∼ µ(·).
Note that an element u ∼ µ(·) sampled this way lies in subset S ⊆ X with
probability µ(S).

The main purpose of the weighted shallow packing lemma is to bound the
number of sets in a set system in terms of its shallow cell complexity. Clearly, an
arbitrary set systems can contain large numbers of sets. Instead, we focus on a
particular kind of set system called a weighted packing. A set system is a packing
if all its sets are “light”, and each pair of sets are sufficiently different from each
other. Critically, we define “light” and “different” in reference to the weights.

Definition 1. Let (X,P) be a set system with weights µ, and let k, δ ∈ (0, 1) be
constants. If all sets S in P satisfy µ(S) ≤ k, and all pairs of distinct sets S,R
in P have symmetric difference of weight at least δ, i.e.

µ (∆(S,R)) = µ ((S\R) ∪ (R\S)) ≥ δ, (4)

then we say (X,P) is a weighted (k, δ)-packing with respect to µ.

We omit the “with respect to µ”-statement whenever this is clear from context.
The shallow packing lemma bounds the number of sets in a packing as a func-

tion of the constants (k, δ), the VC-dimension, and the shallow cell complexity.

Lemma 1 (Weighted shallow packing lemma). Let (X,P) be a set system
on m elements, equipped with weights µ, and let (X,P) be a (k, δ)-packing with
respect to µ for constants k, δ > 0. Assume the set system has VC-dim(P) ≤ d,
and shallow cell complexity ϕ (·, ·). Then

card(P) ≤
24d

δ
· ϕ

(
8d

δ
,
48dk

δ

)

.

The proof to this lemma makes use of our weighted Packing Lemma. The un-
weighted Packing Lemma is a classic result by Haussler [11] that bounds the
number of sets in a packing. We generalize this to nonuniform weights.

Lemma 2 (Weighted packing lemma). Let (X,P) be a set system with
n sets and m elements, equipped with weights µ. Let VC-dim(P) ≤ d for some
integer d ≥ 1 and assume there is a constant δ ∈ (0, 1) such that µ(∆(Si, Sk)) ≥ δ
for all 1 ≤ i < k ≤ n. Then

card(P) ≤ 2E [card(P|Y)] ,

8

where Y is the set of unique elements in a random sample U = (u1, u2, . . . , us)
of size s = ⌈ 8dδ ⌉ − 1, in which each element uk is sampled iid uk ∼ µ(·) with
replacement.

The proof of the latter lemma is in the appendix to the extended online version
of the paper; Lemma 1 is proved next.

3.1 Proof of the Weighted Shallow Packing Lemma

Proof. Fix a (k, δ)-packing P and let U = (u1, u2, . . . , us) be a random sample of
length s, in which each element is sampled uk ∼ µ(·), k = 1, . . . , s, independently
and with replacement. The number of elements sampled is s = ⌈ 8dδ ⌉ − 1. Let
Y ⊆ X be the set of unique elements in U . For every set R ∈ P , let M(R,U) :=
∑s

i=k 1[uk ∈ R] denote number of (copies of) elements in U that are in R. Define
PL ⊆ P as the sub-collection of “large” sets in packing P that contain at least
6
(
8dk
δ

)
(copies of) elements in the random sample U :

PL =

{

R ∈ P : M(R,U) ≥ 6 ·
8dk

δ

}

.

It follows that the probability of a given range R in P being a member of PL is

P[R ∈ PL] = P

[

M(R,U) ≥ 6 ·
8dk

δ

]

.

Our goal is to show that the collection of large sets PL has few members in
expectation. To do so, it suffices to bound the probability that a fixed set R is
a member of PL. This is achieved using Markov’s inequality. Recalling that all
sets R ∈ P have bounded weight µ(R) ≤ k gives

E[M(R,U)] =
s∑

k=1

P[uk ∈ R] =
s∑

k=1

µ(R) ≤ s · k ≤
8dk

δ
,

where we used the fact that we sample from µ(·), which implies that P[uk ∈
R] = µ(R). Now, Markov’s inequality bounds the probability of R being in PL:

P[R ∈ PL] = P

[

M(R,U) ≥ 6 ·
8dk

δ

]

≤ P

[

M(R,U) ≥ 6 · E[M(R,U)]
]

≤ 1/6.

