
ar
X

iv
:2

31
0.

19
57

9v
1

 [
cs

.L
O

]
 3

0
O

ct
 2

02
3

A Navigation Logic for Recursive Programs with

Dynamic Thread Creation

Roman Lakenbrink, Markus Müller-Olm, Christoph Ohrem, and Jens Gutsfeld

Department of Computer Science, University of Münster, Germany

Abstract. Dynamic Pushdown Networks (DPNs) are a model for mul-
tithreaded programs with recursion and dynamic creation of threads. In
this paper, we propose a temporal logic called NTL for reasoning about
the call- and return- as well as thread creation behaviour of DPNs. Using
tree automata techniques, we investigate the model checking problem for
the novel logic and show that its complexity is not higher than that of
LTL model checking against pushdown systems despite a more expres-
sive logic and a more powerful system model. The same holds true for
the satisfiability problem when compared to the satisfiability problem
for a related logic for reasoning about the call- and return-behaviour of
pushdown systems. Overall, this novel logic offers a promising approach
for the verification of recursive programs with dynamic thread creation.

Keywords: Concurrency, Dynamic Pushdown Networks, Navigation Logic,
Model Checking, Satisfiability, Tree Automata

1 Introduction

Model Checking is an established technique for the verification of hardware and
software systems. Conceptually, it consists of checking whether a property given
in a specification logic holds for a model of a system. While logics such as LTL
or CTL and finite Kripke models were considered early on [12,22], later more
expressive logics as well as infinite state systems have been studied. The use of
pushdown systems, for instance, allows for a more precise analysis of recursive
software systems due to the presence of a call stack of a program while still
retaining a decidable model checking problem against LTL specifications [8]. In
the context of pushdown systems, an example of a logic more expressive than
LTL is the logic CaRet [4] which extends LTL by operators for non-regular
properties of the call and return behaviour of pushdown systems. This extension
does not lead to increased complexity for the model checking problem against
pushdown systems compared to LTL.

However, there are even more powerful system models than pushdown sys-
tems for which model checking of variants of LTL is decidable. In this paper, we
consider Dynamic Pushdown Networks (DPNs) [9], a model for software systems
that cannot model only recursion, but also multithreading with dynamic thread
creation. So far, the model checking problem for DPNs has only been considered

http://arxiv.org/abs/2310.19579v1

2 R. Lakenbrink et al.

for single indexed LTL, a variant of LTL for multithreaded systems in which
an LTL formula is assigned to each thread [26]. Here, we consider the model
checking problem for a more expressive logic. More specifically, we propose a fix-
point calculus with CaRet-like operators for the verification of DPNs via model
checking. The logic allows to specify non-regular properties concerning the call
and return behaviour of the different execution threads of a DPN. Unlike CaRet,
it can additionally specify properties concerning the thread-spawn behaviour of
programs. For example, consider a scenario where a program has a method for
bookkeeping information about spawned threads and it is required that new
threads be only spawned from this method in order to keep the bookkeeping
consistent. The property Gr(©cψ → F−pr) specified in our new logic expresses
that in all positions of all threads (expressed through the modality Gr), new
threads fulfilling the property ψ are only spawned (expressed through ©cψ)
when the procedure pr is in the call stack (expressed through F−pr). This for-
malises the requirement. Properties regarding such relationships between parent
and child threads cannot be expressed in the variant of LTL from [26] or other
specification logics for DPNs we are aware of. Our logic thus constitutes the first
specification logic able to reason about the thread spawning behaviour of DPNs.

Contributions and structure of the paper. After introducing some no-
tation and results (Section 2), we present a semantics for DPNs based on graphs
(Section 3). As our first main contribution, we then introduce a novel specifi-
cation logic called Navigation Temporal Logic (NTL) with the ability to reason
about the call/return and thread creation behaviour of DPNs (Section 4). We
discuss some example properties and applications of our logic in Section 5. To-
wards algorithmic verification, we then switch from a semantics based on graphs
to a semantics based on trees (Section 6). As our second main contribution, we
then investigate the model checking and satisfiability problems for the new logic
(Section 7). In particular, we show that the model checking problem is decidable
in time exponential in the size of the specification and polynomial in the size of
the system model, i.e. the same as for LTL model checking against pushdown
systems, and that the satisfiability problem is solvable in time exponential in
the size of the specification, i.e. the same as for the satisfiability problem for
VP -µ-TL [10], a temporal logic subsuming CaRet and subsumed by our logic.
For both problems, we establish matching lower bounds. Section 8 concludes the
paper. Due to lack of space, some technical proofs can be found in an appendix.

Related work. There are several specification logics related to the logic we
present in this paper. The temporal logic LTL was considered for model checking
finite state systems [22] as well as pushdown systems [8]. For pushdown models,
CaRet was developed with different successor types that allow the inspection
of the call and return behaviour of the system [4]. Also, variants of CaRet have
been studied in the literature [3,2,11,17]. As mentioned, CaRet is one inspiration
for the logic presented in this paper and we adopt and complement its successor
types in our logic. Other inspirations are the linear time µ-calculus from [28] and
the logic VP -µ-TL from [10]. In these logics, fixpoint operators can be used to ex-
press arbitrary ω-regular (resp. ω-visibly pushdown) properties on paths, which

A Navigation Logic for Recursive Programs with Dynamic Thread Creation 3

makes them more expressive than LTL and CaRet, respectively. From these
logics, we take fixpoint operators. There is also a plethora of work on dynamic
pushdown networks. The model was first introduced in [9]. Different methods for
reachability analysis of DPNs have been proposed [9,20]. Additionally, different
variants of the model were investigated. [24] and [19] consider variants of DPNs
that communicate via locks. Another variant is the model of Dynamic Networks
of concurrent pushdown systems from [7] in which threads can communicate via
global variables. However, none of the above works on DPNs is concerned with
model checking. The only approach to model checking DPNs we are aware of
consists of checking different variants of DPNs against a variant of LTL called
single indexed LTL [26,13]. Compared to NTL, this variant cannot specify prop-
erties concerning the call and return behaviour of a thread or the relationship
between different threads. In Section 5, we show that single indexed LTL can be
embedded into NTL.

2 Preliminaries

Without further ado, we introduce tools and notation used throughout the paper.
This section can be skipped on first reading and be consulted for reference later.

Trees. An N0-tree T is a prefix-closed subset of N∗
0, i.e. for all nodes t ∈ N

∗
0

and directions d ∈ N0, t ·d ∈ T implies t ∈ T . Moreover, we require that t ·d ∈ T
for some d ∈ N0 implies t · d′ ∈ T for all d′ ≤ d. We call an element t ∈ T a
node of T with special node ε, which we call the root. A node of the form t · d is
called a child of t and t is called the parent of t · d. Additionally, for sequences
w ∈ N

∗
0, we call t · w a descendant of t and t an ancestor of t · w. Nodes t ∈ T

that have no children are called leaves. A path in a tree T is a finite or infinite
sequence t0t1 . . . of nodes such that t0 = ε and for all i ∈ N0, ti+1 is a child of
ti. An N0-tree that is a subset of {0, 1}∗ is also called a binary tree. In this case,
we call a node of the form t · 0 the left child of t and a node of the form t · 1
the right child of t. Let Σ be a finite set of labels and ar : Σ → {0, 1, 2} be a
function assigning an arity to each of these labels. A (Σ, ar)-labelled binary tree
is a pair (T, l) such that T is a binary tree and l : T → Σ is a labelling function
such that each node t ∈ T has exactly ar(l(t)) children.

2-way alternating tree automata. For a finite set X , let B+(X) be the
set of positive boolean combinations over X , i.e. boolean formulae built with
elements of X , conjunction and disjunction. For Y ⊆ X and ϑ ∈ B+(X), we say
that Y satisfies ϑ iff assigning the value true to the elements of Y and false to
the elements of X \ Y makes the formula ϑ true. Let Dir = {0, 1, ε, ↑} be the set
of moves in the tree with directions 0 for the left child, 1 for the right child, ε
for standing still and ↑ for moving upwards. We define u · ε = u and u · d · ↑ = u
for all u ∈ {0, 1}∗ and d ∈ {0, 1}. A 2-way alternating tree automaton (2ATA)
[29] over (Σ, ar)-labelled binary trees is a tuple A = (Q, q0, ρ, Ω) where Q is
a finite set of states, q0 ∈ Q is an initial state, ρ : Q × Σ → B+(Dir × Q) is a
transition function and Ω : Q → {0, . . . , k} is a priority mapping. The size |A|
of a 2-way alternating tree automaton is defined as the sum of the sizes of its

4 R. Lakenbrink et al.

constituents. We sometimes also refer to the size of individual constituents of an
automaton. In particular, we refer to the number of states, i.e. |Q|, and the size of
the acceptance condition, i.e. k. If the transition function of a 2-way alternating
tree automaton uses only symbols from {0, 1} instead of Dir and additionally
maps all nodes t either to true or to disjunctions over conjunctions that consist
of exactly one pair (d, q) for each d < ar(l(t)), it is called a nondeterministic
parity tree automaton (NPTA).

For a (Σ, ar)-labelled binary tree T = (T, l), a node t ∈ T and a state
q ∈ Q, a (t, q)-run of A over T is a pair (Tr, r) such that Tr is an N0-tree and
r : Tr → T × Q assigns a pair of a node of T and a state of A to all nodes in
Tr. Additionally, (Tr, r) has to satisfy the following conditions: (i) r(ε) = (t, q)
and (ii) for all nodes y ∈ Tr with r(y) = (x, s) and ρ(s, l(x)) = ϑ, there is
a set Y ⊆ Dir × Q satisfying ϑ and for all (d, s′) ∈ Y , there is n ∈ N0 such
that y · n ∈ Tr and r(y · n) = (x · d, s′). In particular, for all leaves y ∈ Tr with
r(y) = (x, s), we thus require ρ(s, l(x)) = true. A (t, q)-run (Tr, r) is accepting iff
on each infinite path in Tr the lowest priority occurring infinitely often is even.
If A is a nondeterministic parity tree automaton, a minimal set Y satisfying
ρ(s, l(x)) in the above definition moves to each child of the current node x in
the tree T . For an (ε, q)-run, we can thus simply identify T with Tr and consider
a map rA : T → Q as an (ε, q)-run over A. The set of nodes t ∈ T such that
there is an accepting (t, q)-run of A over T is denoted by LT

q (A). We say that
A accepts a tree T iff there is an accepting (ε, q0)-run of A over T . The set of
trees accepted by A is denoted by L(A). We use the following theorems:

Proposition 1 ([29]). For every 2ATA A, there is an equivalent NPTA A′.
The number of states in A′ is at most exponential in the number of states of
A and the size of the acceptance condition of A′ is linear in the size of the
acceptance condition of A.

Proposition 2 ([14,18,25]). The emptiness problem for NPTA can be solved
in time polynomial in the number of states and exponential in the size of the
acceptance condition.

Proposition 3. (i) For any two NPTA A1 and A2, there is a NPTA A with
L(A) = L(A1) ∩ L(A2).

(ii) If either acceptance condition is trivial, the size of A is in O(|A1| · |A2|).

Proposition 3 (i) can be found e.g. in [23]. For (ii), a straightforward product
construction can be used and yields an automaton of the size claimed.

Dynamic Pushdown Networks. Let AP be a set of atomic propositions,
Γ be a finite set of stack symbols and ⊥ /∈ Γ be a special bottom of stack symbol.
A Dynamic Pushdown Network (DPN) [9] is a tuple M = (S, s0, γ0, ∆, L) where
S is a finite set of control locations, s0 ∈ S is an initial control location, γ0 ∈ Γ
is an initial stack symbol and L : S × Γ → 2AP is a labelling function. The
transition relation ∆ = ∆I

.
∪ ∆C

.
∪ ∆R

.
∪ ∆S is a finite set of internal rules

(∆I), calling rules (∆C), returning rules (∆R) and spawning rules (∆S). Internal
rules sγ → s′γ′ ∈ ∆I ⊆ SΓ × SΓ , call rules sγ → s′γ′γ′′ ∈ ∆C ⊆ SΓ × SΓ 2

A Navigation Logic for Recursive Programs with Dynamic Thread Creation 5

or returning rules sγ → s′ ∈ ∆R ⊆ SΓ × S enable transitions of a single
pushdown process in control location s with top of stack γ to the new control
location s′ with new top of stack γ′, γ′γ′′ and ε, respectively. A spawning rule
sγ → s′γ′ ⊲ snγn ∈ ∆S ⊆ SΓ × SΓ × SΓ is an internal rule with the additional
side effect of spawning a new process in control location sn and stack content
γn. We formally develop a semantics for DPNs in Section 3.

3 Graph Semantics of Dynamic Pushdown Networks

The semantics of DPNs is often defined as an interleaving semantics. In such
semantics, a configuration of a DPN is a collection of local configurations of
the underlying pushdown systems representing the currently active threads. A
step in this semantics consists of a step of one of the active threads, possibly
adding a configuration of a new thread to the collection. This way, the semantics
accurately reflects different interleavings of the steps of the threads issued by
arbitrary schedulers, hence the name. For our intents, interleaving semantics
has some drawbacks, however. First, an encoding of the intersection problem for
contextfree languages is often possible in interleaving semantics, which leads to
undecidability of the investigated verification problem. Second, we are mostly
interested in temporal properties of individual threads, not necessarily temporal
properties of interleavings. This is because the behaviour of a thread is in most
cases independent of what types of steps other threads currently make in a
specific interleaving. Third, we want to reason about the parent-child relationship
of threads which is lost in most formalisations of interleaving semantics.

We thus instead adopt a semantics based on graphs. Intuitively, in an execu-
tion graph, each thread is modelled by a linear sequence of positions connected by
int -, call - and ret-edges based on the types of transitions taken in the thread. In
order to model the parent-child relationship between threads, a position where a
spawn-transition is taken is connected to the first position of the spawned thread
via a spawn-edge. This is analogous to the notion of action trees from [20,15].
Additionally, similar to nested words [5], calls and their matching returns are
connected via nesting edges. We formalise these graphs in the next paragraph.

Execution graphs. Let Moves = {int , call , ret , spawn} be the set of moves
for dynamic pushdown networks, V be a set of nodes, l : V → 2AP be a labelling
function, →d ⊆ V 2 be a transition relation for all d ∈ Moves and y ⊆ V 2

be a nesting relation. For x, y ∈ V , we call y a (d)-successor of x and x a (d)-
predecessor of y if x→d y for some d ∈ Moves. A tupleG = (V, l, (→d)d∈Moves,y)
is called an execution graph, iff the following conditions hold:

1. Every node has exactly one predecessor with respect to
⋃

{→d| d ∈ Moves}
except for a special node v0 without predecessor.

2. For all x ∈ V we have (v0, x) ∈ (
⋃

{→d| d ∈ Moves})∗.
3. Every node either has (a) exactly one int -successor and at most one spawn-

successor, (b) exactly one call -successor, (c) exactly one ret -successor or (d)
no successors.

6 R. Lakenbrink et al.

4. On every finite path starting in v0 or a node with a spawn-predecessor and
following only Moves\{spawn}-successors, the number of call -moves on that
path is greater than or equal to the number of ret-moves on that path.

5. For all x ∈ V having a call -successor, let Ax be the set of nodes y 6= x such
that there is a path π from x to y following only Moves\ {spawn}-successors
where the number of call -moves on π is equal to the number of ret -moves
on π. Then we have x y y for a node y ∈ V iff y is a node in Ax such that
the witnessing path has minimal length.

The set of execution graphs is denoted by ExGraphs.
An example of an execution graph can be found in Fig. 1. In this example, a

main thread spawns two additional threads. Additionally, there are two nested
procedure calls in the main thread and one procedure call in a spawned thread.

v0
. . .

. . .

. . .

int int call call ret int int ret int

spawn

int call ret int

spawn

int int int int

Fig. 1: Example of an execution graph. Labelled edges represent edges →d for
d ∈ Moves and dashed edges represent nesting edges y.

Graph semantics. In most cases, we care only about graphs generated by
a given DPN instead of arbitrary execution graphs. This is formalised in the
graph semantics of DPN. In the definition of this semantics, we make use of
configurations of the processes of a given DPN M = (S, s0, γ0, ∆, L). Formally,
a configuration of a pushdown process of M is a pair c = (s, u) where s ∈ S is a
control location and u ∈ Γ ∗⊥ is a stack content ending in ⊥. We define successor
relations on configurations corresponding to the different types of transition rules
of DPNs. For this purpose, let c = (s, u), c′ = (s′, u′) and c′′ = (s′′, u′′) be
configurations. We call c′ an internal successor of c, denoted by c →int c

′, if
there is a transition sγ → s′γ′ ∈ ∆I and u = γw, u′ = γ′w for some stack
content w ∈ Γ ∗⊥. We call c′ a call successor of c, denoted by c→call c

′, if there
is a transition sγ → s′γ′γ′′ ∈ ∆C and u = γw, u′ = γ′γ′′w for some stack content
w ∈ Γ ∗⊥. We call c′ a return successor of c, denoted by c →ret c

′, if there is a
transition sγ → s′ ∈ ∆R and u = γw, u′ = w for some stack content w ∈ Γ ∗⊥.
Finally, we call c′ a successor of c with spawned process c′′, denoted c→ c′⊲c′′, if
there is a transition sγ → s′γ′ ⊲ s′′γ′′ ∈ ∆S and u = γw, u′ = γ′w for some stack
content w ∈ Γ ∗⊥ as well as u′′ = γ′′⊥. Using the notion of configurations and
the successor relations just introduced, we now define the graph semantics. We
say that an execution graph (V, l, (→d)d∈Moves,y) is generated by M if there is

A Navigation Logic for Recursive Programs with Dynamic Thread Creation 7

an assignment as : V → S×Γ ∗⊥ satisfying (i) as(v0) = (s0, γ0⊥) and (ii) for all
x ∈ V , we have l(x) = L(s, γ) where as(x) = (s, γw) for some control location
s ∈ S, stack symbol γ ∈ Γ and stack content w ∈ Γ ∗⊥ and

– if x has only one d-successor y with d ∈ {int , call , ret}, then as(x) →d as(y),

– if x has an int-successor y and a spawn-successor z, then as(x) → as(y) ⊲
as(z) and

– if x has no successor, then as(x) has no successor.

