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Abstract. Artificial intelligence models and methods commonly lack
causal interpretability. Despite the advancements in interpretable ma-
chine learning (IML) methods, they frequently assign importance to
features which lack causal influence on the outcome variable. Selecting
causally relevant features among those identified as relevant by these
methods, or even before model training, would offer a solution. Feature
selection methods utilizing information theoretical quantities have been
successful in identifying statistically relevant features. However, the in-
formation theoretical quantities they are based on do not incorporate
causality, rendering them unsuitable for such scenarios. To address this
challenge, this article proposes information theoretical quantities that
incorporate the causal structure of the system, which can be used to
evaluate causal importance of features for some given outcome variable.
Specifically, we introduce causal versions of entropy and mutual infor-
mation, termed causal entropy and causal information gain, which are
designed to assess how much control a feature provides over the outcome
variable. These newly defined quantities capture changes in the entropy
of a variable resulting from interventions on other variables. Fundamental
results connecting these quantities to the existence of causal effects are
derived. The use of causal information gain in feature selection is demon-
strated, highlighting its superiority over standard mutual information in
revealing which features provide control over a chosen outcome variable.
Our investigation paves the way for the development of methods with
improved interpretability in domains involving causation.

Keywords: Causal Inference · Information Theory · Interpretable Ma-
chine Learning · Explainable Artificial Intelligence

1 Introduction

Causality plays an important role in enhancing not only the prediction power
of a model [19] but also its interpretability [4]. Causal explanations are more
appropriate for human understanding than purely statistical explanations [12].
Accordingly, comprehending the causal connections between the variables of a
system can enhance the interpretability of interpretable machine learning (IML)
methods themselves.
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Interpretable models such as linear regression or decision trees do not, de-
spite their name, always lend themselves to causal interpretations. To illustrate
this point, consider running multilinear regression on the predictors X1, X2 and
outcome Y within a system whose variables are causally related as depicted in
the graph of Figure 1. The regression coefficients β1 and β2 of X1 and X2 might
yield large values, which may be (and are often in practice) interpreted as sug-
gesting a causal relationship. However, a causal interpretation of β1 would not be
appropriate. Although X1 might provide predictive power over Y , this does not
imply a causal relationship, since this predictive power is due to the confounder
W . Consequently, intervening on X1 would not impact the outcome Y .

In current model-agnostic methods, a causal interpretation is often desirable
but rarely possible. In partial dependence plots (PDPs) [6], the partial depen-
dence of a model outcome Ŷ on a variable Xi coincides with the backdoor crite-
rion formula [15] when the conditioning set encompasses all the other covariates
Xj 6=i [24]. Consequently, there is a risk of disregarding statistical dependence or,
conversely, finding spurious dependence, by conditioning on causal descendants
of Xi [24]. Therefore, PDPs (along with the closely related individual condi-
tional expectation (ICE) lines [7]) generally lack a causal interpretation. Simi-
larly, when utilizing (Local Interpretable Model-Agnostic Explanations) LIME
[18] to evaluate the importance of a feature for an individual, a causal inter-
pretation cannot be guaranteed. LIME fits a local model around the point of
interest and assesses which features, when perturbed, would cause the point to
cross the decision boundary of the model. However, intervening on a feature in
such a way as to cross the model’s decision boundary does not guarantee an ac-
tual change in the outcome in reality. This is because the model was trained on
observational data, and that feature may merely be correlated with the outcome
through a confounding factor, for example, rather than having a causal effect on
the outcome.

In both cases just described, it is the presence of confounders, selection bias,
or an incorrect direction of causality seemingly implied by the model that can
lead to misleading predictions and interpretations. We need a way to select
which features are causally relevant — i.e. give us control over the chosen out-
come variable. Information theoretical quantities such as mutual information are
often used to assess the relevance of a feature with respect to a given outcome
variable [20,2,25], but this relevance is still purely statistical. This is a common
issue when using standard information theoretical quantities in situations that
require consideration of the underlying causal relationships. A version of mutual
information which takes into account the causal structure of the system would
solve this problem. This is what we set out to develop in this work.

In our research, we extend traditional conditional entropy and mutual infor-
mation to the realm of interventions, as opposed to simple conditioning. This
extension drew inspiration from the conceptual and philosophical work presented
in1[8]. We dub these constructs “causal entropy” and “causal information gain”.
They are designed to capture changes in the entropy of a given variable in re-

1The reader is referred to Section 6 for a detailed discussion about this.