Finally, because PL ⊆ P , we conclude that

E[card(P|Y)] ≤ E[card(PL)] + E[card((P\PL)|Y)]

≤
∑

R∈P

P[R ∈ PL] + card(Y) · ϕ

(

card(Y) , 6 ·
8dk

δ

)

≤ 1
6 card(P) +

8d
δ · ϕ

(
8d
δ , 48dk

δ

)
,

9

where the second-to-last inequality uses the shallow cell complexity of P ; the
system (Y, (P\PL)|Y) has at most card(Y) ≤ s elements, and sets have depth at
most

(
6 · 8dkδ

)
, as the system consists only of cells that are not “large”. The final

inequality holds because P[R ∈ PL] ≤ 1/6. Finally, applying Lemma 2 completes
the proof. �

4 Proof of the Main Theorem

Equipped with the Weighted Shallow Packing Lemma, we follow a similar strat-
egy as Mustafa [17]. We state and prove three key lemmas, and finally prove
Theorem 3.

4.1 Key lemmas

The proof of our main theorem relies on all sets having similar weight. Let ǫ
and µ = (µ1, . . . , µn) be a feasible solution to the LP relaxation (3). By the
constraints of the LP, each set R ∈ R has weight µ(R) =

∑

j:xj∈R µj ≥ ǫ.

Partition the collection of setsR into groups ℓ = 0, 1, . . . , ⌈log ǫ⌉ of sets of similar
weight; set R belongs to group ℓ if and only if 2−ℓ−1ǫ ≤ µ(R) < 2−ℓǫ. Because
the algorithm exclusively takes independent samples, we can view one run of
the algorithm as multiple parallel, independent runs on each group of sets. All
our bounds scale on the order O

(
1/(2−ℓǫ)

)
, so summing over the groups gives

a final bound on the order of O (1/ǫ). Hence, we assume henceforth that all sets
R ∈ R have weight ǫ ≤ µ (R) ≤ 2ǫ.

The key idea of the proof is to amortize the elements added from each pro-
cessed unhit set throughout the run of the algorithm. We say a set is processed
each time it is flagged as unhit by the oracle, and a sample is taken from it. We
bound the total number of elements sampled using weighted (k, δ)-packings on
two levels. The first-level packing is an arbitrarymaximal packing P of sets in R.
There are a bounded number of sets in P . Next, each processed set Ri is assigned
to a set in the first-level packing P . For a fixed set P j in the first-level packing,
given that it has been assigned processed sets, we show that the collection of sets
Ri assigned to P j forms a second-level packing. Each second-level packing also
has a bounded number of sets. Finally, by bounding the probability that a set in
the first-level packing has any sets assigned to it, the total expected number of
times the algorithm processes a set is bounded. Note that the assignments are
only a tool for analysis; they need not be computed by the algorithm.

We begin by defining the first-level packing. Fix a maximal (2ǫ, βǫ)-packing
P = {P 1, . . . , P p}, where p denotes the number of sets in the packing. The
Shallow Packing Lemma 1 upper bounds the number of sets in the packing by

p ≤
24d

βǫ
· ϕ

(
8d

βǫ
,
96d

β

)

. (5)

Now, suppose the algorithm runs for T steps, processing sets (R1, . . . , RT) in
sequence. One given set may be processed multiple times. Denote the sets of

10

sampled elements HR1
, . . . , HRT

. The processed sets Ri are assigned to sets P j

in the first-level packing P as follows. Arbitrarily assign each set Ri to any index
j ∈ {1, 2, . . . , p} satisfying µ

(
∆(Ri, P

j)
)
< βǫ. Such an index j exists because P

is a maximal (2ǫ, βǫ)-packing. It may be the case that Ri = P j . The next task is
to bound the number of sets Ri assigned to any set P j in the first-level packing.

Let nj denote the number of processed sets in (R1, . . . , RT) assigned to P j ∈
P . For now, condition on first-level packing set P j having at least one set assigned
to it, i.e. nj ≥ 1. We study the probability of this event later. Relabel the sets
and consider them in the order in which they were processed by the algorithm,

Sj = (Rj
1, . . . , R

j
nj
).

Claim. For all j ∈ {1, 2, . . . , p}, i ∈ {1, 2, . . . , nj} we have

µ
(

P j ∩Rj
i

)

>
µ
(
P j
)
+ µ

(

Rj
i

)

− βǫ

2
. (6)

Proof. Fix j ∈ {1, 2, . . . , p}. For all i ∈ {1, 2, . . . , nj} we have

µ
(
P j
)
+ µ

(

Rj
i

)

= µ
(

P j\Rj
i

)

+ µ
(

Rj
i\P

j
)

+ 2µ
(

P j ∩Rj
i

)

= µ
(

∆(P j , Rj
i)
)

+ 2µ
(

P j ∩Rj
i

)

< βǫ + 2µ
(

P j ∩Rj
i

)

.

