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Abstract. Multivariate time series classification is an important com-
putational task arising in applications where data is recorded over time
and over multiple channels. For example, a smartwatch can record the
acceleration and orientation of a person’s motion, and these signals are
recorded as multivariate time series. We can classify this data to under-
stand and predict human movement and various properties such as fitness
levels. In many applications classification alone is not enough, we often
need to classify but also understand what the model learns (e.g., why was
a prediction given, based on what information in the data). The main
focus of this paper is on analysing and evaluating explanation methods
tailored to Multivariate Time Series Classification (MTSC). We focus on
saliency-based explanation methods that can point out the most relevant
channels and time series points for the classification decision. We analyse
two popular and accurate multivariate time series classifiers, ROCKET
and dResNet, as well as two popular explanation methods, SHAP and
dCAM. We study these methods on 3 synthetic datasets and 2 real-world
datasets and provide a quantitative and qualitative analysis of the ex-
planations provided. We find that flattening the multivariate datasets by
concatenating the channels works as well as using multivariate classifiers
directly and adaptations of SHAP for MTSC work quite well. Addition-
ally, we also find that the popular synthetic datasets we used are not
suitable for time series analysis.
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1 Introduction

Real-world time series data are often multivariate, i.e., data collected over a
period of time on different channels. An example is human motion data collected
from participants wearing a tri-axial accelerometer on their dominant wrist. The
tri-variate data can be examined to identify epilepsy convulsions in everyday
life . Another example is traffic data where multiple sensors are set up at
different locations to measure the traffic occupancy in a cityfl}
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While univariate time series have been the main research focus, there is a
steadily growing interest in multivariate time series (MTS), in particular for the
classification task (MTSC). The release of the MTSC benchmark [2], a collabo-
rative effort by researchers from multiple institutions, is an important milestone
that has accelerated studies of MTSC methods.

Explainable AI is another important topic due to the explosion of interest in
complex machine learning models and deep learning methods. Pioneers in this
field have been working mostly on text and image data and, as a result, a number
of explanation frameworks including LIME [20], DeepLift [14], Shapley |15] have
been introduced. The similarity between image and time series data allows such
techniques to be adapted to time series models [26]. Nevertheless, there are
some notable differences between images and time series. Firstly, images are
usually represented using RGB encoding and all the 3 channels contain necessary
information, while for time series it is common to have channels that do not
contribute to, or even hinder, the classification decision. Secondly, in images
there is a lot of homogeneity in the pixel values while moving between pixels
belonging to the same objects and a sharp difference when moving between
pixels belonging to different objects. In time series, it is less common to find
such a strong locality, especially across all the channels. Furthermore, the data
magnitude and pre-processing, such as normalisation, are important factors for
time series, but less so for images.

In this work, we focus on methods for explaining MTSC as this is an im-
portant open problem that is often as important as the classification itself. In
a scenario in which people wear accelerometers on their body while executing
a physical exercise, other than classifying the exercise as correctly executed or
not, it is also important to provide feedback to users, e.g., an explanation of why
the exercise was incorrectly executed by pointing out the relevant data.
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Fig. 1: Sample multivariate time series and explanation heat map. The 3 plots
show the x, y, z channels for a jump sample.

In this paper, a multivariate time series explanation is a 2D saliency map [3]
highlighting the importance of each time series channel and each time point for
the classification decision, as illustrated in Figure[I} A proper MTSC explanation
should be able to point out for each channel the relevant time points that may
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be located at different parts of the time series. For example, CAM [27] was
designed for explaining univariate time series thus it can not identify important
time points which vary across channels.

In this work we aim to analyse and evaluate a few MTSC explanation meth-
ods we found in the literature. Throughout our literature research, the only
bespoke MTS explanation methods found are all tailored for deep learning meth-
ods (especially CNN), while few others are able to provide a 2D heat map by
adapting univariate time series explanation to work in a multivariate scenario
(most of the time by flattening the dataset and reshaping the 1D heat map into
a matrix).

The lack of bespoke multivariate time series explanations, combined with
the lack of explanation evaluation methods, is an important gap in the scientific
literature. The main aim of this work is to study and evaluate existing MTSC
explanation methods in order to start addressing this gap.

Our main contributions in this paper are:

— We analyse the literature on saliency-based explanation methods for MTSC
and find very few bespoke methods, all of which are designed for deep learn-
ing models. Among these, we select dCAM [3] which extends CAM, a very
popular method for time-series and image explanations.