Causal Entropy and Information Gain for Measuring Causal Control 3

sponse to manipulations affecting other variables. We derive fundamental results
connecting these quantities to the presence of causal effect. We end by illustrat-
ing the use of causal information gain in selecting a variable which allows us to
control an outcome variable, and contrast it with standard mutual information.

The novelty of our work consists of providing rigorous definitions for causal
entropy and causal information gain, as well as deriving some of their key prop-
erties for the first time. These contributions set the foundations for the develop-
ment of methods which correctly identify features which provide causal control
over an outcome variable.

This paper is organized as follows. In Section 2, we introduce the definitions
of quantities from the fields of causal inference and information theory that will
be used throughout the rest of the paper. Section 3 includes a simple example of
a structural causal model where standard entropy and mutual information are
inadequate for obtaining the desired causal insights. In Section 4, we define causal
entropy and explore its relation to total effect. Section 5 discusses the definition
of causal information gain and investigates its connection with causal effect.
Furthermore, it revisits the example from Section 3, showing that causal entropy
and causal information gain allow us to arrive at the correct conclusions about
causal control. In Section 6, we compare the definitions and results presented
in this paper with those of previous work. Finally, in Section 7, we discuss the
obtained results and propose future research directions.

2 Formal Setting

In this section we present the definitions from causal inference and information
theory which are necessary for the rest of this paper. All random variables are
henceforth assumed to be discrete and have finite range.

2.1 Structural Causal Models

One can model the causal structure of a system by means of a “structural
causal model”, which can be seen as a Bayesian network [10] whose graph G

has a causal interpretation and each conditional probability distribution (CPD)
P (Xi | PAXi

) of the Bayesian network stems from a deterministic function fXi

(called “structural assignment”) of the parents of Xi. In this context, it is com-
mon to separate the parent-less random variables (which are called “exogenous”
or “noise” variables) from the rest (called “endogenous” variables). Only the
endogenous variables are represented in the structural causal model graph. As is
commonly done [16], we assume that the noise variables are jointly independent
and that exactly one noise variable NXi

appears as an argument in the structural
assignment fXi

of Xi. In full rigor2[16]:

Definition 1 (Structural Causal Model). Let X be a random variable with
range RX and W a random vector with range RW. A structural assignment for

2We slightly rephrase the definition provided in [16] to enhance its clarity.
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X from W is a function fX : RW → RX . A structural causal model (SCM)
C = (X,N, S, pN) consists of:

1. A random vector X = (X1, . . . , Xn) whose variables we call endogenous.
2. A random vector N = (NX1 , . . . , NXn

) whose variables we call exogenous or
noise.

3. A set S of n structural assignments fXi
for Xi from (PAXi

, NXi
), where

PAXi
⊆ X are called parents of Xi. The causal graph GC := (X, E) of C

has as its edge set E = {(P,Xi) : Xi ∈ X, P ∈ PAXi
}. The PAXi

must be
such that the GC is a directed acyclic graph (DAG).

4. A jointly independent probability distribution pN over the noise variables.
We call it simply the noise distribution.

We denote by C(X) the set of SCMs with vector of endogenous variables X.
Furthermore, we write X := fX(X,NX) to mean that fX(X,NX) is a structural
assignment for X .

Notice that for a given SCM the noise variables have a known distribution
pN and the endogenous variables can be written as functions of the noise vari-
ables. Therefore the distributions of the endogenous variables are themselves
determined if one fixes the SCM. This brings us to the notion of the entailed
distribution2 [16]:

Definition 2 (Entailed distribution). Let C = (X,N, S, pN) be an SCM.
Its entailed distribution pC

X
is the unique joint distribution over X such that

∀Xi ∈ X, Xi = fXi
(PAXi

, NXi
). It is often simply denoted by pC. Let x−i :=

(x1, . . . , xi−1, xi+1, . . . , xn). For a given Xi ∈ X, the marginalized distribution
pCXi

given by pCXi
(xi) =

∑

x−i
pC
X
(x) is also referred to as entailed distribution

(of Xi).

An SCM allows us to model interventions on the system. The idea is that an
SCM represents how the values of the random variables are generated, and by
intervening on a variable we are effectively changing its generating process. Thus
intervening on a variable can be modeled by modifying the structural assignment
of said variable, resulting in a new SCM differing from the original only in the
structural assignment of the intervened variable, and possibly introducing a new
noise variable for it, in place of the old one. Naturally, the new SCM will have an
entailed distribution which is in general different from the distribution entailed
by the original SCM.