The first equality follows from straightforward accounting, and the second from
the definition of symmetric difference. The inequality follows from the manner in
which set Rj

i is matched to the packing set P j . Finally, a simple rearrangement
of terms yields the result. �

This proves that the intersection of each set Rj
i with its corresponding first-level

packing set P j is heavy. This lets us define a second-level packing using the
intersections Rj

i ∩ P j .
Rather than directly bounding the the number of processed sets assigned to

a first-level packing set, it is easier to first bound the length of a random sub-
sequence of the assigned sets Sj . For any j ∈ {1, . . . , p}, define the subsequence
S ′j as the subsequence of processed sets R in Sj whose corresponding samples
HR form γ-nets for the system (R,R|R):

S ′j =
(
R ∈ Sj : HR is a γ-net for (R,R|R)

)
.

We proceed by bounding the length of the subsequence S ′j , and by choosing γ so
as to make it likely for a set R in Sj to be in S ′j , using the ǫ-net Theorem 1. We
use this to upper bound the expected number of sets in Sj . Let len(S) denote
the length of a sequence S.

The following claim bounds the length of the subsequence above.

Claim. For any j ∈ {1, 2, . . . , p}:

len
(
S ′j
)
≤

{
24d

3/2−β−γ · ϕ
(

8d
3/2−β−γ ,

48d
3/2−β−γ

)

, if β + γ ≥ 1/2;

O (1) , otherwise.
(7)

11

Proof. Let n′
j = len

(
S ′j
)
and relabel the sets so that S ′j =

(

Rj
1, . . . , R

j
n′
j

)

. Now

consider an auxiliary sequence of sets based on intersecting the entries Rj
i in S ′j

with P j :

T ′j =
(

Sj
1 , . . . , S

j
n′
j

)

with Sj
i = Rj

i ∩ P j for each i ∈ {1, . . . , n′
i}.

This sequence of sets is used to generate a second-level packing. To do this,
consider two distinct set-indices 1 ≤ k < l ≤ n′

j . The points HRj

k
are added

before set Rj
l is considered, so HRj

k
is a γ-net for

(

Rj
k,R|Rj

k

)

, whereas the set

Rj
l – because it is subsequently considered by the algorithm – is not hit by this

net. This implies that the intersection of Rj
k and Rj

l is of bounded weight, as it
would be hit by the γ-net otherwise:

µ
(

Rj
k ∩Rj

l

)

< γ · µ
(

Rj
k

)

.

This implies that the weight of the intersection of Sj
k and Sj

l is bounded above:

µ
(

Sj
k ∩ Sj

l

)

= µ
(

Rj
k ∩Rj

l ∩ P j
)

≤ µ
(

Rj
k ∩Rj

l

)

< γ · µ
(

Rj
k

)

. (8)

The fact that sets in T ′j have pairwise intersections of small weight implies
that their symmetric differences are heavy:

µ
(

∆(Sj
k, S

j
l)
)

= µ
(

Sj
k

)

+ µ
(

Sj
l

)

− 2µ
(

Sj
k ∩ Sj

l

)

= µ
(

Rj
k ∩ P j

)

+ µ
(

Rj
l ∩ P j

)

− 2 · µ
(

Sj
k ∩ Sj

l

)

>
µ
(
P j
)
+ µ

(

Rj
k

)

− βǫ

2
+

µ
(
P j
)
+ µ

(

Rj
l

)

− βǫ

2
− 2 · µ

(

Sj
k ∩ Sj

l

)

>
µ
(
P j
)
+ µ

(

Rj
k

)

− βǫ

2
+

µ
(
P j
)
+ µ

(

Rj
l

)

− βǫ

2
− 2γ · µ

(

Rj
k

)

= µ
(
P j
)
− βǫ +

1

2
µ
(

Rj
l

)

+ (1/2− 2γ)µ
(

Rj
k

)

≥ (3/2− β − γ) · µ
(
P j
)
,

where the first inequality uses Eq. (6), the second Eq. (8), and the last exploits
the fact that sets Rj

k, R
j
l , and P j are each of measure at least ǫ and at most

2ǫ, and that γ ≤ 1/4. Thus, depending on the constants, the sequence T ′j may
form a weighted packing.