— We conduct experiments using state-of-the-art multivariate time series classi-
fiers ROCKET [6] and dResNet [3] and explanation methods SHAP [16] and
dCAM |[3]. We study ways to adapt SHAP to work with multivariate time
series and compare it to the bespoke MTSC explanation method dCAM.

— We use 3 synthetic datasets and 2 real-world datasets to compare the classi-
fiers and the explanations. We evaluate the explanations both quantitatively,
using the methodology proposed in [18], as well as qualitatively. We find
that for truly multivariate datasets (i.e., where multiple channels are needed
for the correct classification), ROCKET-SHAP works better than dCAM,
but is also more computationally expensive. We also find that flattening the
datasets by concatenating the channels and using univariate classifiers works
as well as using multivariate classifiers directly.

In the rest of the paper, in Section [2] we discuss prior work addressing the
MTSC explanation task. In Section [3] we formally define the problem addressed,
the classifiers and the explanation methods used in the experiments. In Sec-
tion [4] we describe the datasets used in our study, in Section [5] we describe our
experiments and in Section [6] we summarise our main findings.

2 Related Work

Explanation Methods adapted from Univariate to Multivariate TSC.
Some multivariate time series explanation methods are simple adaptations of
methods developed for univariate data. In [1], the authors explain the adapted
classifiers by applying the timeXplain [17] framework on each channel indepen-
dently. The result is a multivariate explanation that highlights the important
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segments in each channel of the multivariate sample. Nonetheless, it is arguable
whether this approach is appropriate since the explained model(s) (univariate)
and the model that needs to be explained (multivariate) are not the same. Ad-
ditionally, it is not clear if the accuracy of the channel-wise univariate model is
similar or worse than that of the multivariate model, and this is not discussed
in the paper.

Bespoke Explanation Methods for MTSC. Most of the previous explana-
tion methods designed for MTSC are tailored to deep learning methods, which
are not state-of-the-art with regard to classification accuracy. In |3}, the authors
discussed the drawbacks of the CAM explanation method for MTS data. CAM
can only produce a univariate saliency map, thus it is unable to identify the
important channels. Features that depend on more than one channel are also
not detectable. dCAM, proposed in the same paper, addressed these limitations
by rearranging the input time series with all the permutations of the channels.
The paper shows that this technique can be applied to any architecture with a
Global Average Pooling layer (GAP) such as ResNet or InceptionTime. dCAM
limitations are discussed by comparing this method with other deep learning
explanation methods, as for instance it was shown that dCAM is not the best
option when dealing with multivariate datasets that can be classified focusing
on just one channel, but there is no comparison against model agnostic methods
such as SHAP [15] or LIME |20].

Evaluation of Explanation Methods for MTSC. While explanation meth-
ods for MTSC are few, works on evaluating such methods are even fewer. For
univariate time series, several approaches have been proposed to compare expla-
nation methods from different angles. The work in [5,/11] benchmarks the meth-
ods with controllable synthetic datasets. The work of [8] attempted to extract
”ground-truth” explanations with a white-box classifier. The ”ground-truth” ex-
planation is then used to evaluate post-hoc explanations. AMEE [18] is a recent
framework to quantitatively compare explanation methods on a dataset by per-
turbing input time series and measuring the impact on the classification accuracy
of several classifiers. For multivariate time series, recently [24] designed an eval-
uation framework that is also based on the idea of perturbation, but the work
is only limited to evaluating deep learning classifiers and associated explana-
tions. The paper also proposed a synthetic multivariate time series dataset to
benchmark explanation methods.

3 Background

A multivariate time series X can be represented as a d x L matrix, where the
d rows are also called channels and the L columns store the values associated
with each channel at every time point. Hence X7 is the value of the time series
at time point ¢ and channel j, with 0 < ¢ < L and 0 < j < d. We also refer
to X7 as the univariate time series at channel j, therefore X can be written as
X =[X0 X ... X1

An explanation of a time series X is a saliency map W that provides an
importance weight for each data point (at every time point ¢ and every channel
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j) in the time series. Hence the saliency map can also be represented by a d x L
matrix. A common visualisation method for the saliency map is a heat map
where more important data points are highlighted with warmer colours.

An explanation method for MTSC is a method that, given the input MTS,
can produce a saliency map highlighting the relevance of each time point to
the classifier decision. Intrinsically explainable models such as Ridge Classifier
can also be an explanation method while black-box models such as RestNet
(dResNet) and ROCKET need a post-hoc explanation method.