The set of execution graphs generated by M is denoted by JMK.
Successor functions. On execution graphs G = (V, l, (→d)d∈Moves,y), we

define multiple successor functions succGg , succG↑ , succGa , succG−, succGp and succGc
with signature V V , i.e. partial functions from V to V . The first four of these
successor functions come from logics like CaRet [4] and allow us to progress
single threads and their call-return behaviour in different ways. The latter two
functions are new and give means to reason about the thread spawning behaviour
of DPNs. For x ∈ V , the functions are defined as follows:

– The global successor succGg (x) of x is the int -, call - or ret-successor of x, if
it exists, and undefined otherwise.

– The global predecessor succG↑ (x) of x is the int -, call - or ret-predecessor of
x, if it exists, and undefined otherwise.

– The abstract successor succGa (x) of x is the node y with xy y or x→int y,
if it exists, and undefined otherwise.

– The caller succG−(x) of x is the node y with a call -successor y′ such that
there is a path from y′ to x following abstract successors, if it exists, and
undefined otherwise.

– The parent succGp (x) of x is the node y with a spawn-successor z such that
there is a path from z to x with only Moves\{spawn}-transitions, if it exists,
and undefined otherwise.

– The child succGc (x) of x is the spawn-successor of x, if it exists, and undefined
otherwise.

We illustrate these successor functions for parts of the execution graph from
Fig. 1 in Fig. 2a and Fig. 2b. Abstract successors (seen in dashdotted red in
Fig. 2a) follow the execution of a procedure on the same stack level and skip
over executions of additional procedures via nesting edges. If a procedure is
left in the next step, i.e. if the next step is a return, the abstract successor is
undefined. Callers (seen in dotted blue in Fig. 2a) are defined if the stack level
is at least one in a configuration and move to the latest previous call on a lower
stack level. Parents (seen in dotted green in Fig. 2b) are defined in every branch
of an execution graph representing a thread except for the thread starting in v0
and move to the position in the graph where the current thread was spawned.
Children (seen in dashdotted yellow in Fig. 2b) are defined only if the current
thread currently executes a spawn transition and move to the initial position of
the spawned thread.

8 R. Lakenbrink et al.

v0
. . .

... ...

int int call call ret int int ret int

spawn spawn

(a) Abstract successors (red, dashdotted) and callers
(blue, dotted). Irrelevant edges are gray and some in-
ternal edges coinciding with abstract successors are
omitted to improve readability.

v0
...

. . .

int int

spawn

int call ret int

(b) Parents (green, dotted)
and children (yellow, dashdot-
ted). Irrelevant edges are gray
to improve readability.

Fig. 2: Successor types in parts of the execution graph from Fig. 1.

4 A Navigation Logic for Dynamic Pushdown Networks

Syntax. We now define the new logic Navigation Temporal Logic (NTL) for
expressing properties of execution graphs. As mentioned in the introduction, we
have three main inspirations. From the logics CaRet [4] and VP -µ-TL [10], we
take different next operators inspecting the call and return behaviour of a thread.
We complement these by additional next operators expressing parent and child
relationships between different processes. From the linear time µ-calculus [28]
and logics like VP-µ-TL [10], we take fixpoint operators for additional expres-
sivity beyond LTL modalities. First, we define the syntax of NTL.

Definition 4 (Syntax of NTL). The syntax of NTL formulae is defined by

ϕ ::= ap | ¬ϕ | ϕ1 ∨ ϕ2 | X | ©fϕ | µX.ϕ

where ap ∈ AP is an atomic proposition, X is a fixpoint variable and f ∈ {g, ↑
, a,−, p, c} is a successor type.

An NTL formula ϕ is called closed, if every fixpoint variable X is bound in
ϕ, i.e. it only appears in a subformula of the form µX.ψ. A formula ϕ is called
well-formed, if every fixpoint variable X occurring in ϕ (i) is bound by only one
fixpoint formula which we then denote by fp(X), (ii) appears only in the scope of
an even number of negations inside fp(X) and (iii) is in scope of at least one next
operator inside fp(X). We use Sub(ϕ) for the set of subformulae of a formula ϕ.
The size |ϕ| of a formula ϕ is defined as the number of its distinct subformulae.
We also need a notion of substitution: ϕ[ϕ′/X] is the formula that is obtained
from ϕ by replacing every occurrence of the fixpoint variable X with ϕ′.

Let us explain the intuition behind each construct. Atomic formulae ap ex-
press that ap ∈ AP holds in the current node of the graph. Next operators ©fϕ
can be used to navigate and express that the corresponding successor exists in
the current node and additionally satisfies ϕ. Negation and disjunction are inter-
preted as usual. Finally, we have fixpoint variablesX and least fixpoint operators
µX.ϕ for more involved properties. Intuitively, µX.ϕ is the least fixpoint of a
function that unrolls the formula by replacing µX.ϕ with ϕ[µX.ϕ/X].

A Navigation Logic for Recursive Programs with Dynamic Thread Creation 9

We use some common syntactic sugar such as true ≡ ap∨¬ap, false ≡ ¬true,
ϕ1∧ϕ2 ≡ ¬(¬ϕ1∨¬ϕ2), ϕ1 → ϕ2 ≡ ¬ϕ1∨ϕ2, ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2)∧(ϕ2 → ϕ1)

and νX.ϕ ≡ ¬µX.¬ϕ[¬X/X]. We also introduce a dual operator ©fϕ ≡ ¬©f

¬ϕ of ©fϕ for each successor type f ∈ {g, ↑, a,−, p, c} which is needed for a
special form in the next paragraph. It is necessary to explicitly define these
dual operators since ¬ ©f ϕ is not equivalent to ©f¬ϕ as the corresponding
successors can be undefined for certain nodes in an execution graph. Unlike

©fϕ, ©fϕ is equivalent to true for nodes that do not have an f -successor.
We also introduce some variants of LTL modalities as derived operators. In
particular we use ϕ1 Ufϕ2 ≡ µX.(ϕ2∨(ϕ1∧©fX)), Ffϕ ≡ true Ufϕ and Gfϕ ≡
¬Ff¬ϕ for f ∈ {g, ↑, a,−, p, c}. For f = g, we sometimes omit the superscript
and write Fϕ etc. Intuitively, these modalities correspond to the usual LTL
modalities evaluated on the path starting in the current position and taking f -
successors. Additionally, we introduce modalities Frϕ ≡ µX.(ϕ∨©gX ∨©cX)
and Grϕ ≡ ¬Fr¬ϕ to express that ϕ holds in some position or all positions,
respectively, reachable from the current position. Using these abbreviations, dual
operators and the equivalence ¬¬ϕ ≡ ϕ we can transform every well-formed
formula into an equivalent formula in which negation only appears in front of
atomic propositions. We call this form positive normal form and assume formulae
to be given in this form in the algorithms presented in this paper.

Semantics. We now formally define the semantics of NTL. It is defined
with respect to an execution graph G = (V, l, (→d)d∈Moves,y) and a fixpoint
variable assignment V assigning sets of nodes of G to fixpoint variables. Intu-
itively, JϕKGV is the set of nodes of G satisfying ϕ when each free fixpoint variable
X is interpreted to hold at nodes V(X). In the following, for a fixpoint vari-
able assignment V , a fixpoint variable X and a set of nodes M ⊆ V , we write
V [X 7→ M] for the fixpoint variable assignment with V [X 7→ M](X) = M and
V [X 7→M](Y) = V(Y) for all variables Y 6= X .

Definition 5 (Semantics of NTL). Let G = (V, l, (→d)d∈Moves,y) be an exe-
cution graph and V be a fixpoint variable assignment. The semantics of an NTL
formula with respect to G and V is defined by

JapKGV := {x ∈ V | ap ∈ l(x)}

J¬ϕKGV := V \ JϕKGV
Jϕ1 ∨ ϕ2KGV := Jϕ1KGV ∪ Jϕ2KGV

JXKGV := V(X)

J©fϕKGV := {x ∈ V | succGf (x) is defined and succGf (x) ∈ JϕKGV }
JµX.ϕKGV :=

⋂

{M ⊆ V | JϕKGV[X 7→M] ⊆M}

where ap ∈ AP is an atomic proposition, X is a fixpoint variable and f ∈ {g, ↑
, a,−, p, c} is a successor type.

In this semantics definition, two remarks are in order. First, it is easy to see
using Knaster-Tarski’s fixpoint theorem [27] that for formulae ϕ in positive nor-
mal form, JµX.ϕKGV characterises the least fixpoint of the monotone function

10 R. Lakenbrink et al.

αS : 2
V → 2V with αS(M) = JϕKGV[X 7→M] for S = (G,V , X, ϕ). Second, for

closed NTL formulae ϕ, the semantics does not depend on the fixpoint variable
assignment. For such formulae, we introduce additional semantic notations. We
write JϕKG for JϕKGV where V is an arbitrary fixpoint variable assignment and set
JϕK := {G ∈ ExGraphs | v0 ∈ JϕKG}. For an execution graph G, we write G |= ϕ
for G ∈ JϕK. Finally, for a DPN M, we write M |= ϕ, iff G |= ϕ for all G ∈ JMK.

In this paper, we consider the following decision problems for NTL:

– Model Checking: Given a DPN M and a closed well-formed NTL formula ϕ,
does M |= ϕ hold?

– DPN Satisfiability: Given a closed well-formed NTL formula ϕ, is there a
DPN M such that M |= ϕ?

– Graph Satisfiability: Given a closed well-formed NTL formula ϕ, is there an
execution graph G such that G |= ϕ?

5 Example properties

We motivate the introduction of our new logic with some examples.
Locking policies. In programming languages like Java, mutual exclusion

between different threads on certain procedures or code blocks is realised via
synchronized procedures or blocks. Internally, this feature works by acquiring a
lock upon entering a synchronized procedure or block that is released when leav-
ing the synchronized part of the code [1]. Locks are thus acquired and released in
a nested manner. In DPNs, this synchronization mechanism can be modelled by
including symbols for locks in the stack alphabet that are pushed onto the stack
when acquiring a lock and removed from the stack when releasing it. A call or
return of a synchronized procedure is then modelled by taking two call - or ret-
transitions of the DPN, respectively, one for pushing or popping the lock symbol
and another one as usual. We also include the lock symbols as atomic proposi-
tions that are assigned to corresponding configuration heads. In this setup, the
formula ϕl := F−l expresses that the lock l is currently held using the caller
modality F−. This form of modelling also works for reentrant locks, i.e. locks
that can be acquired multiple times. When threads acquire multiple locks, prob-
lems with deadlocks can occur when different threads acquire locks in a different
order. Assume, for example, that we have two locks where thread one acquires
lock one first and then lock two and thread two acquires lock two first and then
lock one. In this case, a deadlock can occur when the threads are scheduled such
that thread one acquires lock one and thread two acquires lock two. A common
policy to avoid deadlocks is to ensure that all threads acquire locks in the same
order. The formula ϕij := F−(li∧G−¬lj) expresses that lock li is currently held
and when it was acquired, lock lj was not held. It can be used in the formula
Gr(ϕli∧ϕlj) → ϕij to express that li is always acquired before lj , if both locks are
held. The disjunction Gr(ϕli∧ϕlj) → ϕij∨Gr(ϕli∧ϕlj) → ϕji then expresses the
existence of a global order for locks li and lj and the existence of a global order
for all locks can be expressed by a boolean combination of a quadratic number
of variants of this formula. Another problem with locking arises when certain

A Navigation Logic for Recursive Programs with Dynamic Thread Creation 11

threads wait for a lock that is held by another thread for an infinite amount
of time, e.g. if a synchronized method is never left. A policy addressing this
problem is to ensure that all locks that are acquired are released at some point
in the future. We can express this using the formula Gr

∧

l∈Locks ϕl → F¬ϕl.
Under these two policies, a necessary and sufficient condition for mutual exclu-
sion of two program points labelled s1 and s2 is that a common lock is held at
the two program points. This can also be expressed in a formula from our logic:
∨

l∈Locks G
r((s1 → ϕl) ∧ (s2 → ϕl)).

Behaviour of main and worker threads. We elaborate on a motivating
example for single indexed LTL from [26] expressible in NTL. In this example,
a main thread of a server processes requests from clients by starting a worker
thread responding to the specific request. Then, the main thread should re-
peatedly accept new requests, expressed by the formula Gr(main → GFaccept).
Also, each worker thread should respond with a correct acknowledgement to
each type of request, i.e. it should respond exactly with ack to req and ex-
actly with ack ′ to req ′. This is expressed by the formula Gr(worker → (req →
(Fack ∧ G¬ack ′) ∧ req ′ → (Fack ′ ∧ G¬ack))). Such requirements were already
expressible in single indexed LTL. However, using the different types of successor
operators in NTL, we can further expand on this scenario and express properties
not expressible in single indexed LTL. For example, it is a reasonable require-
ment that worker threads are only spawned by the main thread and only if the
main thread has accepted a request. This requirement can be expressed in the
formula Gr(worker → ©p(main ∧ accept)). Another desirable property in this
scenario is a variant of the property from the introduction. In particular, we may
want worker threads to only be spawned from a procedure pr which performs
bookkeeping about the currently active worker threads. This is expressed by the
formula Gr(©cworker → F−pr).

Single indexed LTL model checking. It is no surprise that the previous
motivating example for single indexed LTL is expressible in NTL. Indeed, we
show that the full approach of single indexed LTL DPN model checking from
[26] can also be handled using our logic. We first sketch their setup. In [26], a
DPN M = {P1, . . . ,Pn} is defined as a set of pushdown systems Pi with the
ability to spawn threads executing one of the pushdown systems of M. A single
indexed LTL formula is a conjunction ϕ =

∧n
i=1 ϕi of LTL formulae ϕi that are

each assigned to a specific pushdown system Pi. Then, M |= ϕ holds iff M has a
global run such that for all i, every local run of Pi in the global run satisfies ϕi. In
our setup, their global runs correspond to execution graphs and their local runs
correspond to the paths in the execution graph starting in positions where new
threads are spawned and following the global successors. Since in single indexed
LTL model checking, the existence of a global run is checked, whereas in NTL
model checking, it is checked that all execution graphs satisfy a property, we can
check that M 6|= ϕ for a single indexed LTL formula ϕ =

∧n
i=1 ϕi using NTL

model checking. This is done as follows. We model the partition of a DPN M
from their setup into its pushdown systems Pi by labelling every control location
of Pi with a fresh atomic proposition pi in its translation M̄ in our setup. LTL

12 R. Lakenbrink et al.

formulae ϕi can trivially be translated to NTL by encoding until operators using
least fixpoints. Then, the NTL formula ϕ̄ = (p1 ∧¬ϕ1)∨Fr(

∨n
i=1 ©

c(pi ∧¬ϕi))
expresses that there is a local run of Pi for some i that does not satisfy ϕi. In this
formula, the disjunct (p1∧¬ϕ1) identifies a violation by the root process P1 and
the disjunct Fr(

∨n
i=1 ©

c(pi ∧ ¬ϕi)) identifies violations by spawned processes.
Accordingly, M |= ϕ (in the single indexed LTL setup) iff M̄ 6|= ϕ̄ (in our setup).

6 From Graph Semantics to Tree Semantics

In order to enable algorithmic verification with tree automata, we introduce an
additional structure called execution tree. In a nutshell, these trees are obtained
from execution graphs by keeping the same set of nodes and adjusting the edge
relation a little. In particular, we discard ret -edges. In order to properly interpret
left and right children in this adjusted structure, we add labels (l, d, p) where l
represents the label of the current node, d represents the transition types from
this node to its children and p represents the transition type from the parent
to this node. This yields us a structure simpler than execution graphs that still
contains the same information and can be analysed using tree automata.

Execution trees. Let G = (V, l, (→d)d∈Moves,y) be an execution graph. We
inductively define a map δG : V → {0, 1}∗ assigning a tree node to each graph
node x ∈ V as follows.

– If x = v0, we set δG(x) := ε.
– If x has a call - or int -predecessor y, we set δG(x) := δG(y) · 0. In this case,

we also call δG(x) a call - or int -child of δG(y), respectively.
– If there is y ∈ V such that y is a spawn-predecessor of x or y y x, we set
δG(x) := δG(y) · 1. If y is a spawn-predecessor of x, we also call δG(x) a
spawn-child of δG(y) and if y y x, we also call δG(x) a ret-child of δG(y).