Finally, reviewing two cases for the constants β and γ makes the above more
precise. First, if β + γ < 1/2, the inequality above implies that the symmetric
difference of Sj

k and Sj
l is strictly larger than µ

(
P j
)
. This cannot be the case as

both sets are subsets of P j . Thus, the only sequence S ′j for which β + γ can be
less than a half is if there are no two unique indices, implying that len

(
S ′j
)
≤ 1.

12

Secondly, if β + γ ≥ 1/2, the sets in T ′j form a
(
µ
(
P j
)
, (3/2− β − γ)µ

(
P j
))
-

packing over P j; all sets have measure at most µ
(
P j
)
, and every symmetric

difference is at least (3/2−β− γ)µ
(
P j
)
. This is our second-level packing. Now,

the Shallow Packing Lemma 1 implies:

len
(
S ′j
)
= len

(
T ′j
)
≤

24d

3/2− β − γ
· ϕ

(
8d

3/2− β − γ
,

48d

3/2− β − γ

)

,

where we have used the fact that ϕ (·, ·) is non-decreasing and that µ(P j) ≤ 1.
�

We can now bound the length of the full sequence of sets assigned to the
packing set P j . Taking expectations sidesteps any dependencies in the sequences.
For instance, a set R can only be in Sj if previous samples failed to hit it.
However, for each fixed set R ∈ R, the probability of the sampled points HS

forming a γ-net for (R,R|R) is independent of previous sampling. Indeed, by
Theorem 1, the probability that HR is a γ-net is at least 1− γ ≥ 1/2.

Lemma 3 (Mustafa, Lemma 5 [17]).

E
[
len
(
Sj
) ∣
∣nj ≥ 1

]
≤

48

3/2− β − γ
· ϕ

(
8d

3/2− β − γ
,

48d

3/2− β − γ

)

Proof. We use a simple application of linearity of expectation, and Theorem 1:

E[len
(
S ′j
) ∣
∣nj ≥ 1] =

∑

R∈Sj

P[HR is a γ-net for (R,R|R)] ≥
1
2 · len

(
Sj
)
,

where we drop the conditioning on nj ≥ 1 because the event that a particular
sample HR is a γ-net is independent of the number of previous samples. On the
other hand, Eq. (7) upper bounds the size of len

(
S ′j
)
. Piecing these together

yields the inequality:

1
2 len

(
Sj
)
≤ E

[
len
(
S ′j
) ∣
∣nj ≥ 1

]
≤ len

(
S′j
)
≤

24d

3/2− β − γ
ϕ

(
8d

3/2− β − γ
,

48d

3/2− β − γ

)

.

�

Thus far we have conditioned on a set in the first-level packing being assigned
at least one processed set. We now bound the probability of this being the case.
Later, this probability is used to compute the expected number of processed sets
assigned to a first-level packing set.

Lemma 4. Let H0 be the initial sample taken by the algorithm. Then for any
j ∈ {1, . . . , p}:

P[nj ≥ 1] = O

1

d2ϕ
(

8d
βǫ ,

48d
β

)2

 .

13

Proof. Fix an index j ∈ {1, . . . , p}. Suppose that nj ≥ 1. By Eq. (6), for any
i ∈ {1, . . . , nj}:

µ
(

P j ∩Rj
i

)

>
µ
(
P j
)
+ µ

(

Rj
i

)

− βǫ

2

≥
µ
(
P j
)
+ µ

(
P j
)
/2− βµ

(
P j
)

2
=

(
3

4
−

β

2

)

· µ
(
P j
)

The second inequality above follows from the assumption that all sets have
weights within a factor 2 of each other. The above implies that, if H0 is a
(

3
4 −

β
2

)

-net for
(
P j ,R|P j

)
, then any R ∈ Sj would be hit by H0. In other

words, nj ≥ 1 only if H0 is not a
(

3
4 −

β
2

)

-net for
(
P j ,R|P j

)
:

P[nj ≥ 1] ≤ P

[

H0 is not a

(
3

4
−

β

2

)

-net for
(
P j ,R|P j

)
]

.