In our experiments we compare three different classifiers and explanation
methods: ROCKET [6] coupled with SHAP [16], dResNet coupled with dCAM [3]
and the Ridge Classifier [10] which is an intrinsically explainable model. We also
use a random explanation (a matrix of random weights) as a sanity check.

3.1 Classification Methods

The first classifier we used is ROCKET [6] which was originally designed for
UTS, but also has an adaptation for MTS: it applies a large set of random con-
volution kernels to the time series in order to transform it into tabular data
with 20,000 features. It introduced some key concepts such as dilation, propor-
tion of positive values (PPV), etc., starting an algorithm family in which recent
members such as Minirocket |7], MultiRocket [23] are improvements of the orig-
inal idea. All the hyper-parameters for ROCKET were learned from the UCR
archive. The authors selected 40 random datasets from the archive and used
them as the development set to find the best values for the hyper-parameters.
Finally, all the kernel weights are sampled from a distribution N'(0,1). After the
transformation step, the authors use classic linear classifiers Ridge or Logistic
Regression.

The second classifier is dResNet [3] which is a variation of ResNet [9]. This

last one, originally designed for image classification, was used for the first time in
TSC in [26]. It introduced the key concept of shortcut connections to mitigate the
gradient vanishing problem. The main architecture of the network is composed
of three consecutive blocks which in turn contain three different convolutional
layers. These three blocks are followed by a GAP layer and a softmax layer for
classification.
The dResNet version uses the same architecture with two differences specifically
designed to work alongside dCAM. Firstly, for a multivariate time series X with d
channels, i.e., a matrix X = [X°, X1 ... X9 the input C(X) of the network
will be a 3D tensor:

Xd—l XO “_Xd—S Xd—2
CR=1 %1 2 xint xo
X9 xt.. . xd-2 xd-1

In other words, the input is turned from a 2D matrix into a 3D one in which
each row contains the d channels in different positions. The second change was
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to turn the convolution shapes from 1D to 2D to have the same output shape as
ResNet. These changes were made so that the network is able to capture patterns
depending on multiple channels while still learning on individual channels.

The third model we used is the well-known Ridge Classifier [10], meant to
be a baseline in the experiments: we used the scikit-learn [19] package RidgeCV
using Cross Validation, leaving the other solver parameters as default. This clas-
sifier disregards the time ordering in each time series as it treats each time series
as a tabular vector of features.

3.2 Explanation Methods

The first explanation method considered in this paper is SHAP [15] which
measures feature importance using Shapley values borrowed from game theory.
SHAP quantifies the contribution of each feature by examining the differences
in the model output when a specific feature is masked, i.e., it is replaced with
a specific value and when it is not. SHAP considers every possible masking
configuration, thus is computationally expensive. The timeXplain library [17]
applies SHAP on the UTSC task by dividing the time series into segments, each
is treated as a feature. The segmentation exploits locality in time series and
significantly reduces the number of features before applying SHAP. As SHAP
is a model-agnostic method, it works with any TSC model. We couple it with
ROCKET due to its efficiency and accuracy.

The second explanation method (used along dResNet), is dCAM (3]. It com-
putes CAM [27] for each row of the input (described in Section [3.1)), resulting in
a 2D matrix M where all channels are brought back to their original positions to
evaluate their contribution. Since the network is trained to compute meaningful
predictions regardless of the order in which the channels are provided, dCAM
computes k different matrices M each of them obtained by a different random
permutation of the channel order: all these k matrices are then averaged into
M. The final step to retrieve the explanation W consists in filtering out unin-
formative time points and uninformative channels using respectively the average
value of M in each channel and the variance of all positions for a single channel.
dCAM can tell how important a time point was for the classification by taking
the differences in M when the time point is present in different positions.

The third explanation method is Ridge. As mentioned before, this method is
intrinsically explainable because the explanation weights are the weights learned
by the classifier. The model is basically a vector of coefficients for each feature,
i.e., data point in the time series.

The final explanation method Random is a baseline that generates the
saliency map W by sampling values randomly from a continuous uniform distri-
bution. The idea is that any good explanation method should provide a better
explanation than the random one.
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Fig.2: Sample time series: Fig PesudoPeriodic negative sample. Fig one
instance from CMJ Bend. Fig [2c| one instance from MP Normal.

4 Datasets

We work with 3 synthetic multivariate time series classification datasets and 2
real-world ones. In Figure 2] we present one sample from one synthetic dataset
and one sample each for the real-world datasets.