Additionally, for a subset M ⊆ Moves and nodes x, y ∈ V , we call δG(y) an
M -descendant of δG(x) and δG(x) an M -ancestor of δG(y), if there is a path
from δG(x) to δG(y) in the tree following only M -children.

Let TL = 2AP × {int , call , callRet , spawn, ret , end} × (Moves ∪ {⊥}) be the
set of labels for tree nodes and the arity function ar : TL → {0, 1, 2} be de-
fined by ar (l, ret , p) = ar(l, end , p) = 0, ar (l, int , p) = ar (l, call , p) = 1 and
ar(l, callRet , p) = ar (l, spawn, p) = 2. The tree representation T (G) of G is the
(TL, ar)-labelled binary tree (im(δG), r) where im(δG) = {δG(x) | x ∈ V } de-
notes the image of δG and for all x ∈ V we have r(δG(x)) = (l(x), d(x), p(x))
where (i) either p(x) 6= ⊥ and x has a p(x)-predecessor or p(x) = ⊥ and x = v0
and (ii) one of the following conditions hold:

– x has only one d(x)-successor and d(x) ∈ {int , ret}.
– x has only one int- and one spawn-successor and d(x) = spawn.
– x has only one call -successor, there is no y ∈ V with xy y, and d(x) = call .
– x has only one call -successor, there is y ∈ V with xy y, and d(x) = callRet .
– x has no successors and d(x) = end .

A Navigation Logic for Recursive Programs with Dynamic Thread Creation 13

ε

(l, spawn , int)

(l, callRet , int) (l, ret , call)

. . .

. . .

. . .

0 0 0 0 0 0 0

1

1

1

0 0 0

1
1

0 0 0 0

Fig. 3: Execution tree for the execution graph in Fig. 1. An edge from node t to
node t′ labelled d means that t′ = t · d. Labels are depicted for nodes 0, 00 and
0000. Gray edges exist in the execution graph but not in the execution tree.

A tree representation of an execution graph is also called an execution tree. An
example of an execution tree can be found in Fig. 3.

Adapted successor functions. We adapt the successor functions previ-
ously defined on execution graphs to execution trees in order to allow us to check
the satisfaction of formulae directly on execution trees. Specifically, we define
multiple successor functions succTg , succT↑ , succTa , succT−, succTp and succTc with
signature T T for execution trees T = (T, r). For t ∈ T with r(t) = (l, d, p),
the successor functions are given as follows:

– The abstract successor succTa (t) of t is defined as the left child of t, if d ∈
{int , spawn}, the right child of t, if d = callRet , and undefined else.

– The caller predecessor succT−(t) of t is defined as the parent node of t, if
p = call , the caller predecessor of its parent node, if p ∈ {int , ret} and this
is defined, and undefined else.

– The global successor succTg (t) of t is defined as the left child of t, if d ∈

{int , call , callRet , spawn}, succTa (succ
T
−(t)), if d = ret , and undefined else.

– The global predecessor succT↑ (t) of t is defined as the parent node of t, if
p ∈ {int , call}, the {int , ret}-descendant leaf of the left child of its parent
node, if p = ret , and undefined else.

– The parent predecessor succTp (t) of t is defined as the parent node of t, if
p= spawn , the parent predecessor of its parent node, if p ∈ {int , call , ret}
and this is defined, and undefined else.

– The child successor succTc (t) of t is defined as the right child of t, if d =
spawn , and undefined else.

We show in the following lemma that these adapted successor functions be-
have exactly like their counterparts on execution graphs.

Lemma 6. Let G = (V, l, (→d)d∈Moves,y) be an execution graph with T (G) =
T . For all f ∈ {g, ↑, a,−, p, c} we have δG ◦ succGf = succTf ◦ δG, i.e. for all

nodes x ∈ V , δG(succ
G
f (x)) is defined iff succTf (δG(x)) is defined and in this

case δG(succ
G
f (x)) = succTf (δG(x)).

A detailed proof of this lemma can be found in Appendix D.

14 R. Lakenbrink et al.

7 Model Checking and Satisfiability

We now use execution trees to decide the model checking and satisfiability prob-
lems for NTL. For this, we construct three tree automata: one automaton for
checking whether a tree is an execution tree, a second automaton for checking
whether an execution graph (given by its tree representation) satisfies a given
formula, and another automaton for checking whether a tree represents an exe-
cution graph generated by a given DPN.

An automaton for execution trees. We first construct a nondeterministic
parity tree automaton that checks whether a (TL, ar)-labelled binary tree is
an execution tree. At each node labelled by (l, d, p), the automaton needs to
ensure that the node is a p-child, if p 6= ⊥, and that it is the root, if p = ⊥.
Moreover, if d = callRet , it has to check that its call -child does have an {int , ret}-
descendant leaf. Finally, it has to ensure that for leaves t labelled by (l, d, p) we
have d = ret iff t is the {int , ret}-descendant leaf of a call -child of a node labelled
by (l′, callRet , p′) for some l′ ∈ 2AP and p′ ∈ Moves ∪ {⊥}. Thus, we can define
the automaton as AET = (Q, q0, ρ, Ω) with state set Q = (Moves∪ {⊥})×{0, 1}
and initial state q0 = (⊥, 0). Intuitively, in a state (p, c), p denotes the parent
edge type and the bit c indicates whether the current node is an {int , ret}-
descendant of a call -child of a node labelled by (l′, callRet , p′) for some l′ ∈ 2AP

and p′ ∈ Moves ∪ {⊥}. The transition function ρ is defined by

ρ((p, c), (l, d, p′)) :=































(0, (int , c)) if d = int

(0, (call , 0)) if d = call and c = 0

(0, (call , 1)) ∧ (1, (ret , c)) if d = callRet

(0, (int , c)) ∧ (1, (spawn , 0)) if d = spawn

true if (d, c) ∈ {(ret , 1), (end , 0)}

for p = p′ and ρ((p, c), (l, d, p′)) := false in all other cases. The priority assign-
ment is given by Ω(p, c) = c for all (p, c) ∈ Q.

We establish the following theorem. A proof can be found in Appendix E.

Theorem 7. One can construct a NPTA AET over (TL, ar)-labelled binary trees
with a constant size such that L(AET) = {T (G) | G is an execution graph}.

An automaton for formulae. For the next automaton, we define a 2-way
alternating tree automaton evaluating ϕ on execution trees, intersect it with the
automaton recognising execution trees and then transform this automaton into
a nondeterministic parity tree automaton. In the following, let ϕ be a closed,
well-formed NTL formula in positive normal form. We define the automaton for
ϕ as Ãϕ = (Q, q0, ρ, Ω) where Q, q0, ρ and Ω are described in more detail in the
following paragraphs.

The states of the automaton are given by

Q = Sub(ϕ) ∪Q1 ∪Q2 where

Q1 = {©− ©a ψ,©aψ | ©gψ ∈ Sub(ϕ) or ©g ψ ∈ Sub(ϕ)} and

A Navigation Logic for Recursive Programs with Dynamic Thread Creation 15

Q2 = {call , leaf } × {ψ | ©↑ψ ∈ Sub(ϕ) or ©↑ ψ ∈ Sub(ϕ)}

with initial state q0 = ϕ. Since we use another automaton to check that the
given tree indeed represents an execution graph, we care only about execution
trees as inputs in this construction. Intuitively, being in a state ψ ∈ Sub(ϕ)∪Q1

at the position δG(x) in the input execution tree T (G), the automaton checks
whether the node x satisfies ψ, i.e. whether x ∈ JψKG. The states in Q2 are
used to handle the global predecessor next modality and its dual version. We
use states of the form (call , ψ) to denote that we should move to the call -child of
the current node and switch to state (leaf , ψ); states of the form (leaf , ψ) denote
that we should check ψ for the {int , ret}-descendant leaf of the current node.

The transition function ρ is defined as described next. Recall that Ãϕ op-
erates on execution trees which are labelled by triples (l, d, p) where l ∈ 2AP

are the atomic propositions, d ∈ {int , call , callRet , spawn , ret , end} specifies the
successor types of the current node and p ∈ Moves ∪ {⊥} denotes the type of
its predecessor. If the current state is an atomic proposition or a negation of an
atomic proposition, we can check directly whether the tree node is labelled by
this proposition and thus determine whether the formula holds:

ρ(ap, (l, d, p)) :=

{

true if ap ∈ l

false if ap /∈ l
ρ(¬ap, (l, d, p)) :=

{

false if ap ∈ l

true if ap /∈ l.

For a disjunction or conjunction of two formulae, we can use the power of
alternation and set

ρ(ψ1 ∨ ψ2, σ) := (ε, ψ1) ∨ (ε, ψ2) and ρ(ψ1 ∧ ψ2, σ) := (ε, ψ1) ∧ (ε, ψ2).

For a formula of the form ©fψ, we move to the corresponding successor of the
given node and then switch to state ψ. In most cases, the according transitions
can be defined straightforwardly using the characterisation from the successor
functions on execution trees:

ρ(©gψ, (l, d, p)) :=











(0, ψ) if d ∈ {int , call , callRet , spawn}

(ε,©− ©a ψ) if d = ret

false if d = end

ρ(©aψ, (l, d, p)) ρ(©−ψ, (l, d, p))

:=











(0, ψ) if d ∈ {int , spawn}

(1, ψ) if d = callRet

false if d ∈ {call , ret , end}

:=











(↑, ψ) if p = call

(↑,©−ψ) if p ∈ {int , ret}

false if p ∈ {spawn ,⊥}

ρ(©pψ, (l, d, p)) ρ(©cψ, (l, d, p))

:=











(↑, ψ) if p = spawn

(↑,©pψ) if p ∈ {int , call , ret}

false if p = ⊥

:=

{

(1, ψ) if d = spawn

false if d 6= spawn

16 R. Lakenbrink et al.

In the above definition, we move to false when we see that the desired successor
does not exist and the formula is not satisfied. The transition function for dual
next operators is defined analogously but moves to true instead of false in case
the successor does not exist.

For the global predecessor, we additionally use states of the form (call , ψ)
and (leaf , ψ) for moving to the {int , ret}-descendant leaf of the call -child of the
parent of a node in cases where the global predecessor is defined this way:

ρ(©↑ψ, (l, d, p)) ρ((leaf , ψ), (l, d, p))

:=











(↑, ψ) if p ∈ {int , call}

(↑, (call , ψ)) if p = ret

false if p ∈ {spawn,⊥},

:=











(0, (leaf , ψ)) if d ∈ {int , spawn}

(1, (leaf , ψ)) if d = callRet

(ε, ψ) if d ∈ {ret , call , end}

and ρ((call , ψ), σ) := (0, (leaf , ψ)).

Note that if we are in a state (leaf , ψ) at position δG(x) in the tree, d(x) ∈
{call , end} cannot hold if the tree represents an execution graph since in this case
x lies on the path between nodes y and z following Moves \ {spawn}-successors
with y y z and x 6= z.

Finally, fixpoint formulae lead to loops:

ρ(λX.ψ, σ) := (ε, ψ) for λ ∈ {µ, ν} and ρ(X, σ) := (ε, fp(X)).

The acceptance condition specifies whether a fixpoint formula may be visited
at most a finite number of times or an infinite number of visits is allowed. In this
definition, higher priorities are assigned to fixpoint formulae binding variables
which depend on other fixpoint variables. Formally, we say that a fixpoint vari-
able X ′ depends on the variable X in ϕ, written X ≺ϕ X ′, if X is a free variable
in fp(X ′). We consider all maximal chains X1 ≺ϕ ... ≺ϕ Xn of fixpoint variables
appearing in ϕ. If fp(X1) is a formula of the form µX.ψ, we set Ω(fp(X1)) = 1,
otherwise we set Ω(fp(X1)) = 0. Then, we move through the chains and assign
this priority to fp(Xi) as long as the fixpoint type does not change. In that case,
we increase the currently assigned priority by one and keep going. Then, we set
Ω(q) to the highest priority assigned so far for all other states q.

We establish the following theorem.

Theorem 8. Let ϕ be a closed, well-formed NTL formula, G be an execution
graph and Ãϕ be the 2ATA defined above. Then Ãϕ accepts T (G) iff G ∈ JϕK.

Proof Sketch. The proof is by induction on the structure of ϕ. Therefore, we
also have to deal with non-closed subformulae and consider valuations to decide
whether a subformula is satisfied. In order to do this in a formal way, we consider
automata with special states X1, . . . , Xn, called holes [21], that can be filled
with sets of nodes L1, . . . , Ln of a given tree. Intuitively, such an automaton can
operate on a tree as before, but when a hole Xi is encountered during a run and
we are at the tree node t, then we do not continue on the current path and say
that it is accepting iff t ∈ Li. By LT

q (A[X1 : L1, . . . , Xn : Ln]) we denote the set

A Navigation Logic for Recursive Programs with Dynamic Thread Creation 17

of nodes t ∈ T such that there is an accepting (t, q)-run over A where the states
X1, . . . , Xn are holes filled by L1, . . . , Ln.

For the inductive proof, we assume that the free variables of the current
formula ψ ∈ Sub(ϕ) are holes in the automaton and show that the language of
this automaton corresponds to the semantics of ψ. Intuitively, we fill the holes
in the automaton, i.e. the free variables of ψ, with the same sets of nodes as
specified by a given valuation that we consider for the semantics of ψ. More
formally, the holes are filled by sets of tree nodes that correspond to given sets
of graph nodes in the valuation.

We consider the case for subformulae of the form ψ ≡ µX.ψ′ with free vari-
ables X1, . . . , Xn. Let V be a fixpoint variable assignment, T (G) = T = (T, r)
and R be a (t, ψ)-run over Ãϕ for a t ∈ T , where the states X1, . . . , Xn are holes
filled by δG(L1), . . . , δG(Ln) with Li = V(Xi). We observe that R can only visit
states ϕ′ of the form µX.ψ′′ or νX.ψ′′ if ϕ′ is a subformula of ψ. Therefore, Ω(ψ)
is the lowest priority occurring in the run so that the state ψ can only be visited
finitely often if the run is accepting. This means we can characterize LT

ψ (Ãϕ[X1 :

δG(L1), . . . , Xn : δG(Ln)]) as the least fixpoint of the function f : 2T → 2T with
f(δG(L)) := LT

ψ′(Ãϕ[X1 : δG(L1), . . . , Xn : δG(Ln), X : δG(L)]). Thus, we can
use the induction hypothesis and the fixpoint characterization of the semantics
of ψ obtained by Knaster-Tarski’s fixpoint theorem to get the desired result in
this inductive step.

Since ϕ is closed, the induction establishes in particular that Ãϕ accepts
T (G) iff G ∈ JϕK. Details of this proof can be found in Appendix E. ⊓⊔

As mentioned, we do not use this automaton directly but instead intersect it
with AET from Theorem 7 and then transform it into a nondeterministic parity
tree automaton using Proposition 1. We obtain:

Corollary 9. Let ϕ be a closed, well-formed NTL formula. Then we can con-
struct an NPTA Aϕ over (TL, ar)-labelled binary trees with a number of states
exponential and an acceptance condition linear in |ϕ| such that L(Aϕ) = {T (G) |
G is an execution graph with G ∈ JϕK}.

An automaton for DPNs. We proceed with an automaton for a DPN M =
(S, s0, γ0, ∆, L). We define AM as an NPTA that checks whether an execution
tree represents an execution graph generated by M. We set AM := (Q, q0, ρ, Ω)
where Q, q0, ρ and Ω are described in more detail next.

The state set is given by Q = S×Γ × ((S×Γ)∪{⊥}) with initial state q0 =
(s0, γ0,⊥). Being in a state (s, γ, c) ∈ Q at the position δG(x) in the tree labelled
by (l, d, p) means that there is a suitable assignment as assigning configurations
to the graph nodes whose corresponding tree nodes have been visited so far
where as(x) = (s, γw) for some stack content w ∈ Γ ∗⊥. If d = callRet , we
also have to know the configuration assigned to the global predecessor of the
ret-child of the current node to check that we can extend as suitably for the
children of the current node. We thus guess this configuration in this case and
use c ∈ S×Γ to indicate that we must assign c to the {int , ret}-descendant leaf
of the call successor of the current node in order to fulfill the requirements for

18 R. Lakenbrink et al.

the assignment as . Note that the {int , ret}-descendant leaf exists in this case, if
the input tree is an execution tree. The transition function ρ then checks that
(i) l = L(as(x)), (ii) if c ∈ S × Γ , then the configuration c is assigned to the
{int , ret}-descendant leaf of δG(x) and (iii) the assignment as can be properly
extended to the children of δG(x). We set

ρ((s, γ, c), (l, int , p)) :=
∨

{(0, (s′, γ′, c)) | sγ → s′γ′ ∈ ∆I},

ρ((s, γ,⊥), (l, call , p)) :=
∨

{(0, (s′, γ′,⊥)) | ∃γ′′ ∈ Γ s.t. sγ → s′γ′γ′′ ∈ ∆C},

ρ((s, γ, c), (l, callRet , p)) :=
∨

{(0, (s′, γ′, (sr, γr))) ∧ (1, (s′′, γ′′, c)) |

sγ → s′γ′γ′′ ∈ ∆C and srγr → s′′ ∈ ∆R},

ρ((s, γ, c), (l, spawn, p)) :=
∨

{(0, (s′, γ′, c)) ∧ (1, (sn, γn,⊥)) |

sγ → s′γ′ ⊲ snγn ∈ ∆S},

ρ((s, γ, (s, γ)), (l, ret , p)) := true and

ρ((s, γ,⊥), (l, end , p)) :=

{

true if there is no transition for sγ in ∆

false else

for l = L(s, γ) and ρ((s, γ, c), (l, d, p)) := false in all other cases. Since we are only
concerned with execution trees as inputs, all conditions necessary to determine if
the input tree is generated by M are already checked by the transition function
of AM. We thus set Ω(q) := 0 for all q ∈ Q. We establish the following theorem.
A detailed proof can be found in Appendix E.