Beacuse
µj

ǫ ≥
µj

µ(R) , the initial sample includes each element with sufficient

probability to apply Theorem 1 to the RHS above, completing the proof. �

4.2 Proof of Theorem 3

Proof of Theorem 3. At this stage, the analysis closely follows Mustafa’s [17].
Clearly, the algorithm proceeds until H is an ǫ∗-net with respect to measure µ∗,
i.e., a hitting set. It suffices to bound the expected size of the hitting set H , as
well as the expected number of oracle calls. These quantities are related, since
the number of points added depends on the number of times a set is processed.

First, consider the expected size of the hitting set. There are two contribu-
tions to the set: the initial sample H0, and the samples from the processed sets
HR1

, . . . , HRT
. We bound the expected size of the initial sample first.

Claim. The expected size of the initial sample, E[card(H0)] is bounded by

O

1

(
3
2 −

β
2

)

ǫ
max

log

(

dϕ

(
8d

βǫ
,
48d

β

))

,
d

(
3
2 −

β
2

) log
1

(
3
2 −

β
2

)

ǫ

 . (9)

This follows by summing the probability of sampling x for each x ∈ X . An
analogous result is used for the number of points added during the processing
of a set R ∈ R, provided it is processed:

Claim. For any fixed set R ∈ R, conditional on being processed, the expected
number of points added each time it is processed is

E [card(HR)] ≤ 2

(
log 2

γ
+

d

γ
log

1

γ

)

= O (1) . (10)

14

This bound applies irrespective of whether or not a set was processed previously.

The number of points added during processing, and the number of oracle
calls, can be bounded together. Recalling that R1, . . . , RT are the processed
sets, and using the claim above, the number of added elements is at most

E

[
T∑

i=1

card(HRi
)

]

≤ E

[
T∑

i=1

2

(
log 2

γ
+

d

γ
log

1

γ

)]

= E[T]·2

(
log 2

γ
+

d

γ
log

1

γ

)

.

(11)
Thus, it suffices to bound the expected number of oracle calls E[T]. This is where
we employ both the first-, and second-level packings. In particular

E[T] = E

p
∑

j=1

len
(
Sj
)

 =

p
∑

j=1
︸︷︷︸

(i)

· E[len
(
Sj
) ∣
∣nj ≥ 1]

︸ ︷︷ ︸

(ii)

· P[nj ≥ 1]
︸ ︷︷ ︸

(iii)

. (12)

The terms (i), (ii) and (iii) are bounded using Eq. (5), Lemma 3, and Lemma 4,
respectively. In addition, using 3

2 − β − γ ≥ 1
2 ≥ max{βǫ, β/2}:

(i) p ≤ 24d
βǫ ϕ

(
8d
βǫ ,

24d
β

)

(ii) E
[
len
(
Sj
) ∣
∣nj ≥ 1

]
≤ 48d

3/2−β−γϕ
(

8d
3/2−β−γ ,

24d
3/2−β−γ

)

≤ 48d
3/2−β−γϕ

(
8d
βǫ ,

24d
β

)

;

(iii) P[nj ≥ 1] ≤

(

d2ϕ
(

8d
βǫ ,

24d
β

)2
)−1

.

Combining the right-hand-side terms, we obtain the bound

E[T] ≤
24 · 48

β · (3/2− β − γ)

1

ǫ
= O

(
1

ǫ

)

. (13)

This is minimized by choosing a small γ, e.g. γ = 1/100, and setting β = 3/4.
Finally, summing over the ℓ groups of sets, and adding the expected number

of initial samples to the expected number added points completes the proof.
Note that Eq. (13) also bounds the expected number of oracle calls made during
the run of the algorithm. �

References

1. Aronov, B., Ezra, E., Sharir, M.: Small-size ε-nets for axis-parallel rectangles and
boxes. In: Proceedings of the Forty-First Qnnual ACM Symposium on Theory of
Computing. pp. 639–648 (2009)

2. Bar-Yehuda, R., Even, S.: A linear-time approximation algorithm for the weighted
vertex cover problem. Journal of Algorithms 2(2), 198–203 (1981)

3. Brönnimann, H., Goodrich, M.T.: Almost Optimal Set Covers in Finite VC-
Dimension. Discrete Comput. Geom. 14, 263–279 (1995)

15

4. Chan, T.M., Grant, E., Könemann, J., Sharpe, M.: Weighted capacitated, pri-
ority, and geometric set cover via improved quasi-uniform sampling. In: Proceed-
ings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms.
p. 1576–1585. SODA ’12, Society for Industrial and Applied Mathematics, USA
(2012)