The most common type of interventions are the so-called “atomic interven-
tions”, where one sets a variable to a chosen value, effectively replacing the dis-
tribution of the intervened variable with a point mass distribution. In particular,
this means that the intervened variable has no parents after the intervention.
This is the only type of intervention that we will need to consider in this work.
Formally2 [16]:

Definition 3 (Atomic intervention). Let C = (X,N, S, pN) be an SCM,
Xi ∈ X and x ∈ RXi

. The atomic intervention do(Xi = x) is the function
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C(X) → C(X) given by C 7→ Cdo(Xi=x), where Cdo(Xi=x) is the SCM that differs
from C only in that the structural assignment fXi

(PAXi
, NXi

) is replaced by the
structural assignment f̃Xi

(ÑXi
) = ÑXi

, where ÑXi
is a random variable with

range RXi
and3pÑXi

(xi) = 1x(xi) for all xi ∈ RXi
. Such SCM is called the post-

atomic-intervention SCM. One says that the variable Xi was (atomically) inter-

vened on. The distribution pdo(Xi=x) := pC
do(Xi=x)

entailed by Cdo(Xi=x) is called
the post-intervention distribution (w.r.t. the atomic intervention do(Xi = x) on
C).

We can also define what we mean by “X having a total causal effect on
Y ”. Following [16,14], there is such a total causal effect if there is an atomic
intervention on X which modifies the initial distribution of Y 2 [16]:

Definition 4 (Total Causal Effect). Let X, Y be random variables of an
SCM C. X has a total causal effect on Y , denoted by X�Y , if there is x ∈ RX

such that p
do(X=x)
Y 6= pY .

In this work, all variables of the form Xi, Yi or Zi are taken to be endogenous
variables of some SCM C.

2.2 Entropy and Mutual Information

Since the quantities defined and studied in this article build upon the standard
entropy and mutual information, it is important for the reader to be familiar
with these. In this subsection we will state the definitions of entropy, conditional
entropy and mutual entropy. In the interest of space, we will not try to motivate
these definitions. For a pedagogical introduction the reader is referred to [5,11].
We will also clarify what we precisely mean by causal control.

Definition 5 (Entropy and Conditional Entropy [5]). Let X be a discrete
random variable with range RX and p be a probability distribution for X. The
entropy of X w.r.t. the distribution p is4

HX∼p(X) := −
∑

x∈RX

p(x) log p(x). (1)

Entropy is measured in bit. If the context suggests a canonical probability distri-
bution for X, one can write H(X) and refers to it simply as the entropy of X.
The conditional entropy H(Y | X) of Y conditioned on X is the expected value
w.r.t. pX of the entropy H(Y | X = x) := HY ∼pY |X=x

(Y ):

H(Y | X) := Ex∼pX
[H(Y | X = x)] . (2)

3We denote by 1x the indicator function of x, so that 1x(xi) =

{

1, xi = x

0, otherwise
.

4In this article, log denotes the logarithm to the base 2.
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This means that the conditional entropy H(Y | X) is the entropy of H(Y )
that remains on average if one conditions on X .

An essential concept closely associated with entropy is that of “uncertainty.”
This qualitative concept is often present when interpreting information-theoretical
quantities. The entropy of a variable X purports to measure the uncertainty
regarding X . In this paper, we use another qualitative concept called “causal
control” (or simply “control”). The (causal) control that variable X has over
variable Y is the level of uncertainty remaining about Y after intervening on X .
It indicates how close we are to fully specifying Y by intervening on X . This un-
derstanding of the term “control” has been implicitly utilized in the philosophy
of science literature [17,3].

Remark 1. Notice that H(Y | X = x) is seen as a function of x and the expected
value in Equation (2) is taken over the random variable x with distribution pX .
This disrespects the convention that random variables are represented by capital
letters, but preserves the convention that the specific value conditioned upon
(even if that value can be randomly realized — i.e. is a random variable) is
represented by a lower case letter. Since we cannot respect both, we will follow
the common practice and opt to use lower case letters for random variables in
these cases.

There are two common equivalent ways to define mutual information (often
called information gain).