Theorem 10. Let M be a DPN. We can construct an NPTA AM over (TL, ar)-
labelled binary trees with a number of states quadratic in |M| and a trivial ac-
ceptance condition such that for all execution graphs G, T (G) ∈ L(AM) iff
G ∈ JMK.

Complexity of Model Checking and Satisfiability. These automata
constructions can be used to obtain a decision procedure for the model checking
and satisfiability problems. For the former, we obtain the following theorem:

Theorem 11. The model checking problem for NTL is EXPTIME-complete. For
fixed formulae, the problem is in PTIME.

Proof. For the upper bound, we construct an automaton for the negation of the
formula using Corollary 9 and intersect it with an automaton for the DPN from
Theorem 10. Since the acceptance condition of the latter is trivial, the resulting
automaton is quadratic in the size of the DPN and exponential in the size of
the formula by Proposition 3 (ii). It is tested for emptiness using Proposition 2
in time exponential in |ϕ| and polynomial in |M| to answer the model checking
problem.

The lower bound follows by a reduction from the LTL pushdown model check-
ing problem which was shown to be EXPTIME-hard in [8]. The reduction is trivial
since LTL is a sublogic of NTL for single threads and pushdown systems can be
trivially embedded into DPNs with a single thread. ⊓⊔

A Navigation Logic for Recursive Programs with Dynamic Thread Creation 19

For satisfiability, we can show that the two problems defined in Section 4 are
equivalent and thus only need to solve one of the problems by a direct procedure.

Theorem 12. The graph and DPN satisfiability problems are equivalent.

Proof. For the first direction, assume that a formula ϕ is satisfiable by a DPN
M. Then G |= ϕ for all G ∈ JMK. Since JMK 6= ∅ (this indeed holds for all
DPNs), we can thus choose an arbitrary graph G ∈ JMK to show that ϕ is
satisfiable by a graph.

For the other direction, assume that a formula ϕ is satisfiable by a graph G.
By Corollary 9, we know that T (G) ∈ L(Aϕ). Since L(Aϕ) is a nonempty ω-
regular tree language, we know that T ∈ L(Aϕ) for a regular tree T = (T, r), i.e.
a tree with only finitely many non-isomorphic subtrees (see e.g. Cor 8.20. in [16]).
Let x1, . . . , xn be the finitely many classes of nodes associated with the roots of
the distinct subtrees of T such that x1 is the class of ε and let (li, di, pi) be the
label of the nodes from class xi. We construct a DPN M = ({s}, s, x1, ∆, L) with
stack alphabet Γ = {x1, . . . , xn}. The labeling L is defined such that L(s, xi) =
li. Transition rules are defined from the parent-child relationships between the
different classes of nodes: (i) if di = int , then nodes of class xi have exactly one
child of class xj and we include sxi → sxj ∈ ∆, (ii) if di = spawn , then nodes
of class xi have exactly one left child of class xj and one right child of class xk
and we include sxi → sxj ⊲ sxk ∈ ∆, (iii) if di = callRet , then nodes of class
xi have exactly one left child of class xj and one right child of class xk and we
include sxi → sxjxk ∈ ∆, (iv) if di = call , then nodes of class xi have exactly
one child of class xj and we include sxi → sxjxi ∈ ∆, (v) if di = ret , then nodes
of class xi have no children and we include sxi → s ∈ ∆ and (vi) if di = end ,
then nodes of class xi have no children and we do not include a transition. It is
easy to see that JMK is a singleton set since M is deterministic. We show that
JMK = {H} where T = T (H) and thus M |= ϕ. For this, let T (H) = (TH , rH).

We show by induction on the length of x that for all x ∈ {0, 1}∗, x ∈ T
iff x ∈ TH and in that case (a) r(x) = rH(x) and (b) if x belongs to class xi,
then the configuration in δ−1

G (x) is (s, xiw) for some stack content w. In the base
case, we know that ε ∈ T and ε ∈ TH . We know that r(ε) = (l1, d1, p1) since T
is rooted in x1 and p1 = ⊥ since T is an execution tree. Let rH(ε) = (l, d, p).
Since (s, x1⊥) is the starting configuration of M, we know that it is also the
configuration in δ−1

G (ε) and that l = l1. Additionally, we can show that d = d1
by a case distinction on d1. We only sketch the case d1 = int , the other cases
are similar. In this case, the only enabled transition in (s, x1⊥) is sx1 → sxj ,
an internal transition. Thus, δ−1

G (ε) has exactly one int -successor in H which
means that d = int . Finally, since T (H) is an execution tree, we have p = ⊥.

In the inductive step, we consider x · d for d ∈ {0, 1}. From the induction
hypothesis, we know that the claim holds for x. If x 6∈ T and x 6∈ TH , then also
x · d 6∈ T and x · d 6∈ TH since trees are prefix-closed. In the other case, let xi be
the class of x. We have x ∈ T and x ∈ TH with r(x) = rH(x) = (li, di, pi) and the
configuration in δ−1

G (x) is (s, xiw) for some stack content w. We distinguish cases
based on di. We consider the most involved case where di = callRet . Since T is

20 R. Lakenbrink et al.

an execution tree, we know that x·d ∈ T for d ∈ {0, 1}. Let xj be the class of x·0
and xk be the class of x ·1. We know that the only enabled transition in (s, xiw)
is sxi → sxjxk. Since di = callRet and since T (G) is an execution tree, we know
that δ−1

G (x · 0) continues with the configuration after this call transition and
δ−1
G (x · 1) continues with the configuration after the matching return transition

(which exists in this case). Thus, the configuration in δ−1
G (x ·0) is (s, xjxkw) and

the configuration in δ−1
G (x · 1) is (s, xkw), establishing this part of the claim. We

now establish that r(x · d) = rH(x · d). For the first and second component, this
is established by the fact that the configuration in δ−1

G (x ·d) determines both the
label and the unique enabled transition. For the third component, this follows
from the fact that both T and T (H) are execution trees and the fact that r(x)
and rH(x) match in the second component. ⊓⊔

We obtain the following theorem for the two satisfiability problems:

Theorem 13. The graph and DPN satisfiability problems for NTL are EXPTIME-
complete.

Proof. Since the two problems are equivalent by Theorem 12, we need to only
give an upper and lower bound for the graph satisfiability problem.

For the upper bound, we can construct an automaton for the formula using
Corollary 9 and test it for emptiness using Proposition 2 in time exponential in
|ϕ| for an answer to the graph satisfiability problem.

The lower bound follows by a reduction from the VP -µ-TL satisfiability prob-
lem which was shown to be EXPTIME-hard in [10]. The reduction is straight-
forward since VP -µ-TL is a sublogic of NTL and we can easily extract a nested
word satisfying a formula interpreted in VP -µ-TL from the execution graph sat-
isfying the same formula interpreted in NTL. ⊓⊔

8 Conclusion

We introduced a novel specification logic called NTL for reasoning about the
call-return and thread creation behaviour of dynamic pushdown networks. We
showed that a variety of interesting properties regarding the behaviour of multi-
threaded software is expressible in NTL. Further, the model checking and satisfia-
bility problems were investigated. The complexity of these problems is not higher
than that of the corresponding problems for related logics for pushdown systems
despite a more powerful logic and system model. For future work, it would be in-
teresting to consider more powerful variants of DPNs that allow communication
and synchronization of different threads via locking or messages.

References

1. Oracle Java docs: Intrinsic locks and synchronization,
https://docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html

A Navigation Logic for Recursive Programs with Dynamic Thread Creation 21

2. Alur, R., Arenas, M., Barceló, P., Etessami, K., Immerman, N., Libkin,
L.: First-order and temporal logics for nested words. Log. Methods
Comput. Sci. 4(4) (2008). https://doi.org/10.2168/LMCS-4(4:11)2008 ,
https://doi.org/10.2168/LMCS-4(4:11)2008

3. Alur, R., Chaudhuri, S., Madhusudan, P.: A fixpoint calculus for local and
global program flows. In: Morrisett, J.G., Jones, S.L.P. (eds.) Proceedings
of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2006, Charleston, South Carolina, USA, January 11-13,
2006. pp. 153–165. ACM (2006). https://doi.org/10.1145/1111037.1111051 ,
https://doi.org/10.1145/1111037.1111051

4. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls
and returns. In: Jensen, K., Podelski, A. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems, 10th International Conference,
TACAS 2004, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 - April
2, 2004, Proceedings. Lecture Notes in Computer Science, vol. 2988, pp.
467–481. Springer (2004). https://doi.org/10.1007/978-3-540-24730-2_35,
https://doi.org/10.1007/978-3-540-24730-2_35

5. Alur, R., Madhusudan, P.: Adding nesting structure to words. In: Ibarra, O.H.,
Dang, Z. (eds.) Developments in Language Theory, 10th International Con-
ference, DLT 2006, Santa Barbara, CA, USA, June 26-29, 2006, Proceed-
ings. Lecture Notes in Computer Science, vol. 4036, pp. 1–13. Springer (2006).
https://doi.org/10.1007/11779148_1, https://doi.org/10.1007/11779148_1

6. Apt, K.R., Plotkin, G.D.: Countable nondeterminism and random assign-
ment. J. ACM 33(4), 724–767 (1986). https://doi.org/10.1145/6490.6494 ,
https://doi.org/10.1145/6490.6494

7. Atig, M.F., Bouajjani, A., Qadeer, S.: Context-bounded analysis for
concurrent programs with dynamic creation of threads. Log. Methods
Comput. Sci. 7(4) (2011). https://doi.org/10.2168/LMCS-7(4:4)2011 ,
https://doi.org/10.2168/LMCS-7(4:4)2011

8. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown au-
tomata: Application to model-checking. In: Mazurkiewicz, A.W., Winkowski, J.
(eds.) CONCUR ’97: Concurrency Theory, 8th International Conference, Warsaw,
Poland, July 1-4, 1997, Proceedings. Lecture Notes in Computer Science, vol. 1243,
pp. 135–150. Springer (1997). https://doi.org/10.1007/3-540-63141-0_10 ,
https://doi.org/10.1007/3-540-63141-0_10

9. Bouajjani, A., Müller-Olm, M., Touili, T.: Regular symbolic analy-
sis of dynamic networks of pushdown systems. In: Abadi, M., de Al-
faro, L. (eds.) CONCUR 2005 - Concurrency Theory, 16th Interna-
tional Conference, CONCUR 2005, San Francisco, CA, USA, August 23-
26, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3653,
pp. 473–487. Springer (2005). https://doi.org/10.1007/11539452_36 ,
https://doi.org/10.1007/11539452_36

10. Bozzelli, L.: Alternating automata and a temporal fixpoint calculus for visibly
pushdown languages. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007 –
Concurrency Theory. pp. 476–491. Springer Berlin Heidelberg, Berlin, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74407-8_32

11. Bozzelli, L., Lanotte, R.: Hybrid and first-order complete extensions
of CaRet. In: Brünnler, K., Metcalfe, G. (eds.) Automated Reason-
ing with Analytic Tableaux and Related Methods - 20th Interna-

https://doi.org/10.2168/LMCS-4(4:11)2008
https://doi.org/10.2168/LMCS-4(4:11)2008
https://doi.org/10.2168/LMCS-4(4:11)2008
https://doi.org/10.1145/1111037.1111051
https://doi.org/10.1145/1111037.1111051
https://doi.org/10.1145/1111037.1111051
https://doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1007/11779148_1
https://doi.org/10.1007/11779148_1
https://doi.org/10.1007/11779148_1
https://doi.org/10.1145/6490.6494
https://doi.org/10.1145/6490.6494
https://doi.org/10.1145/6490.6494
https://doi.org/10.2168/LMCS-7(4:4)2011
https://doi.org/10.2168/LMCS-7(4:4)2011
https://doi.org/10.2168/LMCS-7(4:4)2011
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/11539452_36
https://doi.org/10.1007/11539452_36
https://doi.org/10.1007/11539452_36
https://doi.org/10.1007/978-3-540-74407-8_32
https://doi.org/10.1007/978-3-540-74407-8_32

22 R. Lakenbrink et al.

tional Conference, TABLEAUX 2011, Bern, Switzerland, July 4-8, 2011.
Proceedings. Lecture Notes in Computer Science, vol. 6793, pp. 58–
72. Springer (2011). https://doi.org/10.1007/978-3-642-22119-4_7,
https://doi.org/10.1007/978-3-642-22119-4_7

12. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skele-
tons using branching-time temporal logic. In: Kozen, D. (ed.) Logics of
Programs, Workshop, Yorktown Heights, New York, USA, May 1981. Lec-
ture Notes in Computer Science, vol. 131, pp. 52–71. Springer (1981).
https://doi.org/10.1007/BFb0025774, https://doi.org/10.1007/BFb0025774

13. Diaz, M., Touili, T.: Model checking dynamic pushdown networks with locks
and priorities. In: Podelski, A., Taïani, F. (eds.) Networked Systems - 6th
International Conference, NETYS 2018, Essaouira, Morocco, May 9-11, 2018,
Revised Selected Papers. Lecture Notes in Computer Science, vol. 11028, pp.
240–251. Springer (2018). https://doi.org/10.1007/978-3-030-05529-5_16,
https://doi.org/10.1007/978-3-030-05529-5_16

14. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of pro-
grams (extended abstract). In: 29th Annual Symposium on Foundations of Com-
puter Science, White Plains, New York, USA, 24-26 October 1988. pp. 328–337.
IEEE Computer Society (1988). https://doi.org/10.1109/SFCS.1988.21949 ,
https://doi.org/10.1109/SFCS.1988.21949

15. Gawlitza, T.M., Lammich, P., Müller-Olm, M., Seidl, H., Wenner, A.:
Join-lock-sensitive forward reachability analysis for concurrent programs
with dynamic process creation. In: Jhala, R., Schmidt, D.A. (eds.) Ver-
ification, Model Checking, and Abstract Interpretation - 12th Interna-
tional Conference, VMCAI 2011, Austin, TX, USA, January 23-25, 2011.
Proceedings. Lecture Notes in Computer Science, vol. 6538, pp. 199–
213. Springer (2011). https://doi.org/10.1007/978-3-642-18275-4_15,
https://doi.org/10.1007/978-3-642-18275-4_15

16. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and In-
finite Games: A Guide to Current Research [outcome of a Dagstuhl
seminar, February 2001], Lecture Notes in Computer Science,
vol. 2500. Springer (2002). https://doi.org/10.1007/3-540-36387-4 ,
https://doi.org/10.1007/3-540-36387-4

17. Gutsfeld, J.O., Müller-Olm, M., Nordhoff, B.: A branching time vari-
ant of CaRet. In: Gallardo, M., Merino, P. (eds.) Model Checking Soft-
ware - 25th International Symposium, SPIN 2018, Malaga, Spain, June
20-22, 2018, Proceedings. Lecture Notes in Computer Science, vol. 10869,
pp. 153–170. Springer (2018). https://doi.org/10.1007/978-3-319-94111-0_9,
https://doi.org/10.1007/978-3-319-94111-0_9

18. Kupferman, O., Vardi, M.Y.: Weak alternating automata and tree automata
emptiness. In: Vitter, J.S. (ed.) Proceedings of the Thirtieth Annual ACM
Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26,
1998. pp. 224–233. ACM (1998). https://doi.org/10.1145/276698.276748 ,
https://doi.org/10.1145/276698.276748

19. Lammich, P., Müller-Olm, M., Seidl, H., Wenner, A.: Contextual locking for dy-
namic pushdown networks. In: Logozzo, F., Fähndrich, M. (eds.) Static Anal-
ysis - 20th International Symposium, SAS 2013, Seattle, WA, USA, June 20-
22, 2013. Proceedings. Lecture Notes in Computer Science, vol. 7935, pp.
477–498. Springer (2013). https://doi.org/10.1007/978-3-642-38856-9_25,
https://doi.org/10.1007/978-3-642-38856-9_25

https://doi.org/10.1007/978-3-642-22119-4_7
https://doi.org/10.1007/978-3-642-22119-4_7
https://doi.org/10.1007/978-3-642-22119-4_7
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/978-3-030-05529-5_16
https://doi.org/10.1007/978-3-030-05529-5_16
https://doi.org/10.1007/978-3-030-05529-5_16
https://doi.org/10.1109/SFCS.1988.21949
https://doi.org/10.1109/SFCS.1988.21949
https://doi.org/10.1109/SFCS.1988.21949
https://doi.org/10.1007/978-3-642-18275-4_15
https://doi.org/10.1007/978-3-642-18275-4_15
https://doi.org/10.1007/978-3-642-18275-4_15
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/978-3-319-94111-0_9
https://doi.org/10.1007/978-3-319-94111-0_9
https://doi.org/10.1007/978-3-319-94111-0_9
https://doi.org/10.1145/276698.276748
https://doi.org/10.1145/276698.276748
https://doi.org/10.1145/276698.276748
https://doi.org/10.1007/978-3-642-38856-9_25
https://doi.org/10.1007/978-3-642-38856-9_25
https://doi.org/10.1007/978-3-642-38856-9_25

A Navigation Logic for Recursive Programs with Dynamic Thread Creation 23

20. Lammich, P., Müller-Olm, M., Wenner, A.: Predecessor sets of dy-
namic pushdown networks with tree-regular constraints. In: Bouaj-
jani, A., Maler, O. (eds.) Computer Aided Verification, 21st Interna-
tional Conference, CAV 2009, Grenoble, France, June 26 - July 2, 2009.
Proceedings. Lecture Notes in Computer Science, vol. 5643, pp. 525–
539. Springer (2009). https://doi.org/10.1007/978-3-642-02658-4_39,
https://doi.org/10.1007/978-3-642-02658-4_39

21. Lange, M.: Weak automata for the linear time µ-calculus. In:
Cousot, R. (ed.) Verification, Model Checking, and Abstract In-
terpretation. pp. 267–281. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2005). https://doi.org/10.1007/978-3-540-30579-8_18,
https://doi.org/10.1007/978-3-540-30579-8_18

22. Lichtenstein, O., Pnueli, A.: Checking that finite state concurrent programs
satisfy their linear specification. In: Deusen, M.S.V., Galil, Z., Reid, B.K.
(eds.) Conference Record of the Twelfth Annual ACM Symposium on Prin-
ciples of Programming Languages, New Orleans, Louisiana, USA, January
1985. pp. 97–107. ACM Press (1985). https://doi.org/10.1145/318593.318622 ,
https://doi.org/10.1145/318593.318622

23. Löding, C.: Automata on infinite trees. In: Pin, J. (ed.) Handbook of
Automata Theory, pp. 265–302. European Mathematical Society Publishing
House, Zürich, Switzerland (2021). https://doi.org/10.4171/Automata-1/8 ,
https://doi.org/10.4171/Automata-1/8

24. Nordhoff, B., Müller-Olm, M., Lammich, P.: Iterable forward reachability
analysis of Monitor-DPNs. In: Banerjee, A., Danvy, O., Doh, K., Hat-
cliff, J. (eds.) Semantics, Abstract Interpretation, and Reasoning about
Programs: Essays Dedicated to David A. Schmidt on the Occasion of
his Sixtieth Birthday, Manhattan, Kansas, USA, 19-20th September 2013.
EPTCS, vol. 129, pp. 384–403 (2013). https://doi.org/10.4204/EPTCS.129.24 ,
https://doi.org/10.4204/EPTCS.129.24

25. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive mod-
ule. In: Ausiello, G., Dezani-Ciancaglini, M., Rocca, S.R.D. (eds.) Automata,
Languages and Programming, 16th International Colloquium, ICALP89, Stresa,
Italy, July 11-15, 1989, Proceedings. Lecture Notes in Computer Science,
vol. 372, pp. 652–671. Springer (1989). https://doi.org/10.1007/BFb0035790 ,
https://doi.org/10.1007/BFb0035790

26. Song, F., Touili, T.: Model checking dynamic pushdown networks. Formal Aspects
Comput. 27(2), 397–421 (2015). https://doi.org/10.1007/s00165-014-0330-y ,
https://doi.org/10.1007/s00165-014-0330-y

27. Tarski, A.: A lattice-theoretical fixpoint theorem and
its applications. Pacific J. Math. 5(2), 285–309 (1955),
https://projecteuclid.org:443/euclid.pjm/1103044538

28. Vardi, M.Y.: A temporal fixpoint calculus. In: POPL. pp. 250–
259. ACM Press (1988). https://doi.org/10.1145/73560.735822 ,
https://doi.org/10.1145/73560.73582

29. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen, K.G.,
Skyum, S., Winskel, G. (eds.) Automata, Languages and Programming, 25th In-
ternational Colloquium, ICALP’98, Aalborg, Denmark, July 13-17, 1998, Proceed-
ings. Lecture Notes in Computer Science, vol. 1443, pp. 628–641. Springer (1998).
https://doi.org/10.1007/BFb0055090, https://doi.org/10.1007/BFb0055090

https://doi.org/10.1007/978-3-642-02658-4_39
https://doi.org/10.1007/978-3-642-02658-4_39
https://doi.org/10.1007/978-3-642-02658-4_39
https://doi.org/10.1007/978-3-540-30579-8_18
https://doi.org/10.1007/978-3-540-30579-8_18
https://doi.org/10.1007/978-3-540-30579-8_18
https://doi.org/10.1145/318593.318622
https://doi.org/10.1145/318593.318622
https://doi.org/10.1145/318593.318622
https://doi.org/10.4171/Automata-1/8
https://doi.org/10.4171/Automata-1/8
https://doi.org/10.4171/Automata-1/8
https://doi.org/10.4204/EPTCS.129.24
https://doi.org/10.4204/EPTCS.129.24
https://doi.org/10.4204/EPTCS.129.24
https://doi.org/10.1007/BFb0035790
https://doi.org/10.1007/BFb0035790
https://doi.org/10.1007/BFb0035790
https://doi.org/10.1007/s00165-014-0330-y
https://doi.org/10.1007/s00165-014-0330-y
https://doi.org/10.1007/s00165-014-0330-y
https://projecteuclid.org:443/euclid.pjm/1103044538
https://doi.org/10.1145/73560.735822
https://doi.org/10.1145/73560.735822
https://doi.org/10.1145/73560.73582
https://doi.org/10.1007/BFb0055090
https://doi.org/10.1007/BFb0055090
https://doi.org/10.1007/BFb0055090

24 R. Lakenbrink et al.

A Fixpoint Theory

In some of the proofs in this paper, we need results from fixpoint theory. We
provide the necessary definitions and results in this section. A partial order is
a pair (L,⊑) such that ⊑ is a reflexive, transitive and antisymmetric binary
relation on L. For X ⊆ L and x ∈ L, we call x a lower bound on X iff x ⊑ x′ for
all x′ ∈ X . Similarly, x is called an upper bound on X iff x′ ⊑ x for all x′ ∈ X . A
lower bound x of X is called the greatest lower bound of X , denoted x =

d
X , iff

x′ ⊑ x for all lower bounds x′ of X . Analogously, an upper bound x of X is called
the least upper bound of X , denoted x =

⊔

X , iff x ⊑ x′ for all upper bounds
x′ of X . A partial order (L,⊑) is called a complete lattice iff the least upper
bound

⊔

X exists for every set X ⊆ L. For a function f : L → L′ on partial
orders (L,⊑) and (L′,⊑′), we call f monotone iff x ⊑ x′ implies f(x) ⊑′ f(x′)
for all x, x′ ∈ L. For (L,⊑) = (L′,⊑′), a fixpoint of f is an element x ∈ L
with f(x) = x. We call a fixpoint x of f the least fixpoint of f , denoted µf , iff
x ⊑ x′ for all fixpoints x′ of f . Analogously, a fixpoint x is called the greatest
fixpoint of f , denoted νf , iff x′ ⊑ x for all fixpoints x′ of f . We use the classical
Knaster-Tarski fixpoint theorem:

Proposition 14 ([27]). Let (L,⊑) be a complete lattice and f : L → L be a
monotone function. Then f has a least fixpoint that is characterised by µf =d
{x ∈ L | f(x) ⊑ x}.

Additionally, we need a lemma about the relationship of least fixpoints in dif-
ferent partial orders. This lemma is a variant of a similar transfer lemma found
e.g. in [6].

Lemma 15. Let (L,⊑) and (L′,⊑′) be partial orders with functions f : L→ L,
f ′ : L′ → L′ and µf be the least fixpoint of f . Let further h : L→ L′ be a bijective,
monotone function with h ◦ f = f ′ ◦ h. Then µf ′ = h(µf).

Proof. We first show that h(µf) is a fixpoint of f ′. Since µf is a fixpoint of f ,
we have f ′(h(µf)) = f ′ ◦ h(µf) = h ◦ f(µf) = h(f(µf)) = h(µf), i.e. h(µf) is a
fixpoint of f ′.

It remains to show that h(µf) is the least fixpoint of f ′. Therefore, let y be
an arbitrary fixpoint of f ′. We show that h(µf) ⊑ y. Since y is a fixpoint of f ′,
we have f(h−1(y)) = h−1 ◦ h ◦ f ◦ h−1(y) = h−1 ◦ f ′ ◦ h ◦ h−1(y) = h−1(f ′(y)) =
h−1(y), i.e. h−1(y) is a fixpoint of f . Since µf is the least fixpoint of f , we have
µf ⊑ h−1(y). Since h is monotone, we infer that h(µf) ⊑′ h(h−1(y)) = y. Since
y was an arbitrary fixpoint of f ′, the fixpoint h(µf) must be the least fixpoint
of f ′. ⊓⊔

In this paper, we consider complete lattices of the form (2A,⊆) for a set A. In
these lattices, greatest lower and least upper bounds are given by intersections
and unions over sets, respectively.

A Navigation Logic for Recursive Programs with Dynamic Thread Creation 25

B Proofs from Section 4

Lemma 16. Let S = (G,V , X, ϕ) where G = (V, l, (→d)d∈Moves,y) is an exe-
cution graph, V is a fixpoint variable assignment, X is a fixpoint variable and
ϕ is a well-formed NTL formula in positive normal form. Then, the function
αS : 2V → 2V with αS(M) = JϕKGV[X 7→M] is monotone.

Proof. The proof is by induction on the structure of ϕ.

– ϕ = ap for ap ∈ AP : Since αS is constant in this case, we have αS(M) =
αS(M

′) for M ⊆M ′.
– ϕ = ¬ap for ap ∈ AP : Analogous to the previous case.
– ϕ = Y for a fixpoint variable Y : For Y 6= X , αS is constant in this case, and

we have αS(M) = αS(M
′) for M ⊆M ′. For Y = X , we have αS(M) =M ⊆

M ′ = αS(M
′) for M ⊆M ′.

– ϕ = ϕ1 ∨ ϕ2: Let S1 = (G,V , X, ϕ1) and S2 = (G,V , X, ϕ2). We have αS(M) =
αS1

(M) ∪ αS2
(M) ⊆ αS1

(M ′) ∪ αS2
(M ′) = αS(M

′) for M ⊆ M ′ by the in-
duction hypothesis.

– ϕ = ϕ1 ∧ ϕ2: Analogous to the previous case.

– ϕ = ©fϕ1 for f ∈ {g, ↑, a,−, p, c}: Let S1 = (G,V , X, ϕ1). We have

αS(M) = {x ∈ V | succGf (x) is defined and succGf (x) ∈ αS1
(M)}

⊆ {x ∈ V | succGf (x) is defined and succGf (x) ∈ αS1
(M ′)}

= αS(M
′)

for M ⊆M ′ by the induction hypothesis.
– ϕ = ©f̄ϕ1 for f ∈ {g, ↑, a,−, p, c}: Analogous to the previous case.

– ϕ = µY.ϕ1: For Y = X , αS is constant and we have αS(M) = αS(M
′) for

M ⊆M ′. For Y 6= X , let SM
′′

1 = (G,V [Y 7→M ′′], X, ϕ1). We have

αS(M) =
⋂

{M ′′ ⊆ V | Jϕ1KGV[X 7→M][Y 7→M ′′] ⊆M ′′}

=
⋂

{M ′′ ⊆ V | αSM′′

1

(M) ⊆M ′′}

(∗)

⊆
⋂

{M ′′ ⊆ V | α
SM′′

1

(M ′) ⊆M ′′}

=
⋂

{M ′′ ⊆ V | Jϕ1KGV[X 7→M ′][Y 7→M ′′] ⊆M ′′}

= αS(M
′)

for M ⊆ M ′. In step (∗), the induction hypothesis implies α
SM′′

1

(M) ⊆

αSM′′

1

(M ′) for all M ′′ ⊆ V , which then means that {M ′′ ⊆ V | αSM′′

1

(M) ⊆

M ′′} ⊇ {M ′′ ⊆ V | α
SM′′

1

(M ′) ⊆ M ′′} which in turn implies the inclusion

(∗).
– ϕ = νY.ϕ1: Analogous to the previous case. ⊓⊔

Using Proposition 14, a corollary from this lemma is:

26 R. Lakenbrink et al.

Corollary 17. Let S = (G,V , X, ϕ) where G = (V, l, (→d)d∈Moves,y) is an
execution graph, V is a fixpoint variable assignment, X is a fixpoint variable and
ϕ is a well-formed NTL formula in positive normal form. Then, JµX.ϕKGV is the
least fixpoint of αS.

C Properties of Successor Functions

We establish some properties of the successor functions defined on execution
graphs that are used in some of the proofs in this paper.

Lemma 18. Let G = (V, l, (→d)d∈Moves,y) be an execution graph.

(i) For all y ∈ V , there is z ∈ V with z y y iff y has a ret-predecessor x. In
this case we have z = succG−(x).

(ii) For all x, y ∈ V with y = succGa (x), the caller of x is defined iff the caller of
y is defined and in this case succG−(x) = succG−(y).

(iii) For all x, y ∈ V with x→int y, x→call y or xy y, the parent of x is defined
iff the parent of y is defined and in this case succGp (x) = succGp (y).

Proof. (i) Let y ∈ V be a node.
For the first direction, assume that there is a node z ∈ V with z y y. Then
there is a path from z to y following only Moves \ {spawn}-successors such
that the number n of call -moves on that path is equal to the number of ret-
moves on that path. Since y 6= z and z has a call -successor, we have n > 0.
Since y is defined as the node such that this path has minimal length, the
predecessor of y must be a ret -predecessor.
For the other direction, assume that y has a ret -predecessor x. Since (v0, y) ∈
(

⋃

d∈Moves

→d)∗, there is a node u ∈ V that is either v0 or has a spawn-

predecessor such that there is a path π from u to y following only Moves \
{spawn}-successors. Since y is a ret-successor and the number of call -moves
on π has to be greater or equal to the number of ret-moves on π, we can
consider the last node z on π with a call -successor z′ such that the number
of call -moves on the path π between z and y is equal to the number of
ret -moves on π between z and y. Then we have z y y.
It remains to show that z = succG−(x). Let n be the number of call -transitions
on the path π from the call -successor z′ of z to x following only Moves \
{spawn}-transitions. Since z y y, z′ is the call -successor of z and y is the
ret -successor of x, this is also the number of ret -transitions on π. We now
show by induction on n that we can transform the path π to a path π′ from z′

to x following abstract successors. Since z →call z′, this implies in particular
that z = succG−(x).
If n = 0, the path π follows only int -successors, i.e. it is also a path following
abstract successors.
If n > 0, let c and c′ be the first nodes on the path π with c →call c′. Since
the number of call -moves on π is equal to the number of ret -moves on π,
there is a node r ∈ V on the path π between c and x with c y r. Thus,

A Navigation Logic for Recursive Programs with Dynamic Thread Creation 27

π can be written as π = π1π2π3 for paths π1 from z′ to c, π2 from c to r
and π3 from r to x following Moves \ {spawn}-transitions. By construction,
there are no call -moves on π1. Moreover, there are no ret-moves on π1 since
this would imply z y v for a node v 6= y. Thus, π1 is also a path following
abstract successors. Moreover, the number m of call -moves on π3 is also
equal to the number of ret -moves on π3, since the same holds true for π, π1
and π2. Since we clearly have m < n, we can transform π3 to a path πa from
r to x following abstract successors by the induction hypothesis. Since r is
the abstract successor of c, the concatenation of the paths π1 and πa is thus
a path from z′ to x following abstract successors.

(ii) succG−(x) is defined iff there is a node z ∈ V with a call -successor z′ such
that there is a path from z′ to x following abstract successors. Since y =
succGa (x) and abstract successors are uniquely determined, we can demand
equivalently that there is a node z ∈ V with a call -successor z′ such that
there is a path from z′ to y following abstract successors, i.e. succG−(y) is
defined and in this case succG−(y) = z = succG−(x).

(iii) succGp (x) is defined iff there is a node z ∈ V with a spawn-successor z′

such that there is a path π from z′ to x following only Moves \ {spawn}-
transitions. If x y y, there is also a path π′ from x to y following only
Moves\{spawn}-transitions. This also holds trivially if x→int y or x→call y.
Thus, since Moves \ {spawn}-successors are uniquely determined, we can
demand equivalently that there is a node z ∈ V with a spawn-successor
z′ such that there is a path π from z′ to y following only Moves \ {spawn}-
transitions, i.e. succGp (y) is defined and in this case succGp (y) = z = succGp (x).

⊓⊔

D Proofs from Section 6

Proof of Lemma 6. Let x ∈ V be an arbitrary node. Since δG(y) is defined for
all nodes y ∈ V , we only have to show that succGf (x) is defined iff succTf (δG(x))

is defined and that δG(succ
G
f (x)) = succTf (δG(x)) holds in this case. In order to

improve readability, we also write succGf (x) = succGf (y) for f ∈ {g, ↑, a,−, p, c}

and y ∈ V , if both succGf (x) and succGf (y) are undefined. We show the claim for
each successor type separately.

– f = a : The claim is shown by a case distinction on d(x).

If d(x) ∈ {int , spawn}, then x has an int-successor y, i.e. succGa (x) = y.
Moreover, we have δG(y) = δG(x) · 0 and thus succTa (δG(x)) = δG(x) · 0 =
δG(y) = δG(succ

G
a (x)).