5. Chazelle, B.: A note on Haussler’s packing lemma (1992), a note on Haussler’s
packing lemma

6. Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Op-
erations Research 4(3), 233–235 (1979)

7. Clarkson, K.L.: A randomized algorithm for closest-point queries. SIAM Journal
on Computing 17(4), 830–847 (1988)

8. Even, G., Rawitz, D., Shahar, S.M.: Hitting sets when the VC-dimension is small.
Information Processing Letters 95(2), 358–362 (2005)

9. Feige, U.: A threshold of ln n for Approximating Set Cover. Journal of the ACM
(JACM) 45(4), 634–652 (1998)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 174. Freeman San
Francisco (1979)

11. Haussler, D.: Sphere packing numbers for subsets of the Boolean n-cube with
bounded Vapnik-Chervonenkis dimension. Journal of Combinatorial Theory, Series
A 69(2), 217–232 (1995)

12. Haussler, D., Welzl, E.: Epsilon-nets and simplex range queries. In: Proceedings of
the Second Annual Symposium on Computational Geometry. pp. 61–71 (1986)

13. Johnson, D.S.: Approximation algorithms for combinatorial problems. In: Proceed-
ings of the Fifth Annual ACM Symposium on Theory of Computing. pp. 38–49
(1973)

14. Komlós, J., Pach, J., Woeginger, G.J.: Almost tight bounds for epsilon-nets. Dis-
cret. Comput. Geom. 7, 163–173 (1992)

15. Matoušek, J.: Geometric discrepancy: An illustrated guide. Springer (1999)
16. Mustafa, N.H.: A simple proof of the shallow packing lemma. Discret. Comput.

Geom. 55(3), 739–743 (2016)
17. Mustafa, N.H.: Computing optimal epsilon-nets is as easy as finding an unhit set.

In: Baier, C., Chatzigiannakis, I., Flocchini, P., Leonardi, S. (eds.) 46th Inter-
national Colloquium on Automata, Languages, and Programming, ICALP 2019,
July 9-12, 2019, Patras, Greece. LIPIcs, vol. 132, pp. 87:1–87:12. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2019)

18. Mustafa, N.H.: Sampling in Combinatorial and Geometric Set Systems, vol. 265.
American Mathematical Society (2022)

19. Mustafa, N.H., Dutta, K., Ghosh, A.: A simple proof of optimal epsilon nets.
Combinatorica 38(5), 1269–1277 (2018)

20. Mustafa, N.H., Varadarajan, K.: Epsilon-approximations & epsilon-nets. In: Hand-
book of Discrete and Computational Geometry, pp. 1241–1267. Chapman and
Hall/CRC (2017)

21. Varadarajan, K.: Epsilon nets and union complexity. In: Proceedings of the
Twenty-Fifth Annual Symposium on Computational Geometry. pp. 11–16 (2009)

22. Yousuf, A.M., Rochester, E.M., Ghaderi, M.: A low-cost LoRaWAN testbed for
IoT: Implementation and measurements. In: 2018 IEEE 4th World Forum on In-
ternet of Things (WF-IoT). pp. 361–366 (2018)

16

A Proof of the Weighted Packing Lemma

This section proves the Weighted Packing Lemma 2. Our proof closely follows
the original in Haussler [11]. The reader is referred to Matoušek [15] (Sec 5.3)
for an excellent treatment of the unweighted proof. We begin by restating the
weighted lemma.

Lemma 5 (Weighted Packing Lemma). Let (X,P) be a set system with m
elements and n sets P = {S1, . . . , Sn}, equipped with weights µ : X → R≥0 with
µ(X) > 0. Let VC-dim(P) ≤ d for some integer d ≥ 1, and let δ > 0 be a
constant such that µ(∆(Si, Sj)) ≥ δ for all 1 ≤ i < j ≤ n. Then

card(P) ≤ 2E [card(P|Y)]

where Y is the set of unique elements in an random sample U = (u1, u2, . . . , us)
of size s = ⌈ 8dδ ⌉ − 1, in which each element uk is sampled iid uk ∼ µ(·) with
replacement.