4.1 Synthetic Datasets

For the synthetic datasets, we use the multivariate time series classification
benchmark by Ismail et al. . We generated three different datasets, using
the Pseudo Periodic, Gaussian and Auto Regressive distributions. Each has 100
samples in both train and test sets, with L = 100 and d = 20. The two classes for
classification are positive and negative. The discriminative data points are sta-
tionary and within a small box, i.e., X7 is discriminative if and only if 10 < i < 20
and 0 < j < 10. In other words, 50% of the channels and 10% of the time steps
are relevant. Overall, only 5% of the time series matter for predicting the class.

4.2 Real-World Datasets

The first real-world dataset is Counter Movement Jump (CMJ) [13]. The
data were collected using accelerometer sensors attached on the participants
while performing the counter-movement jump exercise. The three classes are:
jumps with acceptable form (class 1), with their legs bending during the flight
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(class 2), and with a stumble upon landing (class 3). The training set has 419
samples while the test set has 179 samples. Each time series has 3 channels
(d = 3) that record the acceleration in z, y, and z axis. The original data is
variable-length thus we resampled every time series to the same length (L = 596).
From the domain experts, we know that the distinctions between classes are more
observable on channel y, thus it makes this channel the most important one.

The second real-world dataset is Military Press (MP) [22]. To collect the
data, 56 participants were asked to perform the Military Press strength-and-
conditioning exercise. Each of them completed 10 repetitions in the normal form
and another 30 in induced forms, with 10 repetitions each (simulating 3 types
of errors). The time series were extracted from video using the OpenPose li-
brary [4]. The dataset has 1452 samples in the training set and 601 in the test
set, each time series has 161 time points and 50 channels corresponding to the
x,y coordinates of 25 body parts. From the original dataset we have selected 8
channels representing the y coordinates of both left and right Shoulder, Elbow,
Wrist and Hip. This dataset has 4 different classes representing the kind of exer-
cise done, namely Normal (N), Asymmetrical (A), Reduced Range (R) and Arch
(Arch). We know from domain experts that the importance of channels for this
dataset is in decending order: Elbows, Wrists, Shoulders, Hips. High accuracy
can be obtained only by using the Elbows and Wrists while it is not possible to
achieve a high accuracy by only using one channel. We later show experiments
both in Section |5 and in the Appendix to document this behaviour.

5 Experiments

In our experiments we aim to understand the strengths and weaknesses of exist-
ing methods for explaining multivariate time series classification. As summarised
in Table [I} we compared one of the bespoke multivariate method found (dRes-
Net), the popular SHAP, which has the downside of being adapted to provide a
2D heatmap, and Ridge as a sanity check baseline. Some different coupling such
as ROCKET paired with dCAM or dResNet paired with SHAP are not possible
respectively because dCAM can only explain models having a GAP layer and
the timeXplain library (used for ROCKET-SHAP concatenated) is implemented
only for 1D-vector instances (univariate time series).

Classifier Explanation Method| MTS Approach
dResNet dCAM Bespoke MTSC
ROCKET SHAP Concatenated
ROCKET SHAP Channel by Channel
Ridge Classifier] Ridge Classifier Concatenated
n/a Random n/a

Table 1: Summary of the explanation methods tested in this paper.

To make the timeXplain library work with MTS, we apply the following
two strategies (Figure [3)): (1) Concatenated: Concatenating all the channels
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to a single univariate time series. As a result, the output saliency map is also
univariate and thus needs to be reshaped. (2) Channel by Channel: Train
and explain one model for each channel independently. The MTSC model in this
case is an ensemble of per-channel UTSC models.

For SHAP-channel-by-channel, we assign the number of segments to 10 while,
for SHAP-concatenated, the number of segments is set to d x 10. Since Ridge
can only work using univariate datasets, we only used the dataset concatenation
strategy for this classifier. The output of all explanation methods is a saliency
map in the form of either d x L or d x 10 matrix (reshaped if necessary).

H‘channel O‘Channel 1 ‘channel 2‘
d channel 1|flatten ltrain
L

explain

o saliency
‘channel 0‘ Flassn‘lerq ,
d ‘channel 1 ‘*»Flassifier 1‘*> d

e saliency "
‘channel Z‘HFIaSS|f|er 4*> saliency map
L | I |
1 T

|
1 r 1

!
L train explain 10 d x 10
(a) (b)

Fig. 3: Strategies to use the timeXplain library in a multivariate scenario, for
d = 3. In Fig a classifier is trained for each channel: for explaining each
classifier, d heat maps of length 10 are produced: stacking these vectors together
results in a matrix of dimension dx 10 . In Fig[3D]the time series are concatenated
and one single classifier is trained. We explain the classifier using a number of
segments d x 10 and reshape the resulting vector into a 2D matrix having the
same shape as in the previous case.

It is important to note that we have only one bespoke method for multivariate
time series, dCAM, that computes a saliency map of the same shape as the
original time series instance.

All the experiments were done using a machine with 32GB RAM, Intel i7-
12700H CPU and an Nvidia GeForce RTX 350 Ti GPU (the GPU was used only
for dResNet/dCAM). All the code used to perform the experiments is available
on a Github repository}

5.1 Classification Accuracy Analysis

Before diving into the explanations, we first take a look at the accuracy of the
classifiers used for producing the explanations. All the classifiers listed in Table[2]
were trained 5 different times (for ROCKET we also tried to either normalize the
data or not). In this Table are reported the most accurate ones i.e., the models

? https://github.com/mlgig/Evaluating-Explanation-Methods-for—-MTSC
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used in the experiments as well as the accuracy for the univariate concatenated
datasets.

Having a look at the table we can notice that all the times both ROCKET and
dResNet have high accuracy (with some exceptions for the synthetic datasets):
this is an important pre-requisite when comparing explanations methods applied
to different classifiers as we did.

We note that RidgeCV does particularly well on the synthetic datasets. On
Military Press, the multivariate models are more accurate than the univariate
ones (on concatednated data). This is expected since it is difficult to achieve a
high accuracy with a single channel for this dataset, so this is a trully multivariate
dataset. Concatenating all the channels for Military Press hurts more dResNet
which loses 9 percentage points accuracy, while ROCKET loses only 4. For CMJ,
the behaviour is reversed, with univariate models being more accurate than the
multivariate ones. dResNet has a noticeable 9 percentage points improvement
on the concatenated dataset, while ROCKET gains 1 percentage point.

Classifier /Dataset PseudoPeriodic|Gaussian| AutoRegressive| CMJ|MilitaryPress
dResNet multivariate 1.0 0.83 0.82 0.82 0.79
dResNet concatenated 1.0 0.89 0.81 0.91 0.68
ROCKET multivariate 1.0 0.93 0.87 0.87 0.87

ROCKET concatenated 1.0 0.72 0.73 0.88 0.83

ROCKET ch-by-ch 0.99 0.72 0.95 0.85 0.65

RidgeCV 1.0 1.0 1.0 0.44 0.61

Table 2: Accuracy for the models listed in Table[l{plus dResNet concatenated and
ROCKET multivariate: using this table it is possible to appreciate the differences
when using multivariate vs univariate datasets.

5.2 Synthetic Data

For the synthetic data, we performed 5-fold cross-validation to train a Logistic
Regression classifier for ROCKET, allowing up to 1000 iterations. For dRes-
Net we used 64 filters, and we trained using the Cross-Entropy Loss and Adam
optimizer with a learning rate set to 0.0001. Finally for RidgeCV we used the
standard scikit-learn parameters for cross-validation using 5 folds.

Regarding the explanation methods we used 10 segments for ROCKET concate-
nated in the channel-by-channel scenario and 200 segments in the concatenated
one; for ACAM the number of permutations to evaluate k was set to 200 (this is
the maximum recommended in [3]).

The steps done for syntethic data evaluation are illustrated in Figure [
The first step is to reshape all the explanations so that they all have the same
dimension. Specifically, the saliency maps we obtained from dCAM and Ridge
have a shape of d x L = 20 x 100 while the ones from SHAP concatenated
and channel-by-channel have a shape of d x n. segments = 20 x 10. We chose
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. Step 2: Step 3: Step 4:
Step 1: resize rescaling compare evaluating scores
dCAM | | dCAM' dCAM" against GT
(20x100) (20x10) [T (20x10) dCAM_[SHAP
\; precision
G recall
20x10 F1
SHAP | | SHAP' | || SHAP"  (20X10) PR-AUC
(20x10) (20x10) (20x10) ROC-AUC

Fig. 4: Steps performed in the synthetic data evaluation when comparing dCAM
and SHAP. In Step 1, dCAM is reshaped into (20, 10) averaging 10 consecutive
elements in each channel, while SHAP is untouched. In Step 2, the reshaped
matrices are rescaled in the range [0,100]. In Step 3, both the explanations
achieved so far are compared against the ground truth matrix G and finally in
Step 4 the scores computed in the previous step are evaluated.

to average 10 consecutive elements for dCAM and Ridge explanation as we
empirically verified that all the metrics had slight improvements. The alternative
was to repeat 10 times the same item in SHAP explanations.

After this stage, all explanations have the shape of 20 x 10.

The second step rescales the explanation weights as they can have different
magnitudes among different instances and different methods. First of all, we take
the absolute value of each explanation (to also take into consideration variables
that have a negative contribution for the classification) and then we rescale by
min-max normalization in the range [0, 100].

The third step is to instantiate a ground truth matrix G and compare each
explanation against it. For the settings described before, this is a binary matrix
having shape 20 x 10 (same dimension of explanations after Step 2), all the
elements are set to 0 except for the ones in GY with ¢ = 1,0 < j < 10 that are
set to 1. In other words, this is a binary matrix describing whether or not a
segment is important for the classification.

To be noted that synthetic dataset parameters such as the number and range of
informative time points and channels, and explanation method parameters such
as the number of segments were chosen so that the resulting segments are made
up either by only informative time points or by only uninformative time points.

The last step is simply to compute the metrics used for the evaluation i.e.,
Precision, Recall, F1-score, PR-AUC and ROC-AUC [3|. For Precision and Recall
we had to fix a threshold dividing the values considered uninformative from the
ones considered informative: we have chosen 50 as the medium value between 0
and 100. On the other hand PR-AUC and ROC-AUC do not fix any threshold
as they average multiple scores using different thresholds into one single value.
All these metrics computed for the 3 synthetic datasets are reported in Table

Looking at the table it is possible to note that all the time Ridge has perfect
metrics but for Recall (and consequently F1 score) with the Gaussian dataset.
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Dataset XATI Method Precision |Recall| F1 |PR-AUC|ROC-AUC| Time
Pseudo-Periodic| SHAP ch-by-ch 0.73 0.94 [0.82] 0.99 0.99 6.2 h
Pseudo-Periodic|SHAP concatenated| 0.92 0.66 [0.77] 0.99 0.99 3.5h
Pseudo-Periodic dCAM 0.50 0.50 |0.50| 0.63 0.98 50 m
Pseudo-Periodic Ridge 1.0 1.0 |1.0 1.0 1.0 0s

Gaussian SHAP ch-by-ch 0.88 0.63 [0.73] 0.91 0.99 6.2 h

Gaussian SHAP concatenated| 0.34 0.18 |0.24| 0.16 0.71 3.5 hr

Gaussian dCAM 0.36 0.15 (0.21] 0.35 0.94 50 m

Gaussian Ridge 0.83 1.0 |0.9 1.0 1.0 0s
Auto-Regressive| SHAP ch-by-ch 0.85 0.60 |0.71| 0.49 0.77 6.2 h
Auto-Regressive| SHAP concatenated| 0.27 0.13 |0.18| 0.29 0.57 3.5h
Auto-Regressive dCAM 0.34 0.15 |0.21| 0.06 0.57 50 m
Auto-Regressive Ridge 1.0 1.0 |1.0 1.0 1.0 0s

All Random 0.05 0.15 |0.08| 0.05 0.5 0s

Table 3: Scores and runtime of each XAI method for synthetic datasets: h stands
for hours, m stands for minutes and s stand for seconds; ch-by-ch stands for
channel by channel.

These results along with the one provided in Table (perfect accuracies of Ridge
for the 3 synthetic datasets), are very strong evidence that these commonly used
benchmarks are not ideal for time series analyses at least using the parameters
described before. We think this is the case due to the way the benchmarks are
created, by adding or subtracting a single value to consecutive time points. This
means that a simple tabular classifier such as Ridge is enough to perfectly classify
these datasets. In conclusion, we recommend against the use of these synthetic
benchmarks for analysing time series classification or explanation methods.

Comparing the other method, most of the time SHAP channel by channel is
the second best model, while comparing dCAM with SHAP concatenated there
is no clear winner as in some metrics the first one has better results while in
some others is the opposite.

The two last points to be noted are that some methods have metrics close
to random, especially for Recall, and the time required for computing the ex-
planations is high, taking into account that these are small datasets: 50 minutes
for dCAM, 3.5 hours for SHAP concatenated, and more than 6 hours for SHAP
channel by channel.

5.3 Real-world Data

In this section we used some different hyper-parameters: for dResNet the number
of filters is now set to 128 as we found better classification results, the number
of dCAM permutations k was set to 6 for dCAM (this dataset has 3 channels so
the number of possible channel permutations is just 6) while it is still 200, i.e.
the maximum recommended, for MP which has 8 channels. We set the number
of timeXplain segments using the concatenated dataset to 30 for CMJ and 80
for MP so that they are still equal to d x 10.
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Looking at the classifier accuracy in Table 2] we notice how for the two real-
world datasets, the accuracies achieved by dResNet and ROCKET are compa-
rable or even better when using the concatenated dataset versions. This means
that analysing the explanation methods for MTSC by turning the multivariate
problems into univariate ones could be useful.

The close accuracy between original multivariate and concatenated univariate
datasets can arise some questions whether these datasets are truly multivariate
(i.e., the necessary information for correct classification is spread among different
channels). This seems to be the case for Military Press, but less so for CM.J. We
plan to investigate further this point in future work.

In this work we decided to use the concatenated datasets and the methodol-
ogy developed by |18] to evaluate the explanation methods. For the case of dCAM
which produces a matrix as an explanation, we flatten the matrix to a vector
by concatenating the rows and using it as any other univariate explanation. So
dCAM is obtained in a truly multivariate setting (dResNet is a multivariate
classifier and dCAM a multivariate explanation), but reshaped to look like a
univariate explanation. The explanations obtained from SHAP and Ridge, on
the other hand, are univariate explanations obtained by first concatenating the
channels and then running univariate classifiers.

For the real-world datasets we do not have precise explanation ground truth
as for the synthetic datasets, but we do have domain knowledge about which
channels and parts of the time series are important for the classification.
Finally in this section we didn’t include SHAP channel by channel in the MP
dataset experiment as the accuracy is low (Table [2|) therefore it does not make
sense to derive an explanation.

Evaluation of Explanation Methods. We apply AMEE [18], an explanation
evaluation method for the univariate time series classification task, on the CMJ
and MP univariate datasets obtained through concatenating all channels. This
method aims to measure the faithfulness of an explanation by estimating its im-
pact on a set of independent classifiers (the referee classifiers). If an explanation
correctly points out the important areas of a univariate time series, perturbation
of such areas will lead to a drop in accuracies of the referee classifiers. The faith-
fulness of the explanation is then calculated using the Area Under the Curve
(AUCQ) of the accuracy drop curves of each of the referee classifiers. AMEE is
designed to be robust by employing various perturbation strategies (i.e. how an
important area is perturbed and replaced with a new value) and a diverse set of
high-performing referee classifiers. The main idea is that masking away impor-
tant parts of the data as pointed out by the explanation, should affect a set of
high performing classifiers leading to a drop in accuracy across the board.

For our task, we use the default perturbation strategies with three classi-
fiers included in the standard referees set: MrSEQL [13] WEASEL 2.0 [21] and
ROCKET (for more information and results about this methodology we invite
the readers to have a look to the original publication [18]). Table {4] shows the
accuracy of these referee classifiers on the evaluated datasets.
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Dataset |MrSEQL|ROCKET|WEASEL 2.0
CMJ-concat| 0.76 0.88 0.92
MP-concat | 0.82 0.84 0.80
Table 4: Accuracy of referee classifiers for the AMEE evaluation of explanation
methods for univariate time series classification.

The result of the explanation evaluation is presented in Table[5|as well as the
methodology and the evaluation running time. The methodology running time is
dependent on the number of both perturbation strategies and employed referees.
It is specific to our choice of the three mentioned referees and four perturbation
types using Mean and Gaussian sample from both time-point dependent (local)
and time-point independent (global) statistics of the test samples. Looking at
the second one (time for running the explanation methods) we notice the high
SHAP computational complexity: this was the main reason why we used only
2 real-world datasets for the experiments. We focused on human motion data
because in this case we can rely on domain expertise.

From the quantitative evaluation with AMEE, we note that for the CMJ
dataset, SHAP concat is the best method, although it is close to a random
explanation. dCAM ranks third for this dataset. We note that this dataset is
quite noisy due to quiet parts after the jump, and this could explain why SHAP
and Random are so close in ranking.

For the MP dataset, SHAP concatenated is by far the best method, significantly
better than dCAM, as well as Random and Ridge. This is an interesting finding
considering that dACAM was proposed to deal with datasets where there are
clear dependencies between channels, but for MP this method does not seem to
perform so well.

We supplement the quantitative ranking with a more detailed qualitative analysis
in the Appendix. In short we find that for CMJ, the importance rankings of
channels given by SHAP concat and dCAM are the same, while for MP, SHAP
provides a ranking more in line with domain knowledge, while dCAM places the
least informative channels at the top of the ranking.

6 Conclusion

In this paper we have investigated explanation methods for MTSC. We studied
two very popular explanation methods, dCAM and SHAP, and have provided a
quantitative and qualitative analysis of their behavior on synthetic as well as real-
world datasets. We found that adaptations of SHAP for MTSC work quite well,
and they outperform the recent bespoke MTSC explanation method dCAM. We
have also pointed out that a very popular synthetic MTSC benchmark does not
seem suitable for MTSC evaluation, since a simple Ridge classifier outperforms
all other methods both in classification accuracy and in explanation quality.
Finally, while SHAP seems to work effectively to point out important time series
channels and time points, we highlighted the time required to run SHAP and
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Dataset XAI method |Explanation Power|Rank|Evaluation Time|Explanation Time
SHAP concat 1.00 1 2h 7.15h
Random 0.99 2 2h 0Os
CMJ-concat|dCAM 0.39 3 2h 30s
SHAP ch-by-ch 0.05 4 2h 7.5h
Ridge 0.0 5 2h 0Os
SHAP concat 1.00 1 4.8h 24h
MP-concat dCAM 0.33 2 4.8h 15m
Random 0.07 3 4.8h 0Os
Ridge 0.0 4 4.8h 0Os

Table 5: Results of AMEE to rank XAI methods on CMJ and MP datasets
concatenated.

pointed out the open problem of excessive time requirements for this method.
In future work we plan to investigate the computation time for SHAP, as well
as other frameworks for evaluating bespoke explanation methods for MTSC.
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A Supplementary Material

channel |importance

channel |importance

channel |importance

LElIbow 0.60
RElbow 0.59
RWrist 0.58
LWrist 0.57
LShoulder 0.52
RShoulder 0.49
LHip 0.39
RHip 0.36

LHip 1.0
RHip 0.99
RWrist 0.74
LWrist 0.73

RElIbow 0.54
LElbow 0.53
RShoulder 0.50
LShoulder 0.50

RWrist 1.0
LWrist 0.98
LElbow 0.93
RElbow 0.86
LShoulder 0.82
RShoulder 0.80
RHip 0.77
LHip 0.76

(a) Rocket ranking

(b) dCAM ranking

(c) SHAP ranking

Table 6: Ranking of MP columns using different methods. In Table @ ordered
accuracy of single-channel classifiers in ROCKET channel-by-channel scenario:
we take this as a channel importance baseline. In Table [6b] and [6¢ respectively
dCAM and SHAP ranking achieved by averaging all time points in the single
channels among all the time series (for readability the values were rescaled such

that the most important channel has a value 1.0).

Table [6d is closer to[6a] than Table [6b] The major difference is in the RHip and
LHip ranking: while SHAP places them as the least important ones, agreeing

with Rocket, dCAM ranks them as the most important channels.

method |LElbow|RElbow|RWrist|LWrist|LShoulder|RShoulder|RHip |LHip
ROCKET| 1 2 3 4 5 6 7 8

dCAM 6 5 3 4 8 7 2 1

SHAP 3 4 1 2 5 6 7 8

Table 7: MP channels importance: same analysis as in Table @ but showing the

ranking rather than the raw values.
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Fig. 5: Different saliency maps for the same MP instance correctly classified as
Normal: SHAP focuses on LWrist, REIbow, RWrist and LElbow. dCAM has
a similar behavior in terms of channel importance but it focuses on smaller
sections: this is just partially explainable due to division in segments by SHAP
since sometimes there is no overlapping between highlighted regions in the same
channel.
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Fig. 6: Different saliency maps for the same MP instance correctly classified as
Asymmetric. dCAM focuses on Hips channels while SHAP focuses on Wrists and
Elbows in accordance to Table m
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Fig. 7: Different saliency maps for the same CMJ instance correctly classified as
Acceptable form: SHAP focuses more on the y axis according to what is shown
in Table |8 while dCAM highlights more the x axis.

DCAM

SHAP

X axis

y axis

z axis

200 -

150 4

100

50 A

o

A

200 A
150 1

100

b

—100 -

o

f -

0 200 400

600 0 200 400 600 0O 200 400 600

100

80

r 60

r40

20

Fig. 8: Different saliency maps for the same CMJ instance correctly classified as
Legs bending: both explanation methods focus on y axis, but different parts.
SHAP focuses on the small peak, around time step 200 while dCAM focuses
more on the beginning of the following higher peak.
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Method | v | z | x
ROCKET|0.85[0.81|0.79

dCAM |1.0(0.92/0.89

SHAP |1.0(0.85/0.83
Table 8: Ranking of CMJ columns using different methods. In this case all the
methods agree.
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