If d(x) = callRet , there is y ∈ V with x y y, i.e. succGa (x) = y. Moreover,
we have δG(y) = δG(x) · 1 and thus succTa (δG(x)) = δG(x) · 1 = δG(y) =
δG(succ

G
a (x)).

If d(x) ∈ {call , ret , end}, there is no y ∈ V with x y y and x has no
int -successor, i.e. succGa (x) is undefined. Moreover, succTa (δG(x)) is also un-
defined in this case.
Thus, we have established δG ◦succGa (x) = succTa ◦δG(x) in each of the cases.

28 R. Lakenbrink et al.

– f = − : Since G is an execution graph, we have (v0, x) ∈ (
⋃

d∈Moves

→d)∗.

Thus, let π be a path from v0 to x following Moves-successors. We show the
claim by induction on the length n of π.
If n = 0, we have x = v0. In this case x has no predecessor and succG−(x)
is undefined. Moreover, we have p(x) = ⊥ and thus succT−(δG(x)) is also
undefined.
If n > 0, let y be the predecessor node of x in π. We show the claim by a
case distinction based on what type of predecessor y is.
If y →call x, we have succG−(x) = y and δG(x) = δG(y) · 0, i.e. δG(y)
is the parent node of δG(x). Moreover, we have p(x) = call and hence
succT−(δG(x)) = δG(y) = δG(succ

G
−(x)).

If y →int x, then x = succGa (y). Thus, by Lemma 18(ii), succG−(x) =
succG−(y). Moreover, we have δG(x) = δG(y) · 0, i.e. δG(y) is the parent
node of δG(x) and we have p(x) = int , i.e. succT−(δG(x)) = succT−(δG(y)).
By the induction hypothesis, we obtain δG(succ

G
−(x)) = δG(succ

G
−(y)) =

succT−(δG(y)) = succT−(δG(x)).
If y →ret x, then by Lemma 18(i), there is z ∈ V with z y x. We then have
x = succGa (z) and δG(x) = δG(z) · 1, i.e. δG(z) is the parent node of δG(x).
The claim follows as in the previous case.
If y →spawn x, then succG−(x) is undefined since x has no call−, int- or
ret -predecessor, i.e. there is no y ∈ V such that x = succGa (y) or x is a
call -successor of y. Moreover, we have p(x) = spawn and thus succT−(δG(x))
is also undefined.
Thus, we have established δG ◦succG−(x) = succT− ◦δG(x) in each of the cases.

– f = g : The claim is shown by a case distinction on d(x).
If d(x) ∈ {int , call , callRet , spawn}, then x has an int- or call -successor y, i.e.
succGg (x) = y. Moreover, we have δG(y) = δG(x) ·0 and thus succTg (δG(x)) =

δG(x) · 0 = δG(y) = δG(succ
G
g (x)).

If d(x) = ret , then x has a ret-successor y, i.e. succGg (x) = y. By Lemma 18(i),

there is a node z ∈ V with z y y and z = succG−(x) and thus y =
succGa (z) = succGa (succ

G
−(x)). Since we have already shown the claim for

the abstract successor and the caller, we conclude that succTg (δG(x)) =

succTa (succ
T
−(δG(x))) = succTa (δG(succ

G
−(x))) = δG(succ

G
a (succ

G
−(x))) =

δG(y) = δG(succ
G
g (x)).

If d(x) = end , then x has no successor, i.e. succGg (x) is undefined. Moreover,

succTg (δG(x)) is also undefined in this case.

Thus, we have established δG ◦succGg (x) = succTg ◦δG(x) in each of the cases.
– f = ↑: We show the claim by a case distinction on p(x).

If p(x) ∈ {int , call}, then x has a p(x)-predecessor y, i.e. succG↑ (x) = y.
Moreover, δG(y) is the parent node of δG(x) = δG(y) · 0. Thus, we have
δG(succ

G
↑ (x)) = δG(y) = succT↑ (δG(x)).

If p(x) = ret , then x has a ret -predecessor y, i.e. succG↑ (x) = y, and by

Lemma 18(i) there is a node z ∈ V with z y x and succG−(y) = z. Using
the claim for f = −, which we have already seen, we thus have δG(z) =

A Navigation Logic for Recursive Programs with Dynamic Thread Creation 29

δG(succ
G
−(y)) = succT−(δG(y)). By definition, the caller predecessor of δG(y)

has to be a node with a call -child δG(z
′) such that δG(z

′) is an {int , ret}-
ancestor of δG(y). Moreover, since x is a ret-successor of y, we have d(y) = ret

and hence δG(y) is a leaf. Thus, δG(y) is the {int , ret}-descendant leaf of
δG(z

′), which is the left child of the parent node δG(z) of δG(x) = δG(z) · 1,
i.e. succT↑ (δG(x)) = δG(y). Hence, δG(succ

G
↑ (x)) = δG(y) = succT↑ (δG(x)).

If p(x) ∈ {spawn ,⊥}, then x has no int-, call - or ret-predecessor, i.e. succG↑ (x)

is undefined. Moreover, succT↑ (δG(x)) is also undefined in this case.

Thus, we have established δG ◦succG↑ (x) = succT↑ ◦δG(x) in each of the cases.

– f = p : Since G is an execution graph, we have (v0, x) ∈ (
⋃

d∈Moves

→d)∗. Thus,

let π be a path from v0 to x following Moves-successors. We show the claim
by induction via the length n of π.
If n = 0, we have x = v0. In this case x has no predecessor and succGp (x)

is undefined. Moreover, we have p(x) = ⊥ and thus succTp (δG(x)) is also
undefined.
If n > 0, let y be the predecessor node of x in π. We show the claim by a
case distinction based on what type of predecessor y is.
If y →ret x, by Lemma 18(i), there is z ∈ V with z y x. Hence, if y →int x,
y →call x or y →ret x, there is a node z ∈ V with z →int x, z →call x or
z y x. Thus, by Lemma 18(iii), succGp (x) = succGp (z). Moreover, δG(z) is the

parent node of δG(x) and we have p(x) ∈ {int , call , ret}, i.e. succTp (δG(x)) =

succTp (δG(z)). By the induction hypothesis, we obtain

δG(succ
G
p (x)) = δG(succ

G
p (z)) = succTp (δG(z)) = succTp (δG(x)).

If y →spawn x, we have succGp (x) = y and δG(x) = δG(y) · 1, i.e. δG(y)
is the parent node of δG(x). Moreover, we have p(x) = spawn and hence
succTp (δG(x)) = δG(y) = δG(succ

G
p (x)).

Thus, we have established δG ◦succGp (x) = succTp ◦δG(x) in each of the cases.
– f = c : We distinguish two cases for d(x).

If d(x) = spawn , then x has a spawn-successor y, i.e. we have succGc (x) = y.
Moreover, we have δG(y) = δG(x) · 1 and thus succTc (δG(x)) = δG(y) =
δG(succ

G
c (x)).

If d(x) 6= spawn , then x has no spawn-successor, i.e. succGc (x) is undefined.
Moreover, δG(x) is also undefined in this case.
Thus, we have established δG ◦ succGc (x) = succTc ◦ δG(x) in both cases. ⊓⊔

E Proofs from Section 7

Proof of Theorem 7. We first show that AET accepts all execution trees.
For this, let G = (V, l, (→d)d∈Moves,y) be an execution graph and T (G) =

(T, r) be the tree representation of G. We inductively define a map rR : V →
{0, 1} as follows. First, we set rR(v0) := 0. Then, for each node x ∈ V ,

– if there is a node y ∈ V such that y is an int -predecessor of x or y y x (the
latter holds by Lemma 18(i) iff x has a ret-predecessor), we set rR(x) :=
rR(y),

30 R. Lakenbrink et al.

– if x (i) has a spawn-predecessor or (ii) it has a call -predecessor y and there
is no node z ∈ V with y y z, we set rR(x) := 0 and

– if x has a call -predecessor y and there is a node z ∈ V with y y z, we set
rR(x) := 1.

Next, we define a map rA : T → Q by rA(δG(x)) := (p(x), rR(x)) and show the
following claim:

Claim: rA is an accepting (ε, q0)-run of AET over T (G).
We first show that rA is an (ε, q0)-run of AET over T (G). For the initial node,

we have p(v0) = ⊥ and rR(v0) = 0 and thus rA(ε) = rA(δG(v0)) = (⊥, 0) = q0.
Let t = δG(x) ∈ T be an arbitrary node with r(t) = (l(x), d(x), p(x)) and

rA(t) = (p(x), c). By a case distinction on d(x), we show that the children of t
satisfy the transition function in this node.

– If d(x) = int , then x has exactly one int -successor y with p(y) = int , rR(y) =
rR(x) = c and δG(y) = t · 0. Thus, {(0, rA(t · 0))} = {(0, (int , c))} satisfies
ρ((p(x), c), r(t)).

– If d(x) = call , then x has exactly one call -successor y with p(y) = call ,
there is no node z ∈ V with x y z, i.e. rR(x) = 0, and δG(y) = t · 0. Thus
{(0, rA(t · 0))} = {(0, (call , 0))} satisfies ρ((p(x), c), r(t)).

– If d(x) = callRet , then x has a call -successor y with p(y) = call , there is
a node z ∈ V with x y z and by Lemma 18(i), there is a node z′ ∈ V
with z′ →ret z, i.e. p(z) = ret . Thus, we have rR(y) = 1, δG(y) = t · 0,
rR(z) = rR(x) = c, and δG(z) = t · 1. Thus, {(0, rA(t · 0)), (1, rA(t · 1))} =
{(0, (call , 1)), (1, (ret , c))} satisfies ρ((p(x), c), r(t)).

– If d(x) = spawn, then x has an int -successor y and a spawn-successor z with
p(y) = int , rR(y) = rR(x) = c, δG(y) = t · 0, p(z) = spawn , rR(z) = 0, and
δG(z) = t·1. Thus, {(0, rA(t·0)), (1, rA(t·1))} = {(0, (int , c)), (1, (spawn , 0))}
satisfies ρ((p(x), c), r(t)).

– If d(x) = ret , then x has a ret-successor y. By Lemma 18(i), there is a node
z ∈ V with z y y and succG−(x) = z, i.e. there is a path from the call -
successor z′ of z to x following abstract successors. Then we clearly have c =
rR(x) = rR(z

′) = 1 by construction. Thus, ∅ satisfies true = ρ((p(x), c), r(t)).
– If d(x) = end , then x has no successors. Assume towards contradiction that
rR(x) = 1. Clearly, by construction, there is a node z ∈ V with z y y and a
path from the call -successor z′ of z to x following abstract successors. Thus,
δG(x) is the {int , ret}-descendant leaf of the left child δG(z

′) = δG(z) · 0 of

the parent node δG(z) of δG(y) = δG(z) ·1. Then we have succ
T (G)
↑ (δG(y)) =

δG(x). Using Lemma 6, we obtain

δG(succ
G
↑ (y)) = succ

T (G)
↑ (δG(y)) = δG(x) and thus succG↑ (y) = x since δG

is injective. This means that y is a successor of x, which contradicts our
assumption that x has no successor. Thus, c = rR(x) = 0, and ∅ satisfies
true = ρ((p(x), c), r(t)).

Thus, rA is an (ε, q0)-run of AET over T (G).
It remains to show that the run is accepting. Assume towards contradiction

that there is an infinite path δG(x0)δG(x1) . . . in T where the priority 0 occurs

A Navigation Logic for Recursive Programs with Dynamic Thread Creation 31

only finitely often, i.e. there is a minimal i > 0 such that for all j ≥ i we have
rR(xj) = 1. By construction, there must be a node y ∈ V with xi−1 y y such
that xi−1 is the call -predecessor of xi and we have rR(y) = rR(xi−1) = 0. Thus,
there is a finite path in G from xi−1 to y 6= xi−1 following only Moves\{spawn}-
successors such that the number of call -moves on the path is equal to the number
of ret-moves on the path. On the other hand, the infinite path in the tree T up
from δG(xi) cannot contain a spawn-child by construction and thus provides an
infinite path inG starting in xi and following only call - or abstract successors and
thus also an infinite path in G starting in xi−1 following only Moves \ {spawn}-
successors. Since Moves\{spawn}-successors are uniquely determined, y must be
contained in this path. But since the paths between nodes z and z′ with z y z′

are the minimal paths of length greater than zero from z such that the number
of call -moves is equal to the number of ret -moves, the number of call -moves on
the infinite path up from xi so far is always greater or equal to the number of
ret-moves on this path so far. Since xi is the call -successor of xi−1, the number
of call -moves on the infinite path in G from xi−1 so far is always greater than
the number of ret-moves on this path so far after the first move. This contradicts
the fact that y 6= xi−1 is contained in this path. Thus, for all infinite paths in
T , the priority 0 occurs infinitely often, and the run is accepting.

We now show that all trees accepted by AET are execution trees. For this, let
TA = (T, r) be a tree accepted by AET, witnessed by the accepting (ε, q0)-run rA
of AET over TA. We define an execution graph G = (V, l, (→d)d∈Moves,y) and
show that TA is the tree representation of G.

The components ofG are defined as follows. First, we set V := T and l(t) := lt
where r(t) = (lt, dt, pt). For the definition of the transitions of G, let t ∈ V be
a node with rA(t) = q and r(t) = (l′, d, p). Outgoing transitions in t are defined
based on d.

– If d ∈ {int , call}, then ar (r(t)) = 1, i.e. t has a child t · 0 and we include
t→d t · 0.

– If d ∈ {callRet , spawn}, then ar(r(t)) = 2, i.e. t has two children t · 0 and
t · 1. For d = callRet , we include t →call t · 0 and t y t · 1. For d = spawn ,
we include t→int t · 0 and t→spawn t · 1.

In order to define the transition relation →ret , we show by induction on the
length of t that for all t ∈ V with rA(t) = (p, c):

(∗) c = 1 iff there are t1, t2, t3 ∈ V with t1 →call t2, t1 y t3 and there is a
path from t2 to t following only int - and ret-children.

In the base case, where t = ε, we have c = 0 and t has no parent node and
no call -predecessor.

In the inductive step, let t be of the form t′·i for i ∈ {0, 1}with rA(t
′) = (p′, c′)

and r(t′) = (l′, d, p′′). The claim is shown by a case distinction on d.

– If d = int , we have i = 0 and ρ(rA(t
′), r(t′)) = (0, (int , c′)), i.e. c = c′. Since

t = t′ ·0 is the int-child of t′ and int- or ret-children are uniquely determined,
the required nodes and the path exist for t iff they exist for t′, and the latter
holds by induction hypothesis iff c = c′ = 1.

32 R. Lakenbrink et al.

– If d = call , we have i = 0 and ρ(rA(t
′), r(t′)) = (0, (call , 0)), i.e. c = 0. Since

t is no int- or ret-child and there is no node t̃ ∈ V with t′ y t̃, the required
nodes and the path do not exist for t′ · 0 = t.

– If d = callRet , we have ρ(rA(t
′), r(t′)) = (0, (call , 1)) ∧ (1, (ret , c′)). If i = 0,

then c = 1. Since t′ →call t′ · 0 and t′ y t′ · 1, the nodes t1 = t′, t2 = t′ · 0
and t3 = t′ · 1 and the empty path from t2 = t′ · 0 = t to t witness that (∗)
holds. If i = 1, then c = c′ and t′ y t. Since int - or ret-children are uniquely
determined, the required nodes and the path exist for t iff they exist for t′,
and the latter holds by induction hypothesis iff c = 1.

– If d = spawn, we have ρ(rA(t
′), r(t′)) = (0, (int , c′))∧(1, (spawn , 0)). If i = 0,

then c = c′. Since t′ →int t′ · 0 = t and int - or ret-children are uniquely
determined, the required nodes and the path exist for t iff they exist for
t′, and the latter holds by induction hypothesis iff c = c′ = 1. If i = 1,
then c = 0. Since t is no int - or ret -child and it has no call -predecessor, the
required nodes and the path do not exist for t′ · 1 = t.

Given (∗), for each node t ∈ V with rA(t) = (p, 1) and r(t) = (l′, ret , p′), there
are nodes t1, t2, t3 ∈ V with t1 →call t2, t1 y t3 and there is a path from t2 to t
following only int- and ret-children. We then include the transition t→ret t3.

We now show that G is indeed an execution graph. For this, we separately
check each of the conditions from the definition of execution graphs.

1. Clearly, the node ε has no predecessor with respect to (→d)d∈Moves. More-
over, every node t 6= ε has exactly one predecessor with respect to (→d

)d∈Moves\{ret} and y. Additionally, t can only have a ret -predecessor, if t has
a predecessor with respect to y. Now let t′ ∈ V be a node with t′ y t. We
show that t has a unique ret-predecessor in this case. We know that t′ has a
call -successor t′ · 0 ∈ V . Now consider the unique maximal path in T from
t′ · 0 following only int - and ret-chlidren. By (∗), we have rA(x) = (p, 1) for
some p ∈ Moves ∪ {⊥} for all nodes x on the path. Since Ω(q) = 1 for all
states q visited on the path and the run rA is accepting, the path cannot
be infinite. Thus, there is a node x in the path that has no int- or ret-child.
Assume towards contradiction that x has a call -child y. For rA(x) = (p, c)
and r(x) = (l′, d, p′), we must have d = call in this case. Since y = x · 0
has to satisfy ρ((p, c), (l′, call , p′)), we thus have c = 0 which contradicts our
assumption that x is on the given path. Therefore, x also has no call -child,
i.e. we have d ∈ {ret , end}. Since ρ(rA(x), r(x)) = ρ((p, 1), (l′, d, p)) must be
satisfied by the children of x, we then have d = ret , since otherwise we had
ρ(rA(x), r(x)) = false . Thus, x →ret t holds by construction. Clearly, since
int - or ret-children are uniquely determined, we can only have y →ret t for
a node y ∈ T , if y is on the given path and it is a leaf, i.e. if y = x.

2. By construction of V , there is a path π from ε to x following only Moves \
{ret}-transitions or nesting edges for all nodes x ∈ V . Consider the first
nodes y, z on the path π with y y z, if they exist. As shown in (i), there
is a path π′ from the call -successor y′ of y to the ret-predecessor z′ of z
following only int- and ret-children, i.e. int-transitions and nesting edges.
Now include the concatenation of the paths y →call y′, π′ and z′ →ret z in

A Navigation Logic for Recursive Programs with Dynamic Thread Creation 33

the initial path π between the nodes y and z and repeat this construction. If
this provided an infinite procedure, we would obtain an infinite path from y′

following only call - or int-successors. However, since y y z, all states visited
on the path are of the form (p, 1), which contradicts the fact that the run
rA is accepting. Thus, the given procedure terminates and we finally obtain
a path from ε to x following only Moves-transitions.

3. By construction, each node clearly either has (a) exactly one int-successor
and at most one spawn-successor, (b) one call -successor, (c) one ret-successor
or (d) no successors.

4. Let x ∈ V be a node. In the construction of the path from ε to x following
only Moves-transitions in (ii), we never add a spawn-transition on the path
between nodes y and z with y y z. Moreover, for each new nesting edge we
add one call -transition and one ret-transition afterwards on the path. Thus,
on the path from ε or a node with a spawn-predecessor to x, the number
of call -moves is greater or equal to the number of ret-moves, since we start
without any ret-moves in this construction.

5. Let x ∈ V be a node with a call -successor. For the first direction, let y ∈ V
be a node with x y y. By the construction given in (ii), we obtain a path
from x to y following only Moves\{spawn}-transitions from x to y such that
the number of call -moves on the path is equal to the number of ret -moves
on the path. Moreover, for all nodes z between x and y, the number of call -
moves on the path between x and z is greater than the number of ret -moves
on this path, i.e. y is given as the node with the stated property such that
the witnessing path has minimal length.
For the other direction, let y ∈ V with y 6= x be a node such that there
is a path from x to y following only Moves \ {spawn}-transitions where the
number of call -moves on the path is equal to the number of ret -moves on
the path and the path has minimal length. Consider a subpath of this path
from a node z to a node z′ starting with a call -transition, then following only
int -transitions and finally ending with a ret-transition. By the construction
in (ii), we only obtain such a path if z y z′. Now remove the nodes between
z and z′ from the path and repeat this procedure. Since the initial path
has minimal length, it must end with a ret-transition, it starts with a call -
transition and we finally see that xy y.

Thus, we have shown that G is indeed an execution graph. It remains to show
that TA is the tree representation of G.

For this, we show by induction over the length of t that for all t ∈ T with
rA(t) = (p, c) we have δG(t) = t and either p 6= ⊥ and t has a p-predecessor or
p = ⊥ and t = ε.

In the base case, where t = ε, we have δG(t) = ε = t since ε ∈ V has no
predecessor. Moreover, we have rA(t) = q0 = (⊥, 0), since rA is an (ε, q0)-run,
i.e. p = ⊥.

In the inductive step, let t be of the form t′ · i for i ∈ {0, 1} with r(t′) =
(l′, d, p′). Since T is prefix-closed, we have t′ ∈ T and thus, by the induction
hypothesis, δG(t

′) = t′. Here, we make a case distinction on d.

34 R. Lakenbrink et al.

– If d ∈ {int , call}, then ar (r(t′)) = 1, i.e. i = 0 since t = t′ · i ∈ T . Moreover,
we have t′ →int t and thus δG(t) = δG(t

′) · 0 = t′ · 0 = t and rA(t) = (d, c)
for a c ∈ {0, 1} and t has a d-predecessor t′.

– If d = callRet , then t′ has a call -successor t′ · 0 and we have t′ y t′ · 1. If
additionally i = 0, we have δG(t) = δG(t

′) · 0 = t′ · 0 = t and rA(t) = (call , 1)
and t has a call -predecessor t′. If instead i = 1, we have δG(t) = δG(t

′) · 1 =
t′ · 1 = t and rA(t) = (ret , c) for a c ∈ {0, 1} and since t′ y t′ · 1 and G is an
execution graph, t = t′ · 1 has a ret -predecessor by Lemma 18(i).

– If d = spawn , then t′ has an int -successor t′ ·0 and a spawn-successor t′ ·1. If
additionally i = 0, we have δG(t) = δG(t

′) · 0 = t′ · 0 = t and rA(t) = (int , c)
for a c ∈ {0, 1} and t has an int -predecessor t′. If instead i = 1, we have
δG(t) = δG(t

′) · 1 = t′ · 1 = t and rA(t) = (spawn , 0) and t has a spawn-
predecessor t′.

– We cannot have d ∈ {ret , end}, since that would mean ar(r(t′)) = 0, i.e. t′

has no children.

Moreover, for all nodes t ∈ V with rA(t) = (p, c) and r(t) = (l′, d, p′), the boolean
formula ρ((p, c), (l′, d, p′)) must be satisfied by the children of t, i.e we have
p′ = p since otherwise we had ρ((p, c), (l′, d, p′)) = false. Thus, p′ characterizes
the predecessor type of t as required. Finally, it is straightforward to see that
for all t ∈ T with r(t) = (l, d, p), d specifies the successor types of t = δ−1

G (t) as
required for tree representations.

Overall, we conclude TA = (T, r) = (im(δG), r) = T (G). ⊓⊔

Proof of Theorem 8. We prove the theorem by induction on the structure of
ϕ. Therefore, we also have do deal with non-closed subformulae and consider
valuations to decide whether a subformula is satisfied. In order to do this in a
formal way, we consider automata with special states X1, . . . , Xn, called holes,
that can be filled with sets of nodes L1, . . . , Ln of a given tree. Intuitively, such an
automaton can operate on a tree as before, but when a hole Xi is encountered
during a run and we are at the tree node t, then we do not continue on the
current path and say that it is accepting iff t ∈ Li.

Formally, let A = (Q, q0, ρ, Ω) be a 2-way alternating tree automaton over
(Σ, ar)-labelled binary trees with states q,X1, ..., Xn ∈ Q, T = (T, l) be a
(Σ, ar)-labelled binary tree, t ∈ T be a tree node and L1, ..., Ln ⊆ T be sets
of tree nodes. A (t, q)-run over A[X1 : L1, . . . , Xn : Ln] is defined as a (t, q)-run
(Tr, r) over A except that for nodes x ∈ Tr with r(x) = (t′, Xi) for a t′ ∈ T ,
the positive boolean formula ρ(Xi, l(t

′)) that has to be satisfied by the children
of x is replaced by true, if t′ ∈ Li, and by false , if t′ /∈ Li. The acceptance
of such a path is then defined as before. By LT

q (A[X1 : L1, ..., Xn : Ln]) we
denote the set of nodes t ∈ T such that there is an accepting (t, q)-run over
A[X1 : L1, . . . , Xn : Ln].

For the inductive proof, we now assume that the free variables of the current
formula ψ ∈ Sub(ϕ) are holes in the automaton and show that the language of
this automaton corresponds to the semantics of ψ. Intuitively, we fill the holes
in the automaton, i.e. the free variables of ψ, with the same sets of nodes as

A Navigation Logic for Recursive Programs with Dynamic Thread Creation 35

specified by a given valuation that we consider for the semantics of ψ. More
formally, the holes are filled by sets of tree nodes that correspond to given sets
of graph nodes in the valuation. Therefore, we lift the function δG : V → T for
the execution graph G = (V, l, (→d)d∈Moves,y) with T (G) = T = (T, r) to a
function δ̃G : 2V → 2T by δ̃G(A) := {δG(a) | a ∈ A} and show the following
claim:

Claim: For all fixpoint variable assignments V , subformulae ψ ∈ Sub(ϕ) with
free variables X1, . . . , Xn and L1, . . . , Ln ⊆ V we have

LT
ψ (Ãϕ[X1 : δ̃G(L1), . . . , Xn : δ̃G(Ln)]) = δ̃G(JψKGV[X1 7→L1,...,Xn 7→Ln]

).

Since ϕ is closed, this implies in particular that

T ∈ L(Ãϕ) ⇔ ε ∈ LT
ϕ (Ãϕ) ⇔ ε ∈ δ̃G(JϕKG) ⇔ v0 ∈ JϕKG ⇔ G ∈ JϕK.

We now proceed with the structural induction.

– For ψ ≡ ap ∈ AP we have

LT
ψ (Ãϕ) = {δG(x) ∈ T | ap ∈ l(x)}

= δ̃G({x ∈ V | ap ∈ l(x)})

= δ̃G(JψKGV).

– For ψ ≡ ¬ap with ap ∈ AP , the claim follows analogously.
– For ψ ≡ X and L ⊆ V we have

LT
ψ (Ãϕ[X : δ̃G(L)])

= δ̃G(L)

= δ̃G(V [X 7→ L](X))

= δ̃G(JψKGV[X 7→L]).

– For ψ ≡ ψ1 ∨ ψ2, let Xki
1

, . . . , Xkini
be the free variables of ψi for i ∈ {1, 2}.

We clearly have

LT
ψi
(Ãϕ[X1 : δ̃G(L1), . . . , Xn : δ̃G(Ln)]) = LT

ψi
(Ãϕ[Xki

1

: δ̃G(Lki
1

), . . . , Xkini
:

δ̃G(Lkini
)])

since a (t, ψi)-run over Ãϕ[Xki
1

: δ̃G(Lki
1

), . . . , Xkini
: δ̃G(Lkini

)] can only

reach nodes labelled by a fixpoint variable X if X occurs in ψi. Moreover,
JψiKGV[X

ki
1

7→L
ki
1

,...,X
ki
ni

7→L
ki
ni

] = JψKGV[X1 7→L1,...,Xn 7→Ln]
, since all the free vari-

ables Xki
1

, . . . , Xkini
of ψi are also among the free variables X1, . . . , Xn of ψ.

Thus, we have

LT
ψ (Ãϕ[X1 : δ̃G(L1), . . . , Xn : δ̃G(Ln)])

=
⋃

i∈{0,1}

LT
ψi
(Ãϕ[X1 : δ̃G(L1), . . . , Xn : δ̃G(Ln)])

36 R. Lakenbrink et al.

=
⋃

i∈{0,1}

LT
ψi
(Ãϕ[Xki

1

: δ̃G(Lki
1

), . . . , Xkini
: δ̃G(Lkini

)])

(IH)
=

⋃

i∈{0,1}

δ̃G(JψiKGV[X
ki
1

7→L
ki
1

,...,X
ki
ni

7→L
ki
ni

])

=
⋃

i∈{0,1}

δ̃G(JψiKGV[X1 7→L1,...,Xn 7→Ln]
)

= δ̃G(
⋃

i∈{0,1}

JψiKGV[X1 7→L1,...,Xn 7→Ln]
)

= δ̃G(JψKGV[X1 7→L1,...,Xn 7→Ln]
)

where equation (IH) uses the induction hypothesis.
– For ψ ≡ ψ1 ∧ ψ2, the claim follows analogously since δ̃G is injective.
– For ψ ≡ ©fψ′ with f ∈ {g, ↑, a,−, p, c}, the free variables X1, . . . , Xn of ψ

are also the free variables of ψ′. Following the definition of the tree successor
functions, we easily see that

LT
ψ (Ãϕ[X1 : δ̃G(L1), . . . , Xn : δ̃G(Ln)])

= {t ∈ T | succTf (t) is defined and

succTf (t) ∈ LT
ψ′(Ãϕ[X1 : δ̃G(L1), . . . , Xn : δ̃G(Ln)])}

(IH)
= {t ∈ T | succTf (t) is defined and succTf (t) ∈ δ̃G(Jψ′KGV[X1 7→L1,...,Xn 7→Ln]

)}

(∗)
= {δG(x) ∈ T | succGf (x) is defined and

δG(succ
G
f (x)) ∈ δ̃G(Jψ′KGV[X1 7→L1,...,Xn 7→Ln]

)}

= δ̃G({x ∈ V | succGf (x) is defined and succGf (x) ∈ Jψ′KGV[X1 7→L1,...,Xn 7→Ln]
})

= δ̃G(JψKGV[X1 7→L1,...,Xn 7→Ln]
),

where equation (IH) uses the induction hypothesis and equation (∗) uses
Lemma 6.

– For ψ ≡ ©f̄ψ′ with f ∈ {g, ↑, a,−, p, c} we observe that a (t, ψ)-run behaves
as a (t,©fψ′)-run except that we move to true instead of false , if a desired
successor or predecessor does not exist. Thus, analogously to the previous
case, it is easy to see that

LT
ψ (Ãϕ[X1 : δ̃G(L1), . . . , Xn : δ̃G(Ln)])

= {t ∈ T | succTf (t) is undefined or

succTf (t) ∈ LT
ψ′(Ãϕ[X1 : δ̃G(L1), . . . , Xn : δ̃G(Ln)])}

= δ̃G(V \ {x ∈ V | succGf (x) is defined and

succGf (x) /∈ Jψ′KGV[X1 7→L1,...,Xn 7→Ln]
})

= δ̃G(V \ {x ∈ V | succGf (x) is defined and

succGf (x) ∈ J¬ψ′KGV[X1 7→L1,...,Xn 7→Ln]
})

A Navigation Logic for Recursive Programs with Dynamic Thread Creation 37

= δ̃G(V \ J©f¬ψ′KGV[X1 7→L1,...,Xn 7→Ln]
)

= δ̃G(J¬©f ¬ψ′KGV[X1 7→L1,...,Xn 7→Ln]
)

= δ̃G(JψKGV[X1 7→L1,...,Xn 7→Ln]
).

– For ψ ≡ µX.ψ′, the free variables of ψ′ are given by X1, . . . , Xn, X . We ob-
serve that a (t, ψ)-run over Ãϕ[X1 : δ̃G(L1), . . . , Xn : δ̃G(Ln)] can only visit
states ϕ′ of the form µX.ψ′′ or νX.ψ′′ if ϕ′ is a subformula of ψ. There-
fore, Ω(ψ) is the lowest priority occurring in the run so that the state ψ
can only be visited finitely often if the run is accepting. This means we can
characterize LT

ψ (Ãϕ[X1 : δ̃G(L1), . . . , Xn : δ̃G(Ln)]) as the least fixpoint of

the function f : 2T → 2T with f(δ̃G(L)) := LT
ψ′(Ãϕ[X1 : δ̃G(L1), . . . , Xn :

δ̃G(Ln), X : δ̃G(L)]). By the induction hypothesis, we obtain
f(δ̃G(L)) = δ̃G(Jψ′KGV[X1 7→L1,...,Xn 7→Ln,X 7→L]) = δ̃G(αS(L)) where S = (G,

V [X1 7→ L1, . . . , Xn 7→ Ln], X, ψ
′). By Corollary 17, the least fixpoint of αS

is given by JψKGV[X1 7→L1,...,Xn 7→Ln]
. Since the function δ̃G is trivially mono-

tone and bijective because δG is bijective, we conclude by Lemma 15 that
δ̃G(JψKGV[X1 7→L1,...,Xn 7→Ln]

) is the least fixpoint of f , i.e.

LT
ψ (Ãϕ[X1 : δ̃G(L1), . . . , Xn : δ̃G(Ln)]) = δ̃G(JψKGV[X1 7→L1,...,Xn 7→Ln]

).

– For ψ ≡ νX.ψ′, the claim follows analogously. ⊓⊔

In order to prove Theorem 10, we establish the following lemma:

Lemma 19. Let M = (S, s0, γ0, ∆, L) be a DPN and G = (V, l, (→d)d∈Moves,y)
be an execution graph of M witnessed by the assignment as : V → S × Γ ∗⊥.
Further, let x, y ∈ V be nodes with y = succGa (x). Then there are control locations
s, s′ ∈ S, stack symbols γ, γ′ ∈ Γ and a stack content w ∈ Γ ∗⊥ such that
as(x) = (s, γw) and as(y) = (s′, γ′w).

Proof. Since y = succGa (x), we either have x →int y or x y y. In both cases,
there is a path π from x to y following only Moves \ {spawn}-transitions such
that the number n of call -moves on π is equal to the number of ret -moves on π.
We show the claim by induction over n.

If n = 0, we have x →int y. Since G is generated by M, we thus have
as(x) →int as(y), i.e. there are control locations s, s′ ∈ S, stack symbols γ, γ′ ∈
Γ and a stack content w ∈ Γ ∗⊥ such that as(x) = (s, γw) and as(y) = (s′, γ′w).

If n > 0, we have xy y. Thus, x has a call -successor x′ and by Lemma 18(i),
y has a ret-predecessor y′ with succG−(z

′) = x, i.e. there is a path π′ from x′ to
z′ following abstract successors. In particular, in each step in π′ from a node
u to its abstract successor v, there is a path π′′ from u to v following only
Moves \ {spawn}-transitions such that the number mπ′′ of call -moves on π′′ is
equal to the number of ret -moves on π′′. Since all of these paths π′′ are proper
subpaths of π, we clearly have mπ′′ < n in each step. Thus, by the induction
hypothesis, there are control locations s1, s2 ∈ S, stack symbols γ1, γ2 ∈ Γ
and a stack content w′ ∈ Γ ∗⊥ such that as(x′) = (s1, γ1w

′) and as(y′) =

38 R. Lakenbrink et al.

(s2, γ2w
′). Since further x →call x′ and hence as(x) →call as(x

′), we also have
as(x) = (s, γw) for some s ∈ S and γ ∈ Γ as well as w′ = γ′w for some
γ′ ∈ Γ . Finally, since y′ →ret y and hence as(y′) →ret as(y), we also have
as(y) = (s′, w′) = (s′, γ′w) for some s′ ∈ S. ⊓⊔

Proof of Theorem 10. We first show that AM accepts all tree representations
of executions graphs generated by M.

For this, let G = (V, l, (→d)d∈Moves,y) be an execution graph of M witnessed
by the assignment as : V → S × Γ ∗⊥. Further, let T (G) = (T, r) be the tree
representation of G. We first define maps rS : V → S and rΓ : V → Γ as follows.
For nodes x ∈ V with as(x) = (s, γw) for some stack symbol γ ∈ Γ and stack
content w ∈ Γ ∗⊥ we set rS(x) := s and rΓ (x) = γ. Moreover, we inductively
define a map rR : V → (S×Γ)∪{⊥} as follows. First, we set rR(v0) := ⊥. Then,
for all nodes x ∈ V ,

– if there is a node y ∈ V such that y is an int -predecessor of x or y y x (the
latter holds by Lemma 18(i) iff x has a ret-predecessor), we set rR(x) :=
rR(y),

– if x (i) has a spawn-predecessor or (ii) it has a call -predecessor y and there
is no z ∈ V with y y z, we set rR(x) := ⊥ and

– if x has a call -predecessor y and there is z ∈ V with y y z, we set rR(x) :=
(rS(z

′), rΓ (z
′)), where z′ is the ret -predecessor of z (this node exists in this

case by Lemma 18(i)).

Finally, we define a map rA : T → Q by rA(δG(x)) := (rS(x), rΓ (x), rR(x)) and
show the following claim:

Claim: rA is an accepting (ε, q0)-run of AM over T (G).
First, we show that rA is an (ε, q0)-run of AM over T (G).
For the initial node, we have as(v0) = (s0, γ0⊥) as well as rR(v0) = ⊥ and

thus rA(ε) = rA(δG(v0)) = (s0, γ0,⊥) = q0.
Now let t = δG(x) ∈ T be a node with r(t) = (l(x), d(x), p(x)) and rA(t) =

(s, γ, c). Then we have as(x) = (s, γw) for a stack content w ∈ Γ ∗⊥ and the node
is labelled by l(x) = L(s, γ) since G is generated by M. By a case distinction on
d(x), we show that the successors of t satisfy the transition function of AM.

– If d(x) = int , then x has an int-successor y with as(x) →int as(y). Thus,
there are s′ ∈ S and γ′ ∈ Γ with as(y) = (s′, γ′w) and sγ → s′γ′ ∈ ∆I .
Moreover, we have rR(y) = rR(x) = c and δG(y) = t · 0. Thus, {(0, rA(t ·
0))} = {(0, (s′, γ′, c))} satisfies ρ((s, γ, c), r(t)).

– If d(x) = call , then x has a call -successor y with as(x) →call as(y). Thus,
there are s′ ∈ S and γ′, γ′′ ∈ Γ with as(y) = (s′, γ′γ′′w) and sγ → s′γ′γ′′ ∈
∆C . Moreover, there is no node z ∈ V with x y z, i.e. rR(x) = ⊥, and
δG(y) = t ·0. Thus {(0, rA(t ·0))} = {(0, (s′, γ′,⊥))} satisfies ρ((s, γ, c), r(t)).

– If d(x) = callRet , then x has a call -successor y with as(x) →call as(y). Thus,
there are s′ ∈ S and γ′, γ′′ ∈ Γ with as(y) = (s′, γ′γ′′w) and sγ → s′γ′γ′′ ∈
∆C . Moreover, there is a node z ∈ V with x y z. By Lemma 18(i), z has
a ret -predecessor z′ with succG−(z

′) = x, i.e. there is a path from the call -
successor y of x to z′ following abstract successors. Hence, by Lemma 19,

A Navigation Logic for Recursive Programs with Dynamic Thread Creation 39

there are sr ∈ S and γr ∈ Γ with as(z′) = (sr, γrγ
′′w). Moreover, since

z′ →ret z, we have as(z′) →ret as(z), i.e. there is s′′ ∈ S with as(z) =
(s′′, γ′′w) and srγr → s′′ ∈ ∆R. Thus, we have rR(y) = (rS(z

′), rΓ (z
′)) =

(sr, γr), δG(y) = t · 0, rR(z) = rR(x) = c and δG(z) = t · 1. Hence,
{(0, rA(t · 0)), (1, rA(t · 1))} = {(0, (s′, γ′, (sr, γr))), (1, (s′′, γ′′, c))} satisfies
ρ((s, γ, c), r(t)).

– If d(x) = spawn , then x has an int -successor y and a spawn-successor z
with as(x) → as(y) ⊲ as(z). Thus, there are s′, sn ∈ S and γ′, γn ∈ Γ with
as(y) = (s′, γ′w), as(z) = (sn, γn⊥) and sγ → s′γ′ ⊲ snγn ∈ ∆S . Moreover,
we have rR(y) = rR(x) = c, δG(y) = t · 0, rR(z) = ⊥, and δG(z) = t · 1.
Thus, {(0, rA(t · 0)), (1, rA(t · 1))} = {(0, (s′, γ′, c)), (1, (sn, γn,⊥))} satisfies
ρ((s, γ, c), r(t)).

– If d(x) = ret , then x has a ret -successor y with as(x) →ret as(y). Thus,
there is s′ ∈ S with as(y) = (s′, w) and sγ → s′ ∈ ∆R. Moreover, by
Lemma 18(i), there is a node z ∈ V with z y y and z = succG−(x), i.e. there
is a path from the call -successor z′ of z to x following abstract successors.
Thus, we have c = rR(x) = rR(z

′) = (rS(x), rΓ (x)) = (s, γ), i.e. ∅ satisfies
true = ρ((s, γ, (s, γ)), r(t)) = ρ((s, γ, c), r(t)).

– If d(x) = end , then x has no successors and hence as(x) has no successor,
i.e. there is no rule for sγ in ∆. Assume towards contradiction that c 6= ⊥.
By construction, there must be nodes y, z ∈ V with y y z and a path from
the call -successor y′ of y to x following abstract successors. Thus, δG(x) is
the {int , ret}-descendant leaf of the left child δG(y

′) = δG(y) ·0 of the parent

node δG(y) of δG(z) = δG(y) · 1. Then we have succ
T (G)
↑ (δG(z)) = δG(x).

Using Lemma 6, we obtain δG(succ
G
↑ (z)) = succ

T (G)
↑ (δG(z)) = δG(x) and

thus succG↑ (z) = x since δG is injective. This means that z is a successor of
x, which contradicts our assumption that x has no successor. Thus, we have
c = ⊥ and hence ∅ satisfies true = ρ((s, γ,⊥), r(t)) = ρ((s, γ, c), r(t)).

Thus, we have established that rA is an (ε, q0)-run of AM over T (G). Since we
have Ω(q) = 0 for all q ∈ Q, the run is clearly accepting, and thus T (G) ∈
L(AM).

For the other direction of the theorem, we show that all exeution trees ac-
cepted by AM are tree representations of execution graphs of M. For this, let
G = (V, l, (→d)d∈Moves,y) be an execution graph with T (G) = (T, r) ∈ L(AM).
Then there is an accepting (ε, q0)-run rA of AM over T (G). We now inductively
define an assignment as : V → S × Γ ∗⊥ such that for all nodes v ∈ V with
as(v) = (s, γw) for a stack symbol γ ∈ Γ and a stack content w ∈ Γ ∗⊥, we have
rA(δG(v)) = (s, γ, c) for a c ∈ (S × Γ) ∪ {⊥}.

In the base case, we set as(v0) := (s0, γ0⊥). Since rA is an (ε, q0)-run of AM,
we have rA(δG(v0)) = rA(ε) = q0 = (s0, γ0,⊥).

In the inductive step, let as be defined for some node v ∈ V with r(δG(v)) =
(l′, d, p) such that there are γ ∈ Γ and w ∈ Γ ∗⊥ with as(v) = (s, γw) and
rA(δG(v)) = (s, γ, c) for a c ∈ (S × Γ) ∪ {⊥}. We define the mapping for the
successors of v by a case distinction on d.

40 R. Lakenbrink et al.

– If d = int , v has exactly one int-successor v′ and we have rA(δG(v
′)) =

rA(δG(v) · 0) = (s′, γ′, c) for some s′ ∈ S and γ′ ∈ Γ such that sγ → s′γ′ ∈
∆I . Then we set as(v′) := (s′, γ′w).

– If d = call , v has exactly one call -successor v′ and we have rA(δG(v
′)) =

rA(δG(v) · 0) = (s′, γ′,⊥) for some s′ ∈ S and γ′ ∈ Γ such that sγ →
s′γ′γ′′ ∈ ∆C for a γ′′ ∈ Γ . Then we set as(v′) := (s′, γ′γ′′w).

– If d = callRet , v has exactly one call -successor v′ and there is v′′ ∈ V
with v y v′′. Then we have rA(δG(v

′)) = rA(δG(v) · 0) = (s′, γ′, (sr, γr))
and rA(δG(v

′′)) = rA(δG(v) · 1) = (s′′, γ′′, c) for some s′, s′′, sr ∈ S and
γ′, γ′′, γr ∈ Γ such that sγ → s′γ′γ′′ ∈ ∆C and srγr → s′′ ∈ ∆R. Then we
set as(v′) := (s′, γ′γ′′w) and as(v′′) := (s′′, γ′′w).

– If d = spawn, v has exactly one int-successor v′ and one spawn-successor
v′′. Then we have rA(δG(v

′)) = rA(δG(v) · 0) = (s′, γ′, c) and rA(δG(v
′′)) =

rA(δG(v) ·1) = (sn, γn,⊥) for some s′, sn ∈ S and γ′, γn ∈ Γ such that sγ →
s′γ′ ⊲ snγn ∈ ∆S . Then we set as(v′) := (s′, γ′w) and as(v′′) := (sn, γn⊥).

Most conditions for as to witness that G is generated by M are directly satisfied
by construction. We only show the more involved conditions regarding nodes with
ret-successors and nodes without successors. In order to do this, we inductively
show that the following holds for all nodes v ∈ V with rA(δG(v)) = (s, γ, c):

(∗) We have c = (sr, γr) for a sr ∈ S and γr ∈ Γ iff there are nodes v1, v2, v3 ∈
V with v1 →call v2, v1 y v3 and s′ ∈ S and γ′ ∈ Γ with rA(δG(v2)) = (s′, γ′, c)
and there is a path from v2 to v following abstract successors.

In the base case, where v = v0, we have c = ⊥ and there is no incoming
int -transition or nesting edge to v.

In the inductive step, let v ∈ V be a node with rA(δG(v)) = (s, γ, c) such that
δG(v) = δG(v

′) · i for an i ∈ {0, 1} and a node v′ ∈ V with r(δG(v
′)) = (l′, d, p)

and rA(δG(v
′)) = (s′, γ′, c′). We show (∗) for v by a case distinction on d.

– If d = int , we have i = 0 and ρ(rA(δG(v
′)), r(δG(v

′))) is a disjunction of
formulae of the form (0, (s′′, γ′′, c′)) for s′′ ∈ S and γ′′ ∈ Γ , i.e. c = c′. Since
v′ →int v and abstract successors are uniquely determined, the right side of
the equivalence in (∗) is satisfied for v iff it is satisfied for v′. Thus, by the
induction hypothesis, (∗) also holds for v.

– If d = call , we have i = 0 and ρ(rA(δG(v
′)), r(δG(v

′))) is a disjunction of
formulae of the form = (0, (s′′, γ′′,⊥)) for s′′ ∈ S and γ′′ ∈ Γ , i.e. c = ⊥.
Since there is no node ṽ ∈ V with ṽ →int v, ṽ y v or v′ y ṽ, the required
nodes and the path for any c 6= ⊥ do not exist for v.

– If d = callRet , then ρ(rA(δG(v
′)), r(δG(v

′))) is a disjunction of formulae of
the form (0, (s1, γ1, (sr, γr)))∧(1, (s2, γ2, c

′)) for s1, s2, sr ∈ S and γ1, γ2, γr ∈
Γ . If additionally i = 0, then c = (sr, γr) for some sr ∈ S and γr ∈ Γ . Since
v′ →call v and v′ y v′′ for some v′′ ∈ V , the nodes v1 = v′, v2 = v and
v3 = v′′ and the empty path from v2 = v to v witness that (∗) holds. If
instead i = 1, then c = c′ and v′ y v. Since abstract successors are uniquely
determined, the right side of the equivalence in (∗) is satisfied for v iff it is
satisfied for v′. Thus, by the induction hypothesis, (∗) also holds for v.

A Navigation Logic for Recursive Programs with Dynamic Thread Creation 41

– If d = spawn, then ρ(rA(δG(v
′)), r(δG(v

′))) is a disjunction of formulae of
the form (0, (s1, γ1, c

′)) ∧ (1, (s2, γ2,⊥)) for s1, s2 ∈ S and γ1, γ2 ∈ Γ . If
additionally i = 0, then c = c′. Since v′ →int v and abstract successors are
uniquely determined, the right side of the equivalence in (∗) is satisfied for
v iff it is satisfied for v′. Thus, by induction hypothesis, (∗) also holds for v.
If instead i = 1, then c = ⊥. Since there is no node ṽ ∈ V with ṽ →int v,
ṽ y v or v′ y ṽ, the required nodes and the path for any c 6= ⊥ do not exist
for v.

Given (∗), we now show the more involved conditions regarding nodes with
ret-successors. For this, let x, y ∈ V be nodes with x →ret y. By Lemma 18(i),
there is a node z ∈ V with z y y and succG−(x) = z, i.e. there is a path from
the call -successor z′ of z to x following abstract successors. Let rA(δG(x)) =
(sx, γx, cx) and rA(δG(z)) = (s, γ, c). Then we have as(z) = (s, γw) for a w ∈
Γ ∗⊥. Since r(δG(z)) = (l(z), callRet , p(z)), ρ(rA(δG(z)), r(δG(z))) is a disjunc-
tion of formulae of the form (0, (s′, γ′, (sr, γr))) ∧ (1, (s′′, γ′′, c)) with sγ →
s′γ′γ′′ ∈ ∆C and srγr → s′′ ∈ ∆R. Thus, rA(δG(z

′)) = (s′, γ′, (sr, γr)) as
well as rA(δG(y)) = (s′′, γ′′, c) for some s′, s′′, sr ∈ S and γ′, γ′′, γr ∈ Γ with
sγ → s′γ′γ′′ ∈ ∆C and srγr → s′′ ∈ ∆R. By (∗) we infer cx = (sr, γr). Moreover,
since x has a ret-successor, we have d(x) = ret and thus ρ(rA(δG(x)), r(δG(x)))
is true, if sx = sr and γx = γr, and false otherwise. Since the transition func-
tion must be satisfied by the children of δG(x), we thus have sx = sr and
γx = γr, i.e. as(x) = (sr, γrw

′) for a w′ ∈ Γ ∗⊥. By construction of as , we
clearly have w′ = γ′′w. Thus, since as(x) = (sr, γrγ

′′w), as(y) = (s′′, γ′′w) and
srγr → s′′ ∈ ∆R, we have as(x) →ret as(y).

Finally, let x ∈ V be a node without successors. Then we have r(δG(x)) =
(l(x), end , p(x)). Let rA(δG(x)) = (s, γ, c), i.e. as(x) = (s, γw) for some w ∈
Γ ∗⊥. Assume towards contradiction that we have c = (sr, γr) for some sr ∈ S
and γr ∈ Γ . By (∗), there are v1, v2, v3 ∈ V with v1 →call v2 and v1 y v3
and there is a path from v2 to x following abstract successors. Thus, δG(x) is
the {int , ret}-descendant leaf of the left child δG(v2) = δG(v1) · 0 of the parent

node δG(v1) of δG(v3) = δG(v1) · 1. Then we have succ
T (G)
↑ (δG(v3)) = δG(x).

Using Lemma 6, we obtain δG(succ
G
↑ (v3)) = succ

T (G)
↑ (δG(v3)) = δG(x) and thus

succG↑ (v3) = x since δG is injective. This means that v3 is a successor of x,
which contradicts our assumption that x has no successor. Thus, we must have
c = ⊥, i.e. ρ(rA(δG(x)), r(δG(x))) is true, if there is no rule for sγ in ∆, and
false otherwise. Since the transition function must be satisfied by the children
of δG(x), there is thus no successor of as(x). ⊓⊔

	A Navigation Logic for Recursive Programs with Dynamic Thread Creation