The proof strategy is the following. First, we consider a random sample U =
(u1, . . . , us) sampled from µ(·) with replacement. The sample U may contain
repeated elements; let Y ⊆ X denote the set of unique elements in U . Next, we
generate a unit-distance graph; a weighted graph that depends on the random set
Y , and derive three claims about the total weight of its edges: (i) an upper bound
on the total weight, (ii) a partial lower bound, and (iii) a complete lower bound.
Combining the bounds completes the proof. The main differences between our
approach and that of Chazelle, Haussler, and Mustafa are twofold [5,11,16].
Firstly, we permit non-uniform weights µ as opposed to weighing each set by its
cardinality, and for we sample from a probability distribution proportional to µ.
Secondly we use sampling with replacement as opposed to without replacement.
This makes the analysis more straightforward under non-uniform sampling using
µ.

A weighted unit-distance graph over the sampled set-system takes a central
stage in the proof. In this graph, sets are viewed as vertices, and edges are drawn
between any two sets at unit-distance of each other.

Definition 2 (Unit distance graph). Let (X,P) be a set system. The unit
distance graph of (X,P) is a graph G = (P , EP) with vertex set P and edges

EP = {{Si, Sj} ∈ P × P : card(∆(Si, Sj)) = 1 and i 6= j}

In other words, edges represents pairs of sets that differ on exactly one element.
The following lemma connects the number of edges with the VC-dimension.

Lemma 6 (Haussler [11]). Fix a set system (X,P) with VC-dim(P) = d.
Let G = (P , EP) be its unit distance graph. Then card(EP) ≤ d card(P).

We use this lemma to bound the total edge weight in our unit-distance graph.
But first, we define our particular unit-distance graph and its edge weights.

17

We construct a graph that depends on the random set Y ⊆ X . Consider the
projection of P to Y , denoted P|Y . Let GY = (P|Y , EP|

Y
) be a unit distance

graph over the projected system. For each vertex S′ ∈ P|Y , define the vertex
weight as the number of sets S ∈ P that are projected to S′ in P|Y , that is

w(S′) = card({S ∈ P : S ∩ Y = S′})

Moreover, define the weight of an edge {S′
i, S

′
j} ∈ EP|

Y
as the minimum over

the weights of its two vertices, w
(
{S′

i, S
′
j}
)
= min{w(S′

i), w(S
′
j)}. Finally, let the

total edge weight be W =
∑

e∈EP|Y
w(e). Note that the weights are random vari-

ables because they depend on the random selection Y . We proceed by bounding
the total edge weight. This will allow us to bound the size of the packing in a
way that “looks like a magician’s trick” [15].

First, we find an upper bound for the total edge weight. This is naturally
also an upper bound on the expected total edge weight.

Claim. The total edge weight is upper-bounded by W ≤ 2d card(P).

Proof. This is the proof of Haussler and Chazelle [11,5]. Lemma 6 implies that:

∑

S′∈P|
Y

deg(S′) = 2 card
(
EP|

Y

)
≤ 2d card(P|Y) .

Hence there exists a vertex S′ in P|Y with degree at most 2d. Each edge incident
to S′ has weight at most w(S′), so the vertex S′ is responsible for edges of total
weight at most 2dw(S′). Applying this inductively proves the bound on the total
weight.

W ≤
∑

S′∈P|
Y

(Weight due to S′) ≤ 2d
∑

S′∈P|
Y

w(S′) = 2d card(P) = 2dn

�

Next we derive a lower bound. It suffices to derive the bound for a reduced
problem. Let U ′ be the subsequence of sample U = (u1, . . . , us) containing all
but the last element us. Similarly, let Y ′ be the set of unique elements in the
subsample U ′, just as Y denotes the unique elements in the full sample U . Now,
when the final element us is added to U ′, some vertices in P|Y may form an
edge due to us. This occurs exactly when the last sampled element us falls in
the symmetric difference of two sets that were previously equal in the projection
P|Y ′ . Let Ws be the sum of the weights of the edges due to element us. In
other words, the weight Ws is the weight of the edges generated by adding a
random element us ∼ µ(·) to the random sequence U ′ = (u1, . . . , us−1). Because
the samples are iid, given a squence, the ordering of the random elements in
the sequence is uniform over all permutations, so we can apply symmetry of
expectation:

E[W] = sE[Ws].

Hence, it suffices to derive an upper bound on E[Ws].

18

Following Haussler [15], an intermediate step is to lower bound the expec-
tation of the weight Ws due to the sth element us conditional on the previous
s−1 elements U ′. The lower bound follows from considering pairs of vertices that
lack edges in EP|

Y ′
but that may share an edge after adding us. This happens

exactly when the new element us falls in their symmetric difference. This event
occurs with probability at least δ, because we assume µ(∆(S,)) ≥ δ for all pairs
S 6= R in our packing P . This argument uses the fact that we sample elements
proportional to the weight µ.