Definition 6 (Mutual Information [5]). Let X and Y be discrete random
variables with ranges RX and RY and distributions pX and pY , respectively.
The mutual information between X and Y is the KL divergence between the
joint distribution pX,Y and the product distribution pXpY , i.e.:

I(X ;Y ) :=
∑

x,y∈RX×RY

pX,Y (x, y) log
pX,Y (x, y)

pX(x)pY (y)
. (3)

Or equivalently:

I(X ;Y ) := H(Y )−H(Y | X) (4)

= H(X)−H(X | Y ).

The view of mutual information as entropy reduction from Equation (4) will
be the starting point for our definition of causal information gain.

3 Running Example - Comparing Control Over an

Outcome

We provide a simple example showcasing how the standard entropy and mutual
information can fail to assess which variable gives us more control over a chosen
outcome variable. We will later (Section 5) check that using causal entropy and
causal information gain enable us to correctly make this assessment.
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Example 1. Let us consider an ice-cream shop where the sales volume Y on a
given day can be categorized as low (Y = 0), medium (Y = 1), or high (Y = 2).
We would like to find a way to control Y . Assume that the sales volume is
influenced by two factors: the temperature W , characterized as warm (W = 1)
or cold (W = 0), and whether the ice-cream shop is being advertised, represented
by the binary variable X2. Additionally, we introduce a discrete variable X1 to
represent the number of individuals wearing shorts, which can be categorized as
few (X1 = 0), some (X1 = 1), or many (X1 = 2). Naturally, higher temperatures
have a positive influence on the variable X1. We do not consider any other
variables.

One can crudely model this situation using an SCM with endogenous vari-
ables X1, X2,W and Y , as specified in Figure 1. The chosen structural assign-
ments and noise distributions reflect the specific scenario where: the temperature
W is warm about half of the time; the number X1 of people wearing shorts is
highly determined by the weather conditions; and the ice-cream shop is adver-
tised occasionally.W , X2 and all noise variables of the SCM are binary variables,
while X1, Y ∈ {0, 1, 2}. Assume we cannot intervene on W . We would like to
decide which of the variables X1 or X2 provide us with the most control over Y .

X1

X2

Y

W







































Y := X2 +W

X1 := W +NX1

X2 := NX2 , W := NW

NX1 ∼ Bern(1/26)

NX2 ∼ Bern(1/4)

NW ∼ Bern(1/2)

Fig. 1. An SCM6. It models the real-world scenario described in Example 1, where Y
is the sales volume of an ice-cream shop, W is the temperature, X1 is the amount of
people wearing shorts, and X2 stands for the advertisement efforts of the ice-cream
shop. The notation NZ ∼ Bern(q) signifies that the random variable Z follows the
Bernoulli probability distribution with parameter q. Grayed out variables cannot be
intervened on.

It is clear that being able to intervene on X1 gives us no control whatsoever over
Y . Any observed statistical dependence between X1 and Y comes purely from
the confounder W . Consequently, interpreting a non-zero correlation or mutual
information betweenX1 and Y as indicative of a causal connection between these
variables would be a mistake, and an instance of conflation between correlation
and causation.

5The careful reader may notice that there is no noise variable NY for Y , which
seems to conflict with Definition 1. Such apparent conflicts are resolved by seeing a
deterministic assignment function such as Y := X2 + W as having a trivial additive
dependence on a noise variable NY with a point mass distribution at 0.
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If we naively use the mutual information to assess whether one should inter-
vene on X1 or X2 for controlling Y , one wrongly concludes that one should use
X1. Intuitively, this happens because knowing X2 provides us with less informa-
tion about Y than W , and X1 is very close to W . The (approximate) values can
be consulted6 in Table 1.

Table 1. Information theoretical values for Figure 1.

H(Y ) ≈ 1.41 H(Y | X1) ≈ 0.85 H(Y | X2) = 1

I(Y ;W ) ≈ 0.60 I(Y ;X1) ≈ 0.56 I(Y ;X2) ≈ 0.41

Notice that I(Y ;W ) > I(Y ;X1), as it should be: W has more information
about Y than X1 has. We also see that I(Y ;X2) < I(Y ;X1). If mutual infor-
mation were a suitable criterion for selecting the variable to intervene on, the
contrary would be expected. In the context of our real-world scenario, interven-
ing on the number X1 of people wearing shorts would not be a logical approach
for controlling ice cream sales. Instead, allocating more resources to advertising
efforts (represented by X2) would be more appropriate.

The issue is that the mutual information I(Y ;X1) includes the information
that one has about Y by observing X1 which flows through the confounder W .
But what we want is a metric quantifying how much control we can have over Y
by intervening on X1. We will see that the generalization of mutual information
studied in this paper (“causal information gain”) satisfies these requirements.

4 Causal Entropy

The causal entropy of Y for X will be the entropy of Y that is left, on average,
after one atomically intervenes on X . In this section we give a rigorous definition
of causal entropy and study its connection to causal effect.

We define causal entropy in a manner analogous to conditional entropy (see
Definition 5). It will be the average uncertainty one has about Y if one sets
X to x with probability pX′(x), where X ′ is a new auxiliary variable with the
same range as X but independent of all other variables, including X . In contrast
with the non-causal case, here one needs to make a choice of distribution over
X ′ corresponding to the distribution over the atomic interventions that one is
intending to perform.

Definition 7 (Causal entropy, Hc). Let Y , X and X ′ be random variables
such that X and X ′ have the same range and X ′ is independent of all variables
in C. We say that X ′ is an intervention protocol for X.

6The details of the computations can be found in Appendix A.
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The causal entropy Hc(Y | do(X ∼ X ′)) of Y given the intervention protocol
X ′ for X is the expected value w.r.t. pX′ of the entropy H(Y | do(X = x)) :=

H
Y∼p

do(X=x)
Y

(Y ) of the interventional distribution p
do(X=x)
Y . That is:

Hc(Y | do(X ∼ X ′)) := Ex∼p
X′ [H(Y | do(X = x))] (5)

We will now see that, unsurprisingly, if there is no total effect of X on Y , then
the causal entropy is just the initial entropy H(Y ). Perhaps more unexpectedly,
the converse is not true: it is possible to have Hc(Y | X ∼ X ′) = H(Y ) while
X�Y . One way this can happen is due to the non-injectivity of entropy when
seen as a mapping from the set of distributions over Y , i.e. it may happen that

p
do(X=x)
Y 6= pY but H

Y∼p
do(X=x)
Y

(Y ) = HY∼pY
(Y ).

Proposition 1. If there is no total effect of X on Y , then Hc(Y | do(X ∼
X ′)) = H(Y ) for any intervention protocol X ′ for X. The converse does not
hold.

Proof. The proof can be found in Appendix B. ⊓⊔

If there is a total causal effect of X on Y , there cannot be a total causal
effect of Y on X (if X is a cause of Y , Y cannot be a cause of X) [16]. This
immediately yields the following corollary.

Corollary 1. If Hc(Y | do(X ∼ X ′)) 6= H(Y ) for some intervention protocol
X ′ for X, then Hc(X | do(Y ∼ Y ′)) = H(X) for any intervention protocol Y ′

for Y .

Proof. Suppose that Hc(Y | X ∼ X ′) 6= H(Y ). By the contrapositive of Propo-
sition 1, this means that there is a total effect of X on Y . Hence there is no total
effect of Y on X , which again by Proposition 1 yields the desired result. ⊓⊔

5 Causal Information Gain

Causal information gain extends mutual information to the causal context. The
causal information gain of Y for X will be the average decrease in the entropy of
Y after one atomically intervenes onX . We start this section by giving a rigorous
definition of causal information gain, and proceed to study its connection with
causal effect. We end this section by revisiting Example 1 armed with this new
information theoretical quantity. We will confirm in this example that causal
information is the correct tool for assessing which variable has the most causal
control over the outcome, as opposed to standard mutual information.

Recall the entropy-based definition of mutual information in Equation (4).
The mutual information between two variables X and Y is the average reduction
in uncertainty about Y if one observes the value of X (and vice-versa, by sym-
metry of the mutual information). This view of mutual information allows for
a straightforward analogous definition in the causal case, so that one can take
causal information gain Ic(Y | do(X ∼ X ′)) to signify the average reduction in
uncertainty about Y if one sets X to x with probability pX′(x).
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Definition 8 (Causal Information Gain, Ic). Let Y , X and X ′ be random
variables such that X ′ is an intervention protocol for X. The causal information
gain Ic(Y | do(X ∼ X ′)) of Y for X given the intervention protocol X ′ is the
difference between the entropy of Y w.r.t. its prior and the causal entropy of Y
given the intervention protocol X ′. That is:

Ic(Y | do(X ∼ X ′)) := H(Y )−Hc(Y | do(X ∼ X ′)). (6)

A few properties of causal information gain can be immediately gleaned from
its definition. First, in contrast with mutual information, causal information
gain is not symmetric. Also, similarly to causal entropy, one needs to specify an
intervention protocol with a distribution to be followed by interventions on X .

We can make use of the relation between causal entropy and causal effect
to straightforwardly deduce the relation between causal information gain and
causal effect.

Proposition 2. If Ic(Y | do(X ∼ X ′)) 6= 0 for some protocol X ′ for X, then
X�Y . The converse does not hold.

Proof. The implication in this proposition follows directly from Definition 8 and
the contrapositive of the implication in Proposition 1. The converse does not
hold simply because it is equivalent to the converse of the contrapositive of the
implication in Proposition 1, which also does not hold. ⊓⊔

Corollary 2. Let X ′ and Y ′ be intervention protocols for X and Y , respectively.
At least one of Ic(Y | do(X ∼ X ′)) or Ic(X | do(Y ∼ Y ′)) is zero.

Proof. Suppose both Ic(Y | do(X ∼ X ′)) and Ic(X | do(Y ∼ Y ′)) are non-zero.
Then by Proposition 2 we have both X�Y and Y�X , which is not possible in
the context of an SCM. ⊓⊔

It is worth noting that the last part of Proposition 2 contradicts [17]. In
that work, it is stated without proof that “causation is equivalent to non-zero
specificity”, wherein the term “specificity” coincides with what we refer to as
causal information gain given a uniformly distributed intervention protocol.

5.1 Comparison of Causal Information Gain and Mutual
Information in Running Example

Consider again Example 1. Compare the causal entropy and causal information
gain values7in Table 2 with the conditional entropy and mutual information
values from Table 1.

We see that using causal information gain allows us to correctly conclude that
using X1 to control Y would be fruitless: intervening on X1 does not change the

7In this particular case it does not matter what intervention protocol X ′ we choose,
since Hc(Y | do(X1 = x1)) = H(Y ) ≈ 1.41 for all x1 and Hc(Y | do(X2 = x2)) = 1 for
all x2.
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Table 2. Causal information theoretical values for Figure 1.

Hc(Y | do(X1 ∼ X ′

1)) ≈ 1.41 Hc(Y | do(X2 ∼ X ′

2)) = 1

Ic(Y | do(X1 ∼ X ′

1)) = 0 Ic(Y | do(X2 ∼ X ′

2)) ≈ 0.41

entropy of Y . This is reflected by the fact that the causal information gain of
Y for X1 is zero. Since X1 has no causal effect on Y , this result was to be
expected by the contrapositive of Proposition 2. On the other hand, X2 does
provide us with some control over Y : intervening on X2 decreases the entropy
of Y by 0.4 bit on average. In the real-world scenario described in Example 1,
utilizing causal information gain to determine which variable to intervene on
for controlling the sales volume Y would lead us to make the correct decision of
intensifying advertising efforts (X2). Furthermore, it would enable us to conclude
that manipulating the number of people wearing shorts (X1) provides no control
whatsoever over Y . Thus, causal information gain could be used in this case to
assess whether statistical dependence between Y and another variable in this
causal system can be interpreted to have causal significance.

6 Related Work

Previous work has aimed to provide causal explanations of machine learning
models through “counterfactual explanations” [21,13]. These explanations reveal
what the model would have predicted under different feature values. However,
they do not offer insights into the causal significance of a feature in influencing
the outcome variable. Instead, they merely inform us about the behavior of
the model itself. In other words, counterfactual explanations inform us about
the changes required for the model to produce a different prediction, but not
the changes necessary for the outcome to differ in reality. While counterfactual
explanations can be useful, for instance, in advising loan applicants on improving
their chances of approval [13], they fall short in providing causal interpretations
for tasks such as scientific exploration [23], where it is crucial to understand
the actual causal relationships between features and the chosen outcome. As
discussed in Section 1, the quantities investigated in this paper can precisely
address this need.

Information theoretical quantities aimed at capturing aspects of causality
have been previously proposed. An important example is the work in [9]. In that
paper, the authors suggest a list of postulates that a measure of causal strength
should satisfy, and subsequently demonstrate that commonly used measures fall
short of meeting them. They then propose their own measure (called “causal
influence”), which does satisfy the postulates. Causal influence is the KL diver-
gence of the original joint distribution and the joint distribution resulting from
removing the arrows whose strength we would like to measure, and feeding noise
to the orphaned nodes. Thus although it utilizes information theory, it does not
purport to generalize entropy or mutual information to the causal context. One
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information-theoretical measure mentioned in [9] is closer to ours. It is called
“information flow” [1]. Similarly to causal information gain, this quantity is a
causal generalization of mutual information. Their goal was to come up with a
generalization of mutual information that would be a measure of “causal inde-
pendence” in much the same way as standard mutual information is a measure
of statistical independence. They take the route of starting from the definition
of mutual information as the KL divergence between the joint distribution and
the product of the marginal distributions (Equation (3)), and proceed to “make
it causal” by effectively replacing conditioning with intervening everywhere. In
contrast, we treat entropy as the main quantity of interest, and start from the
definition of mutual entropy as the change in entropy due to conditioning (Equa-
tion (4)), and proceed to define its causal counterpart as the change in entropy
due to intervening. This then results in a quantity that is the appropriate tool
for evaluating the control that a variable has over another.

The basic idea of extending the concept of mutual information to the causal
context as the average reduction of entropy after intervening was introduced in
the philosophy of science literature, as part of an attempt to capture a property
of causal relations which they refer to as “specificity” [8]. This property can be
thought of as a measure of the degree to which interventions on the cause vari-
able result in a deterministic one-to-one mapping [22]. This means that maximal
specificity of a causal relationship is attained when: (a) performing an atomic
intervention on the cause variable results in complete certainty about the effect
variable’s value; and (b) no two distinct atomic interventions on the cause vari-
able result in the same value for the effect variable [8]. Notice that (a) means
precisely that the cause variable provides maximal causal control over the ef-
fect variable. The causal extension of mutual information proposed in [8] was
named “causal mutual information”. They call “causal entropy” the average en-
tropy of the effect variable after performing an atomic intervention on the cause
variable. Their “causal mutual information” is then the difference between the
initial entropy of the effect variable and the causal entropy. Although they do
not say so explicitly, their definition of causal entropy assumes that one only
cares about the entropy that results from interventions that are equally likely:
the average of post-intervention entropies is taken w.r.t. a uniform distribution
— hence their “causal entropy” is the same as the causal entropy defined in this
paper, but restricted to uniform intervention protocols. This was also noted in
[17], where the authors propose that other choices of distribution over the in-
terventions would result in quantities capturing causal aspects that are distinct
from the standard specificity. In this paper we both generalized and formalized
the information theoretical notions introduced in [8]. We provided rigorous defi-
nitions of causal entropy and causal information gain which allow for the use of
non-uniform distributions over the interventions. Our causal entropy can thus be
seen as a generalized version of their causal entropy, while our causal information
gain can be seen as a generalization of their causal mutual information8. Armed

8The term causal mutual information may be misleading given the directional na-
ture of the relationship between cause and effect. We thus prefer the term causal infor-
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with concrete, mathematical definitions, we are able to study key mathematical
aspects of these quantities.

7 Discussion and Conclusion

The motivation behind extending traditional entropy and mutual information
to interventional settings in the context of interpretable machine learning (IML)
arises from the necessity to determine whether the high importance assigned to
specific features by machine learning models and IML methods can be causally
interpreted or is purely of a statistical nature.

Information theoretical quantities are commonly used to assess statistical
feature importance. We extended these quantities to handle interventions, al-
lowing them to capture the control one has over a variable by manipulating
another. The proposed measures, namely causal entropy and causal information
gain, hold promise for the development of new algorithms in domains where
knowledge of causal relationships is available or obtainable. It is worth noting
that the utility of these measures extends well beyond the field of IML, as both
information-theoretical quantities and the need for causal control are pervasive
in machine learning.

Moving forward, a crucial theoretical endeavor involves establishing a fun-
damental set of properties for the proposed causal information-theoretical mea-
sures. This can include investigating a data processing inequality and a chain
rule for causal information gain, drawing inspiration from analogous properties
associated with mutual information. Other important research directions involve
the extension of these definitions to continuous variables, as well as investigat-
ing the implications of employing different intervention protocols. Furthermore,
the design and study of appropriate estimators for these measures constitute
important avenues for future research, as well as their practical implementa-
tion. Ideally, these estimators should be efficient to compute even when dealing
with high-dimensional data and complex, real-world datasets. Additionally, they
ought to be applicable to observational data. In cases where the structural causal
model is known, this could be accomplished by utilizing a framework such as do-
calculus [14] when devising the estimators. This could allow for their application
in extracting causal insights from observational data.

A Computations for the running example

We have

H(Y ) = pY (0) log(
1

pY (0)
) + pY (1) log(

1

pY (1)
) + pY (2) log(

1

pY (2)
)

=
3

8
log(

8

3
) +

1

2
log(2) +

1

8
log(8) = 2−

3

8
log(3) ≈ 1.41 (bit),

mation gain, drawing inspiration from the alternate name “information gain”, which
is frequently employed in discussions about decision trees when referring to mutual
information.
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and

H(Y | W ) = H(Y | W = 0) =
3

4
log(

4

3
) +

1

4
log(4) ≈ 0.81 (bit),

where we used that H(Y | W = 0) = H(Y | W = 1), so that taking the average
is unnecessary.

Notice that X1 = 0 implies W = 0, in which case Y = X2. Hence H(Y |
X1 = 0) = H(Y | W = 0) ≈ 0.81 (bit). By a similar argument, H(Y | X1 =
2) = H(Y | W = 1) ≈ 0.81 (bit). Now, denote q = 1

64 . It is easy to check that

pY |X1=1(0) =
3q
4 , pY |X1=1(1) =

3
4 − q

2 and pY |X1=1(2) =
1
4 (1− q). Then

H(Y | X1 = 1) = −
3q

4
log(

3q

4
)−(

3

4
−
q

2
) log(

3

4
−
q

2
)−

1

4
(1−q) log(

1

4
(1−q)) ≈ 0.89 (bit).

We can then compute:

H(Y | X1) = pX1(0)

0.81
︷ ︸︸ ︷

H(Y | X1 = 0)+pX1(1)

0.89
︷ ︸︸ ︷

H(Y | X1 = 1)+pX1(1)

0.81
︷ ︸︸ ︷

H(Y | X1 = 2)

=
1

2
× (1− q)× 0.81 +

1

2
× 0.89 +

q

2
× 0.81 ≈ 0.85 (bit).

We also have:

H(Y | X2) = pX2(0)

1
︷ ︸︸ ︷

H(Y | X2 = 0)+pX2(1)

1
︷ ︸︸ ︷

H(Y | X2 = 1) = 1 (bit),

It immediately follows that I(Y ;W ) ≈ 0.60, I(Y ;X1) ≈ 0.56 (bit) and
I(Y ;X2) ≈ 0.41 (bit).

Moving on to the causal information theoretical quantities, we have H(Y |
do(X1 = x1)) = H(Y ) ≈ 1.41 (bit) for every x1 ∈ RX1 and H(Y | do(X2 =
x2)) = H(W ) = 1 (bit) for every x2 ∈ RX2 . Hence Hc(Y | do(X1 ∼ X ′

1)) ≈
1.41 (bit) and Hc(Y | do(X2 ∼ X ′

2)) = 1 (bit) for any intervention protocols
X ′

1, X
′
2. It follows that Ic(Y | do(X1 ∼ X ′

1)) = 0 (bit) and I(Y | do(X2 ∼
X ′

2)) ≈ 0.41 (bit).

B Proof of Proposition 1

Proof. Suppose X has no causal effect on Y . Then ∀x ∈ RX , p
do(X=x)
Y = pY .

The expression for the causal entropy then reduces to Ex∼X′ H(Y ) = H(Y ).
This shows the implication in the proposition.

We will check that the converse does not hold by giving an example where
X has a causal effect on Y but Hc(Y | X ∼ X ′) = H(Y ). Consider the SCM
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with three binary endogenous variables X,Y and M specified by:







fM (NM ) = NM

fX(M,NX) =

{

(NX + 1) mod 2,M = 1

NX ,M = 0

fY (M,NX) =

{

X,M = 1

(X + 1) mod 2,M = 0

NX , NM ∼ Bern(q), for some q ∈ (0, 1).

(7)

Then p
do(X=0)
Y ∼ Bern(q) and p

do(X=1)
Y ∼ Bern(q). Also,

pY = pX|M=1(1)pM (1) + pX|M=0(0)pM (0) = 1− q ⇒ Y ∼ Bern(1− q) (8)

Hence pY 6= p
do(X=1)
Y , meaning that X�Y . And since both post-intervention

distributions have the same entropy HY ∼Bern(q)(Y ) = HY∼Bern(1−q)(Y ), then
the causal entropy will also be Hc(Y | X ∼ X ′) = HY∼Bern(1−q)(Y ) = H(Y )
(for any chosen of X ′). ⊓⊔
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