Claim. For any set Y ′ ⊆ X generated by a fixed sequence u′ = (u1, . . . , us−1),
with uk ∈ X for k = 1, . . . , s− 1, it holds that

Eµ[Ws | U
′ = u′] ≥

δ

2
(n− card(P|Y ′))

where Eµ denotes expectation over is over a single random element us ∼ µ(·).

Proof. Fix a set Y ′ ⊆ X corresponding to the unique elements in the partial
selection u′ = (u1, . . . , us−1). Consider an arbitrary set Q in the projection P|Y ′ .
There may be many sets in P that map to Q in P|Y ′ . Let PQ be the collection
of these sets, and let b denote the number of such sets. Note that for any pair
of sets Si, Sj ∈ PQ, Y

′ cannot contain any element in the symmetric difference
∆(Si, Sj), or else the two sets would not map to the same Q. However, when an
additional element us is sampled and added to Y ′ (with the possibility that us

is already in Y ′) the collection PQ is partitioned into two groups: (i) sets that
contain us, and (ii) sets that do not contain us. Let b1 and b2 denote the number
of sets in these groups, respectively, with b = b1 + b2. These two groups are at
a unit-distance in P|Y . The weight of the resulting edges in the unit-distance
graph is exactly min{b1, b2}.

By adding up the expected weights due to each pair we get E[Ws]. For every
pair S′

1, S
′
2 ∈ PQ, the probability that us hits ∆(S′

1, S
′
2) is µ(∆(S′

1, S
′
2)) ≥ δ.

Thus, the expected contribution of each pair to the product b1b2 is at least δ.
Note that the sum b1 + b2 = b depends on Y ′, however is independent of us.
Hence

E[min{b1, b2}] ≥ E

[
b1b2
b

]

=
∑

S′
1
,S′

2
∈PQ

P [Us ∈ ∆(S′
1, S

′
2,)]

b

=
card(PQ) (card(PQ)− 1) δ

2 card(PQ)
=

δ

2
(card(PQ)− 1) .

The first inequality follows from the fact that min{b1, b2} ≥ b1b2/b. The first
equality uses the fact that there RQ is partitioned into two groups, each at unit
distance, so b1b2 is the total number of edges between the two groups. Taking

19

the above inequality and summing over all vertices Q ∈ P|Y ′ gives the result

E[Ws | U
′ = u′] ≥

∑

Q∈P|
Y ′

δ

2
(card(PQ)− 1)

=
δ

2

∑

Q∈P|
Y ′

card(PQ)−
∑

Q∈P|
Y ′

1

 =
δ

2
(n− card(P|Y ′)) .

�

By using the claim above it is now straightforward to produce a lower bound
on the expected total edge weight.

Claim. E[W] ≥ 4dn− 4dE[card(P|Y ′)].

Proof. We employ the reduction from above as well as the partial lower bound.
Let Xk denote the Cartesian product of element set X . For any length sequence
u′ = (u1, . . . , us−1) of elements in Xs−1, let Y ′(u′) ⊆ X be the set of unique
elements in u′. Analogously let let Y ′(U ′) denote the random set of unique
elements in a random sequence U ′ in Xs−1. It then follows that:

E[W] = sE[Ws]

= s
∑

u′∈Xs−1

E[Ws | Y
′(U ′) = Y (u′)] · P[U ′ = u′]

≥ s
∑

u′∈Xs−1

δ

2

(

n− card
(

P|Y (u′)

))

· P[U ′ = u′]

=
sδ

2

(

n
∑

u′∈Xs−1

P[U ′ = u′] −
∑

u′∈Xs−1

card
(

P|Y (u′)

)

· P[U ′ = u′]

)

=
sδ

2

(

n− E

[

card
(

P|Y ′(U ′)

)])

,

where the first inequality uses the partial lower bound, and the last equality
follows from the definition the random set Y (U ′). �

Finally, all the pieces are in place to prove the Packing Lemma. Using the
lower and upper bounds it follows that cardinality of P is bounded above by
twice the expected size of P|Y ′ :

4dn− 4dE[card(P|Y ′)] ≤ E[W] ≤ 2dn.

This yields the statement of the weighted packing lemma, completing the proof.
�

