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Abstract. Witnesses record automated program analysis results and
make them exchangeable. To validate correctness witnesses through ab-
stract interpretation, we introduce a novel abstract operation unassume.
This operator incorporates witness invariants into the abstract program
state. Given suitable invariants, the unassume operation can accelerate
fixpoint convergence and yield more precise results. We demonstrate the
feasibility of this approach by augmenting an abstract interpreter with
unassume operators and evaluating the impact of incorporating witnesses
on performance and precision. Using manually crafted witnesses, we can
confirm verification results for multi-threaded programs with a reduction
in effort ranging from 7% to 47% in CPU time. More intriguingly, we dis-
cover that using witnesses from model checkers can guide our analyzer
to verify program properties that it could not verify on its own.

Keywords: Correctness Witness · Witness Validation · Software Veri-
fication · Program Analysis · Abstract Interpretation

1 Introduction

Automated software verifiers can be faulty and may produce incorrect results.
To increase trust in their verdicts, verifiers may produce witnesses that expose
their reasoning. Such proof objects allow independent validators to confirm anal-
ysis results. The use of witnesses as a standardized way to communicate between
different automated software verifiers was pioneered by Beyer et al. [17]. They
introduced an analyzer-agnostic automaton-based format for explaining prop-
erty violations. The witness automaton guides the validator towards a feasible
counterexample. This witness format was later extended to explain program
correctness using invariants [15]. Witnesses form a cornerstone of the annual
software verification competition SV-COMP [14] and have played a key role in
the emergence of Cooperative Verification [19, 38], where independent verifiers
collaborate by exchanging witnesses [24].

This paper aims to show how correctness witnesses can be validated using ab-
stract interpretation. Existing validators are based on model checking [16], test
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execution [18], interpretation [7, 58], or SMT-based verification [43]; whereas,
validators for correctness witnesses at SV-COMP 2023 were all based on model
checking [14, 15]. In that year’s competition report, the long-time organizer
Dirk Beyer highlighted the scarcity of validators — which leaves many verifi-
cation outcomes without independent confirmation — as a “remarkable gap in
software-verification research” [14]. Abstract interpretation, originally proposed
by Cousot and Cousot [29], has proven successful in the efficient verification of
large real-world software [9, 31] and multi-threaded programs [33, 46, 48, 52, 53].
To complement existing validators, we propose enhancing the framework of ab-
stract interpretation to incorporate invariants from witnesses.

For communication across technological boundaries, correctness witnesses
must be restricted to invariants that do not expose internal abstractions of
tools. For example, as each tool may abstract dynamically allocated memory
differently, invariants about the content of such memory may only be expressed
indirectly, e.g., via C invariants such as *p ≥ 0. The challenge is how to in-
corporate such tool-independent invariants into an abstract interpreter. A key
technical contribution of this paper are techniques to incorporate witness in-
variants, given as expressions, into abstract domains without relying on those
invariants to actually hold. This differs from existing work on witnesses for ab-
stract interpretation (detailed in Section 7), which does not allow for or aim at
the exchange of witnesses across tool boundaries.

Our solution is to introduce a new abstract operation unassume. This oper-
ator can be used to selectively inject imprecision (hence the name) to speed up
fixpoint computation. Suitably increasing abstract values during fixpoint com-
putation can also improve the precision of an existing analysis, most notably
due to the non-monotonicity of widening operators. The following example illus-
trates both the speedup and increase in precision.

1 int x = 40;

2 while (x != 0) {

3 x--;

4 }

Example 1. Consider the example (shown right) from
Miné [47]. An abstract interpreter using interval abstrac-
tion first reaches the loop head on line 2 with the in-
terval [40, 40] for x. After one iteration, the loop head
is reached with [39, 39], so the abstract value at that
point is [39, 40]. To accelerate fixpoint iteration for termination, standard in-
terval widening is applied, which abandons the unstable lower bound, result-
ing in [−∞, 40]. Another iteration with this interval reaches the loop head
with [−∞, 39], which is subsumed by the previous abstract value. Subsequent
standard interval narrowing cannot improve the inferred invariant [−∞, 40] at
the loop head; therefore, the analysis fails to establish a lower bound for x.

Now, suppose that a witness provides the invariant 0 ≤ x ≤ 40 for the loop
head at line 2. When guiding the fixpoint iteration with this witness, the loop
head is again first reached with the singleton interval [40, 40]. Using the provided
invariant, the unassume operator relaxes the lower bound of the interval:

Junassume(0 ≤ x ≤ 40)K♯ {x 7→ [40, 40]} = {x 7→ [0, 40]}.
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After one iteration, the loop head is now reached with [0, 39], which makes the
abstract value at that point [0, 40]. Thus, a fixpoint is reached without the need
for widening or narrowing, and the stronger invariant [0, 40] is confirmed. This
demonstrates how the same analysis, when guided, can validate an invariant
that it could not infer on its own. A well-chosen witness invariant can prevent
precision loss during widening that cannot be recovered by narrowing, serving
as a proxy for providing known widening thresholds. Additionally, the witness-
guided analysis required fewer steps (transfer function evaluations and fixpoint
iterations). Using the same invariant as a widening threshold does not yield such
speedup.

After introducing relevant terms (Section 2) and discussing the shortcom-
ings of intuitive approaches to validate witnesses with abstract interpretation
(Section 3), the paper presents the following main contributions:

– a specification of the unassume operator, and a general realization for rela-
tional abstract domains using dual-narrowing (Section 4);

– an efficient algorithm for unassuming in non-relational abstract domains
(Section 5), with generalization to pointer variables (Appendix A);

– an implementation of an abstract-interpretation–based witness validator,
which is evaluated using hand-crafted invariants for multi-threaded programs
and invariants produced by state-of-the-art model checkers for intricate lit-
erature examples (Section 6).

Our evaluation results provide practical evidence of the unassumed witness in-
variants making the analysis faster and more precise.

2 Preliminaries

In the following, we formally introduce the notion of location-based correctness
witnesses, subsequently referred to simply as witnesses, and recall the basics of
abstract interpretation.

2.1 Witnesses

Following the refined definitions of Beyer and Strejček [23], a correctness witness
should contain hints for the proof of program correctness. Witness automata [15]
are a powerful way to provide such hints, but Strejček [56] has observed that their
control-flow semantics are ambiguous, impairing interoperability. In practice,
however, invariants per program location are often sufficient [15, 22], which has
led the SV-COMP community to adopt them [57]. Therefore, we consider here
correctness witnesses consisting of location-based invariants.

Let N denote the set of program locations. For clarity of exposition, we con-
sider a fixed set V of program variables. Invariants from some language E , which
we do not fix, are used to specify properties of the program executions reaching a
particular program location. We assume that there is a trivial invariant etrue ∈ E
that always holds. Since the goal is to exchange invariants between tools, the
choice of an invariant language involves a trade-off:
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1. Beyer et al. [15] use boolean-valued side-effect–free C expressions for their
invariants. The chief advantage is its conceptual simplicity: the semantics of
such assertions is well-known, and analyzers already come with the necessary
facilities to manipulate these expressions, as they appear in the analyzed
program. In C expressions, pointers allow exchanging information also about
the heap between verifiers. Nevertheless, the expressivity of such invariants
is limited, especially regarding more complex data structures.

2. ACSL [10] has more expressive power than plain C expressions by offering
quantification, memory predicates, etc. On the downside, considerably fewer
analyzers support it, limiting exchange possibilities.

3. Custom invariant languages can be arbitrarily expressive, at the cost of re-
stricting communication to few similar tools whose re-verification to boost.

With these notions, we introduce the definitions of a witness, its validation, and
witness-guided verification.

Definition 1. A witness for a safety property Φ of a program P is a tuple

(W,P, Φ), where W is a total mapping W : N → E from the program locations

of P to invariants from E.

The textual format in which witnesses are exchanged is not required to pro-
vide invariants for all program locations — we implicitly assume that if the
witness contains no information for some program location, then this location
is mapped to etrue. If the invariant language contains a contradictory expression
efalse ∈ E that never holds, then it can be used to convey unreachability of a
program location. This notion of a witness is generic and can be instantiated
to different programming and invariant languages. For our examples, we use an
invariant language of arithmetic and boolean expressions, enriched with basic
pointers, address-taking (&) and dereferencing (*). The pointer constructs pose
practical challenges, as will become apparent in subsequent sections.

Definition 2. A witness (W,P, Φ) is valid if

1. P satisfies the property Φ;

2. whenever the execution of P reaches the location n ∈ N , the invariant W n

holds.

A witness validator attempts to prove that a witness is valid; specifically, it tries
to recreate the proof that the program satisfies the property Φ, and checks that
the witness makes only true claims about the program. However, the validation
track at SV-COMP 2023 scored participants according to a limited form of
validation which only confirms the first condition [14].

A witness-guided verifier uses the witness as guidance towards the verifica-
tion of Φ. A sound verifier can perform this task without assuming the witness
invariants to be true; therefore, it qualifies as a sound validator of the first con-
dition. It may additionally verify the invariants in W to perform full witness
validation.
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2.2 Abstract Interpretation

We rely on the framework of abstract interpretation as introduced by Cousot and
Cousot [29, 30], and briefly recall relevant notions here. Let S denote the set of
all concrete program states. Its subsets are abstracted by an abstract domain D

satisfying the following properties [47]:

– a partial order ⊑, modeling the relative precision of abstract states;
– a monotonic concretization function γ : D → 2S , mapping an abstract ele-

ment to the set of concrete states it represents;
– a least element ⊥, representing unreachability, i.e. γ⊥ = ∅;
– a greatest element ⊤, representing triviality, i.e. γ⊤ = S;
– sound abstractions join (⊔) and meet (⊓) of ∪ and ∩ on S, respectively, i.e.

γ x ∪ γ y ⊆ γ (x ⊔ y) and γ x ∩ γ y ⊆ γ (x ⊓ y) for all x, y ∈ D;
– a widening (∇) operator, computing upper bounds that ensure termination

in abstract domains with infinite ascending chains, i.e. x ⊑ x∇y and y ⊑ x∇y
for all x, y ∈ D, and for every sequence (yi)i∈N from D, the sequence (xi)i∈N

defined by x0 = y0, xi+1 = xi ∇ yi+1 is ultimately stable;
– a narrowing (∆) operator, recovering some precision given up by widening,

i.e. x⊓y ⊑ x∆y ⊑ x for all x, y ∈ D, and for every sequence (yi)i∈N from D,
the sequence (xi)i∈N defined by x0 = y0, xi+1 = xi ∆ yi+1 is ultimately
stable.

An abstract interpreter uses an abstract domain D and sound abstractions
JsK♯ : D→ D of primitive statements s to model the abstract semantics of a
program. Fixpoint iteration (potentially with widening and narrowing) is used
to compute for each program location an abstract state, which represents a su-
perset of all reaching concrete program states. The resulting abstract states may
be used to check whether the program satisfies a given safety property.

For validating a witness by abstract interpretation, we assume that the ana-
lyzer provides us with a mapping σ : N → D from locations to abstract values.
A witness (W,P, Φ) is validated by the abstract interpreter, if

1. σ is sufficient to verify that Φ holds for program P ;
2. for each n ∈ N , the invariant W n is true in every state of γ (σ n).

In practice, the second condition may not be easy to check since computing γ

is not always feasible. Thus, abstract expression evaluation is used instead to
perform the validity check, although this is possibly less precise, as the following
example shows.

Example 2. Assume the non-relational abstract domain D = V → V of environ-
ments, where V is the abstract domain of individual values. Using intervals for
the latter, let d = {x 7→ [1, 2]} be the computed abstract state at some program
location where γ d = {{x 7→ 1}, {x 7→ 2}} is exact. Consider the validation of the
following two logically equivalent invariants at this location:

1. The invariant 1 ≤ x ∧ x ≤ 2 holds for each concrete state in γ d. It also
evaluates abstractly to true on d using standard syntax-driven evaluation
(see Section 5.1), because both conjuncts are true for the interval [1, 2].
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2. The invariant x = 1 ∨ x = 2 also holds for each concrete state in γ d. How-
ever, when evaluated abstractly and syntax-driven on d, it evaluates to an
unknown boolean, because both disjuncts evaluate to an unknown boolean
for the interval [1, 2].

Hence, the abstract interpreter is not complete, i.e., it may fail to validate wit-
nesses which are indeed valid, due to imprecision arising from abstraction or fix-
point acceleration. Nevertheless, validating witnesses using abstract expression
evaluation is sound, i.e., all witnesses claimed to be validated by the abstract
interpreter, are indeed valid.

A witness which maps all locations to the invariant etrue is called trivial. The
validation of such a witness trivially passes the second validity condition, and
checking of the first condition falls entirely to the analyzer itself. To be useful, a
witness has to be non-trivial and aid the analyzer in proving that the program P

satisfies the property Φ, either by improving the precision or the performance of
the verification process. For witness-guided verification, it suffices if the analyzer
can show that Φ holds — even if the invariants of the witness cannot be validated.
Given a witness (W,P, Φ), the challenge of witness-guided abstract interpretation
is to simultaneously achieve the following:

1. to use the invariants in W to reach a fixpoint σW : N → D in fewer iterations;
2. to avoid overshooting the required property, i.e., σW suffices to prove Φ;
3. to not trust the witness, i.e., σW should remain sound even in presence of

wrong invariants.

Subsequently, we first consider some intuitive approaches to motivate our unas-
sume operator for soundly speeding up abstract interpretation with the help of
untrusted witnesses.

3 Initialization-Based Approaches

Given a witness (W,P, Φ), one natural idea is to extract from the mapping
W : N → E a mapping w : N → D of initial abstract values as non-⊥ start
points for constructing inductive invariants for the program. We discuss two
flavors for realizing this idea, along with their shortcomings.

Total Initial Values. In the first approach, the initial value w n for program
location n is chosen such that γ (w n) includes every concrete state where W n

holds. For example, by choosing w ℓ2 = {x 7→ [0, 40]} in Example 1. Such a value,
however, is only suitable if all relevant information for program location n is
formalized in the invariant W n and expressible by the abstract domain. Apart
from trivial cases, both requirements are seldom fulfilled in practice.

For example, consider the invariant *p ≥ 0 involving a pointer p dereference
for some program location n. It provides no information about which variables
p may point to, thus nothing can be concluded about any integer variables it in-
tends to describe. Therefore, wn = ⊤ which leads to a complete loss of precision
at location n during the analysis.
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This approach also makes silent assumptions about the way in which the
analyzer computes values, namely how such initial abstract values are incorpo-
rated into analysis, if at all. For example, TD fixpoint solvers [54] only use initial
values at dynamically identified widening points for starting fixpoint iteration.
Additionally, context-sensitive interprocedural analysis is known to give rise to
infinite constraint systems [5], requiring dedicated changes to the analyzer to
ensure that all accessed constraint variables associated with a given location are
appropriately initialized.

Partial Initial Values. In order to remedy the problem that all relevant in-
formation must be provided in the invariants for program locations, one may
instead rely on partial initialization. For that to work, we assume here that a
non-relational abstract domain D = V → V is used. Assuming that the invari-
ant W n only speaks of variables from V ⊆ V , the partial initial value is the
same as the total initial value wn except all unmentioned variables x ∈ V \ V
are assigned ⊥.

Example 3. Consider for a particular program location n, two integer variables
i and j and a pointer variable p. Let the abstract domain V of values consist
of intervals for abstracting integers and points-to sets for abstracting pointers.
Consider two invariants:
1. The witness invariant i ≥ 0 ∧ j ≥ 0 can be represented by the partial state
{p 7→ ⊥, i 7→ [0,∞], j 7→ [0,∞]}.

2. The witness invariant *p ≥ 0, on the other hand, results in the partial state
{p 7→ ⊤, i 7→ ⊥, j 7→ ⊥}.

Now assume that during analysis of the program, the complete abstract state
{p 7→ {&i, &j}, i 7→ [0, 0], j 7→ [0, 0]}, where p may point to either i or j, reaches
the program location n. In order to exploit the witness, this value is joined with
the partial state constructed from the witness in the corresponding transfer
function. For the two invariants above, we respectively obtain:

1. {p 7→ {&i, &j}, i 7→ [0,∞], j 7→ [0,∞]},
2. {p 7→ ⊤, i 7→ [0, 0], j 7→ [0, 0]}.

The first may be useful to guide the analysis since the information for i and j is
maximally relaxed such that the witness invariant can still be validated, while
the information for the pointer variable p is retained. On the other hand, the
second state loses all information about p, which is problematic if memory is
accessed through p later in the program. At the same time, here, the values for
the variables i and j remain overly precise. Instead, one would have liked to
obtain the former abstract state also when using the invariant *p ≥ 0.

By joining initial values within transfer functions, this approach is more gen-
eral: it works for all program locations regardless of the analysis engine and can
be seamlessly applied to infinite constraint systems. Nevertheless, the incorpo-
ration of witnesses via partial initial values is only applicable to non-relational
domains and cannot depend on analysis state. Therefore, in the next section, we
propose a more general solution that overcomes these issues.
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4 Unassuming

We introduce new statements unassume(e) to the programming language for
all invariants e ∈ E . Given a witness (W,P, Φ), we insert at every location n,
the statement unassume(W n) if it is different from etrue. In case the invariant
is not a legal program expression, we may instead insert the statement at the
location into the internal representation used by the analyzer (e.g., the control-
flow graph). In the concrete semantics, unassume statements have no effect, i.e.,
their arguments are not evaluated and thus does not cause runtime errors or
undefined behavior.

During the abstract interpretation of the program, the abstract state trans-
former for the statement unassume(e) for location n is meant to inject the desired
imprecision into the abstract state for n. Intuitively, the abstract semantics of
unassume is dual to the assume operation, i.e., it relaxes a state instead of
refining it. Thus, e.g.,

{x 7→ [0,∞]}
assume(x=0)
−−−−−−−−−−⇀↽−−−−−−−−−−
unassume(x≥0)

{x 7→ [0, 0]}.

Note that unassume is not the inverse of assume because the used expressions
are different. By integrating unassume operations as statements, they can be
treated path- and context-sensitively – just like all other statements – if the
abstract interpreter supports such sensitivity, yielding a general approach.

4.1 Specification

Subsequently, we provide abstract operators JunassumeV (e)K♯ : D → D which
we use to abstractly interpret the corresponding unassume statement. The ab-
stract operators are parameterized by the set of variables V ⊆ V whose values
are relaxed up to the constraining invariant e. The abstract unassume operator
JunassumeV (e)K♯ is sound if it abstracts the concrete no-op operator, i.e.,

γ d ⊆ γ (JunassumeV (e)K♯ d)

for all d ∈ D. In particular, this is the case if the operator is extensive, i.e.,

d ⊑ JunassumeV (e)K♯ d.

Given that the abstract interpreter is sound w.r.t. the original program, and
sound unassume operations are inserted, we conclude that the resulting abstract
interpreter is sound w.r.t. the modified program. Since the newly inserted state-
ments have no effects in the concrete, the resulting abstract interpreter remains
sound also w.r.t. the original program. This implies the soundness of our valida-
tion approach.

Theorem 1 (Sound witness validation). Assume a witness (W,P, Φ) is used

to insert unassume statements and σW : N → D is the result of analyzing the

instrumented program. If the sound analyzer confirms Φ and all invariants of

W : N → E abstractly evaluate to true in σW , then the witness must be valid.
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Example 4. The desired behavior of unassume operators is illustrated by the
following examples.

1. Unmentioned parts of the abstract state should be retained:

Junassume{x}(x ≥ 0)K♯ {x 7→ [0, 0], y 7→ [0, 0]} = {x 7→ [0,∞], y 7→ [0, 0]}.

2. Information on variables used in the invariant, but not contained in V should
be retained:

Junassume{i}(i ≤ n)K♯ {i 7→ [0, 0], n 7→ [10, 10]} =

= {i 7→ [−∞, 10], n 7→ [10, 10]}.

3. Relational invariants between relaxed and not relaxed variables should be
preserved whenever possible without restricting the unassumed invariant;
e.g., relaxing the state 0 = x ≤ y with 0 ≤ x should result in 0 ≤ x ≤ y:

Junassume{x}(x ≥ 0)K♯ {x ≤ 0,−x ≤ 0,−y ≤ 0,−x− y ≤ 0, x− y ≤ 0} =

= {−x ≤ 0,−y ≤ 0,−x− y ≤ 0, x− y ≤ 0}

when using the octagon domain [45].3 More specifically, this is the most pre-
cise result which, when projected to V , contains the abstract state {−x ≤ 0}
defined only by the unassumed invariant.

4. Information provided by the input abstract state should be leveraged to
propagate imprecision to further variables and heap locations not mentioned
in the invariant (cf. Example 3):

Junassume{i,j}(*p ≥ 0)K♯ {p 7→ {&i, &j}, i 7→ [0, 0], j 7→ [0, 0]} =

= {p 7→ {&i, &j}, i 7→ [0,∞], j 7→ [0,∞]}.

We remark that Items 2 and 4 illustrate cases where V differs from the set of
variables syntactically occurring in e.

4.2 Naïve Definition

We present the first unassume operator in terms of the abstract operators for
non-deterministic assignments and guards. In this section, we assume the invari-
ant language E is a subset of the side-effect–free expressions used for conditional
branching in the programming language.

For an expression e, let assume(e) denote the concrete operation which
only continues execution if the condition e is true, and aborts otherwise. Let
Jassume(e)K♯ : D→ D be a sound abstraction.

For a set of variables V ⊆ V , let havoc(V ) denote the concrete opera-
tion which non-deterministically assigns arbitrary values to all x ∈ V , and
Jhavoc(V )K♯ : D→ D be a sound abstraction.
3 Redundant constraints are grayed out. They can be derived from non-redundant

(non-grayed out) constraints using the octagon closure algorithm.
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Definition 3 (Naïve unassume). Let V ⊆ V, e ∈ E and d ∈ D. Then the

naïve unassume is defined as

JunassumeV (e)K♯1 d = d ⊔ (Jassume(e)K♯ ◦ Jhavoc(V )K♯) d.

Intuitively, the argument state is relaxed by joining with an additional value.
This value is obtained by first forgetting all information about the variables
from V and then assuming the information provided by e. Due to the join,
this unassume operator is sound by construction. The naïve unassume operator
is already sufficient to gain the improvements illustrated by Example 1 when
choosing V = {x}:

Junassume{x}(0 ≤ x ≤ 40)K♯1 {x 7→ [40, 40]} =

= {x 7→ [40, 40]} ⊔ (Jassume(0 ≤ x ≤ 40)K♯ ◦ Jhavoc({x})K♯) {x 7→ [40, 40]} =

= {x 7→ [40, 40]} ⊔ Jassume(0 ≤ x ≤ 40)K♯ {x 7→ ⊤} =
= {x 7→ [40, 40]} ⊔ {x 7→ [0, 40]} = {x 7→ [0, 40]}.

This operator also succeeds for Items 1 and 2 in Example 4:

Junassume{x}(x ≥ 0)K♯1 {x 7→ [0, 0], y 7→ [0, 0]} =

= {x 7→ [0, 0], y 7→ [0, 0]} ⊔

⊔ (Jassume(x ≥ 0)K♯ ◦ Jhavoc({x})K♯) {x 7→ [0, 0], y 7→ [0, 0]} =

= {x 7→ [0, 0], y 7→ [0, 0]} ⊔ Jassume(x ≥ 0)K♯ {x 7→ ⊤, y 7→ [0, 0]} =

= {x 7→ [0, 0], y 7→ [0, 0]} ⊔ {x 7→ [0,∞], y 7→ [0, 0]} = {x 7→ [0,∞], y 7→ [0, 0]}

and

Junassume{i}(i ≤ n)K♯1 {i 7→ [0, 0], n 7→ [10, 10]} =

= {i 7→ [0, 0], n 7→ [10, 10]} ⊔

⊔ (Jassume(i ≤ n)K♯ ◦ Jhavoc({i})K♯) {i 7→ [0, 0], n 7→ [10, 10]} =

= {i 7→ [0, 0], n 7→ [10, 10]} ⊔ Jassume(i ≤ n)K♯ {i 7→ ⊤, n 7→ [10, 10]} =

= {i 7→ [0, 0], n 7→ [10, 10]} ⊔ {i 7→ [−∞, 10], n 7→ [10, 10]} =

= {i 7→ [−∞, 10], n 7→ [10, 10]}.

But it fails when there are relations between elements of V and V \ V , e.g., for
Item 3 with d = {x ≤ 0,−x ≤ 0,−y ≤ 0,−x− y ≤ 0, x− y ≤ 0}:

Junassume{x}(x ≥ 0)K♯1 d = d ⊔ (Jassume(x ≥ 0)K♯ ◦ Jhavoc({x})K♯) d =

= d ⊔ Jassume(x ≥ 0)K♯ {−y ≤ 0} = d ⊔ {−x ≤ 0,−y ≤ 0,−x− y ≤ 0} =

= {−x ≤ 0,−y ≤ 0,−x− y ≤ 0}.

In this case the octagon constraint x− y ≤ 0 is lost by havocing and cannot be
recovered by assuming.
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4.3 Dual-Narrowing

We will address the above challenge by relying on additional insights from ab-
stract interpretation. Let us recall the term dual-narrowing, which is the lattice
analogue of Craig interpolation [28]. A dual-narrowing operator ∆

∼
: D→ D→ D

returns for every d1, d2 ∈ D with d1 ⊑ d2, a value between both of them, i.e.,
d1 ⊑ d1 ∆

∼
d2 ⊑ d2.

Using such an operator, we can define an abstract unassume that, given d,
may return an abstract value in the range from d to JunassumeV (e)K♯1 d:

Definition 4 (Dual-narrowing unassume). Let ∆
∼

: D → D → D be a dual-

narrowing. Let V ⊆ V, e ∈ E and d ∈ D. Then the dual-narrowing unassume is

defined as a wrapper around the naïve unassume:

JunassumeV (e)K♯2 d = d∆
∼ JunassumeV (e)K♯1 d.

Example 5. A dual-narrowing for relational domains can be defined using het-

erogeneous environments and strengthening [42]. Let dom(d) ⊆ V denote the
environment of the abstract value d ∈ D. Let d|V denote the restriction of the
abstract value d ∈ D to the program variables V ⊆ V .

An environment-aware order ⊑⋆ is defined for d1, d2 ∈ D by

d1 ⊑⋆ d2 ⇐⇒ dom(d1) ⊆ dom(d2) ∧ d1 ⊑ d2|dom(d1).

Let ⊔⋆ : D→ D→ D be an upper bound operator w.r.t. ⊑⋆ , such that the resulting
environment is minimal, i.e., dom(d1 ⊔⋆ d2) = dom(d1) ∪ dom(d2). Specifically,
Journault et al. [42] define ⊔⋆ as follows. The result of joining d1 and d2 in their
common environment dom(d1) ∩ dom(d2) is extended to dom(d1) ∪ dom(d2) by
adding unconstrained dimensions. A strengthening operator refines this result by
iteratively adding back constraints from both arguments which would not cause
the upper-boundedness w.r.t. ⊑⋆ to be violated. Note that this definition is not
semantic, i.e., the result depends on the constraints representing the arguments
and their processing order.

By defining d1∆
∼
d2 = d1 ⊔⋆ d2|V , which is parametrized by V , dual-narrowing

unassume yields the following desired result for Item 3 from Example 4 with
d = {x ≤ 0,−x ≤ 0,−y ≤ 0,−x− y ≤ 0, x− y ≤ 0}:

Junassume{x}(x ≥ 0)K♯2 d = d∆
∼ Junassume{x}(x ≥ 0)K♯1 d =

= d∆
∼
{−x ≤ 0,−y ≤ 0,−x− y ≤ 0} = d ⊔⋆ {−x ≤ 0,−y ≤ 0,−x− y ≤ 0}|{x} =

= d ⊔⋆ {−x ≤ 0} = {−x ≤ 0,−y ≤ 0,−x− y ≤ 0, x− y ≤ 0}.

Although the restriction to V first destroys relations between V and V \ V , the
subsequent strengthening join can restore original relations which are compatible
with e on V .
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5 Unassuming Indirectly

We now turn to the unassuming of more complex invariants, which include in-
direction via pointers and dependent subexpressions. Naïve unassume is unable
to achieve the desired precision for Item 4 from Example 4 with d = {p 7→
{&i, &j}, i 7→ [0, 0], j 7→ [0, 0]}:

Junassume{i,j}(*p ≥ 0)K♯1 {p 7→ {&i, &j}, d =

= d ⊔ (Jassume(*p ≥ 0)K♯ ◦ Jhavoc({i, j})K♯) d =

= d ⊔ Jassume(*p ≥ 0)K♯ {p 7→ {&i, &j}, i 7→ ⊤, j 7→ ⊤} =
= d ⊔ {p 7→ {&i, &j}, i 7→ ⊤, j 7→ ⊤} = {p 7→ {&i, &j}, i 7→ ⊤, j 7→ ⊤}.

This is due to both integer variables being havoced and the assume operator not
being able to soundly refine via ambiguous may-point-to sets (see Appendix A).
Technically, there exists a dual-narrowing that yields the desired result, but it
would be ad-hoc.

To address the disjunctive nature of the may-point-to set, we propose an
improved unassume operator. Suppose we are provided a family of mappings
explodeV (e) : D→ 2D which explode any given abstract state d into a non-empty
finite subset explodeV (e) d ⊆ D of abstract states where for each resulting ele-
ment d′ we have d′ ⊑ d. The explode operator can be used to make disjunctive
information in abstract states explicit, e.g., resolve non-singleton may-point-to
sets for pointer variables not contained in V .

Definition 5 (Exploding unassume). Let V ⊆ V, e ∈ E and d ∈ D. Let

explodeV (e) be an explode operator. Then the exploding unassume is defined as

JunassumeV (e)K♯3 d =
l

d′∈explodeV (e) d

d ⊔ (Jassume(e)K♯ ◦ Jhavoc(V )K♯) d′.

This improved unassume operator is extensive and therefore sound for any choice
of explodeV (e). One might want to establish that

⊔

explodeV (e) d = d holds, but
this is not necessary for soundness. Whereas explodeV (e) d = {⊥} would make
the unassume a no-op.

Example 6. Consider the following explode operator, which splits ambiguous
may-point-to sets:

explode{i,j}(*p ≥ 0) {p 7→ {&i, &j}, i 7→ [0, 0], j 7→ [0, 0]} =

= {{p 7→ {&i}, i 7→ [0, 0], j 7→ [0, 0]}, {p 7→ {&j}, i 7→ [0, 0], j 7→ [0, 0]}}.
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Using this explode operator, Item 4 from Example 4 is handled as desired with
d = {p 7→ {&i, &j}, i 7→ [0, 0], j 7→ [0, 0]}:

Junassume{i,j}(*p ≥ 0)K♯3 d =

= (d ⊔ (Jassume(*p ≥ 0)K♯ ◦ Jhavoc({i, j})K♯) {p 7→ {&i}, i 7→ [0, 0], j 7→ [0, 0]}) ⊓

⊓ (d ⊔ (Jassume(*p ≥ 0)K♯ ◦ Jhavoc({i, j})K♯) {p 7→ {&j}, i 7→ [0, 0], j 7→ [0, 0]}) =

= (d ⊔ Jassume(*p ≥ 0)K♯ {p 7→ {&i}, i 7→ ⊤, j 7→ ⊤}) ⊓
⊓ (d ⊔ Jassume(*p ≥ 0)K♯ {p 7→ {&j}, i 7→ ⊤, j 7→ ⊤}) =

= (d ⊔ {p 7→ {&i}, i 7→ [0,∞], j 7→ ⊤}) ⊓

⊓ (d ⊔ {p 7→ {&j}, i 7→ ⊤, j 7→ [0,∞]}) =

= {p 7→ {&i, &j}, i 7→ [0,∞], j 7→ ⊤} ⊓ {p 7→ {&i, &j}, i 7→ ⊤, j 7→ [0,∞]} =

= {p 7→ {&i, &j}, i 7→ [0,∞], j 7→ [0,∞]}.

Example 7. However, consider the following, where different subexpressions de-
pend on each other (here through p):

Junassume{p,i,j}((p = &i ∨ p = &j) ∧ *p ≥ 0)K♯ {p 7→ {&i}, i 7→ [0, 0], j 7→ [0, 0]}.

In contrast to Example 6, there is no ambiguous may-point-to set in the abstract
state supplied as the argument. All possible explosions lead to the same issue as
when using the naïve unassume on this example. After havocing, the environment
contains p 7→ ⊤, thus, in the assume a top pointer needs to be dereferenced and
its targets refined. The semantics of this is unclear and imprecise at best, when
one has to consider assignments to all possible (unrelated) memory locations.

5.1 Propagating Unassume

The HC4-revise algorithm by Benhamou et al. [11] can be used to implement
the assume operation for complex expressions on non-relational domains in a
syntax-directed manner [47, 60]. It is also known as backwards evaluation [27].
We describe the algorithm and then apply it to construct an unassume operator.

We loosely follow the presentation by Cousot [27]. Let the languages of ex-
pressions e and logical conditions c be defined by the grammars in Fig. 1. For
each n ∈ N, let On be the set of n-ary operators. For simplicity of presentation,
assume that the condition is in negation normal form (NNF), i.e., negations
in conditions have been “pushed down” into binary comparisons according to
boolean logic. The logical conditions form an invariant language (see Section 2).
The following algorithms generalize from just variables to lvalues, allowing for
languages with pointers like our example invariant language from before. This
generalization is formalized in Appendix A.

Evaluation. Let V be the abstract domain for individual values and D = V → V

the abstract domain for non-relational environments. Let B be the flat boolean
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e ::= k (constant)

| x (variable, x ∈ V)

| � (e)ni=1 (n-ary operator,

n ∈ N,� ∈ On)

c ::= e ⊲⊳ e (binary comparison,

⊲⊳ ∈ {=, 6=, <,≤, >,≥})

| c ∧ c (conjunction)

| c ∨ c (disjunction)

Fig. 1: Syntax of expressions and conditions.

EJeK♯ : D→ V

EJkK♯ d = k
♯

EJxK♯ d = d x

EJ� (ei)
n
i=1K♯ d = �

♯ (EJeiK♯ d)ni=1

CJcK♯ : D→ B

CJe1 ⊲⊳ e2K♯ d = EJe1K♯ d ⊲⊳
♯
EJe2K♯ d

CJc1 ∧ c2K♯ d = CJc1K♯ d ∧♯
CJc2K♯ d

CJc1 ∨ c2K♯ d = CJc1K♯ d ∨♯
CJc2K♯ d

Fig. 2: Forward evaluation of expressions and conditions.

domain, where ⊥ ⊑ {true♯, false
♯} ⊑ ⊤. The standard abstract forward evalua-

tion of expressions EJeK♯ and conditions CJcK♯ in the non-relational environment
d ∈ D is shown in Fig. 2. For a constant k, let k♯ be its corresponding abstraction,
and �

♯, ⊲⊳♯, ∧♯, ∨♯ be abstract versions of the corresponding operators.

Assume. The HC4-revise algorithm for the assume operation has two phases:

1. Bottom-up forward propagation on the expression tree abstractly evaluates
the expression, as usual.

2. Top-down backward propagation refines each abstract value with the ex-
pected result of the sub-expression. This relies on backward abstract oper-
ators, which refine each argument based on the other arguments and the
expected result, while variables are refined at the leaves.

The algorithm Jassume(e)K♯ with its abstract backward evaluation of expressions
←−
E JeK♯ and conditions

←−
C JcK♯ is shown in Fig. 3. Instead of evaluating to an

abstract value, they refine values of variables in the abstract environment. For
each n ∈ N, � ∈ On, let

←−
�

♯ : V → Vn → Vn be the abstract backward version
of the n-ary operator �. It returns abstract values for its arguments under the
assumption that the operator evaluates to the given abstract value v′ and the
other arguments have the given abstract values. For example, if n = 2, then

←−
�

♯ v′ (v1, v2) = (v′1, v
′
2) =⇒ {x1 ∈ γ V | ∃x2 ∈ γ v2 : � (x1, x2) ∈ γ v′} ⊆ γ v′1 ∧

∧ {x2 ∈ γ V | ∃x1 ∈ γ v1 : � (x1, x2) ∈ γ v′} ⊆ γ v′2.

Unlike Cousot [27] and Miné [47], we require that the backward operators do

not intersect an argument’s backward-computed value with its current value.
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Instead, we make this explicit in the algorithm like Benhamou et al. [11]. Simi-
larly, let ←−⊲⊳♯ : V→ V→ V×V be the abstract backward version of the compar-
ison ⊲⊳. Since conditions are in NNF, the expected result is always true

♯ and no
v′ argument is needed for it. The evaluations EJeK♯ d should all be cached and
reused from a single forward evaluation as the argument environment is passed
around without changes [11, 47].

Jassume(e)K♯ d =
←−
C JeK♯ d

where

←−
E JeK♯ : V→ D→ D

←−
E JkK♯ v′ d = if k

♯ ⊑ v
′

then d else ⊥
←−
E JxK♯ v′ d = d[x 7→ dx ⊓ v

′]
←−
E J� (ei)

n
i=1K♯ v′ d =

let (vi)
n
i=1 = (EJeiK♯ d)ni=1 in

let (v′i)
n
i=1 =

←−
�

♯
v
′ (vi)

n
i=1 in

nl

i=1

←−
E JeiK♯ (vi ⊓ v

′

i) d

←−
C JcK♯ : D→ D

←−
C Je1 ⊲⊳ e2K♯ d =

let (v1, v2) = (EJe1K♯ d,EJe2K♯ d) in
let (v′1, v

′

2) = v1
←−
⊲⊳

♯
v2 in

←−
E Je1K♯ (v1 ⊓ v

′

1) d ⊓
←−
E Je2K♯ (v2 ⊓ v

′

2) d
←−
C Jc1 ∧ c2K♯ d =

←−
C Jc1K♯ d ⊓

←−
C Jc2K♯ d

←−
C Jc1 ∨ c2K♯ d =

←−
C Jc1K♯ d ⊔

←−
C Jc2K♯ d

Fig. 3: Assume via backward evaluation of expressions and conditions by the
propagation algorithm.

Unassume. This algorithm can be adapted into a propagating unassume op-
erator Junassume(e)K♯ as shown in Fig. 4. Changes are required to achieve the
following properties:

Variable set variance. In Example 7 the first conjunct should relax {p},
while the second should relax {i, j} via the relaxed pointer. In order to allow
different sub-expressions to relax different variable sets, the abstract environ-
ments returned by ẼJeK♯ and C̃JcK♯ are partial: they only contain variables
which have been relaxed at leaves in the corresponding sub-expression.
Thus heterogeneous lattice join ⊔⋆ from Example 5 is used. However, here in
the non-relational case its definition is simpler: values are joined pointwise
while using ⊥ for missing variables. The heterogeneous lattice meet ⊓• is
defined analogously, using ⊤ for missing variables. Note that ⊓• is not the meet
w.r.t. ⊑⋆ , because ⊓• must preserve all relaxed variables from both operands,
not just the common ones.

Soundness. The result is joined with the pre-unassume environment to ensure
soundness.

Relaxation. Backward propagation only propagates backward values v′i and
does not refine them using abstract values vi computed by forward propaga-
tion. Otherwise, sub-expressions cannot be relaxed at all from their current
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values. Note that the forward values are still necessary for evaluating the
backward operators. This modification on its own yields the HC4-revise⋆

algorithm described by Benhamou et al. [11].

Junassume(e)K♯ d = d ⊔⋆ (C̃JeK♯ d)
where

ẼJeK♯ : V→ D→ D

ẼJkK♯ v′ d = ∅

ẼJxK♯ v′ d = {x 7→ v
′}

ẼJ� (ei)
n
i=1K♯ v′ d =

let (vi)
n
i=1 = (EJeiK♯ d)ni=1 in

let (v′i)
n
i=1 =

←−
�

♯
v
′ (vi)

n
i=1 in

nl
•

i=1

ẼJeiK♯ v
′

i d

C̃JcK♯ : D→ D

C̃Je1 ⊲⊳ e2K♯ d =

let (v1, v2) = (EJe1K♯ d,EJe2K♯ d) in
let (v′1, v

′

2) = v1
←−
⊲⊳

♯
v2 in

ẼJe1K♯ v
′

1 d ⊓• ẼJe2K♯ v
′

2 d

C̃Jc1 ∧ c2K♯ d = C̃Jc1K♯ d ⊓• C̃Jc2K♯ d
C̃Jc1 ∨ c2K♯ d = C̃Jc1K♯ d ⊔⋆ C̃Jc2K♯ d

Fig. 4: Unassume via backward evaluation of expressions and conditions by the
propagation algorithm (changes from the assume algorithm are highlighted ).

Unlike our previous unassume operators, this algorithm implicitly chooses V

to be those variables which are relaxed in the process. Note that it is different
from the set of variables syntactically occurring in e in a more complex invariant
language, such as our example language with pointers, which is described in
Appendix A. This is illustrated by Example 8 below.

Local Iteration. Repeated application of the propagation algorithm for assuming
can improve precision in the presence of dependent subexpressions, i.e., when
the same variable occurs multiple times in the condition [27, 47]. Analogously,
repeated application of the propagation algorithm for unassuming can perform
more relaxation in the presence of dependent subexpressions. Both repetitions
can be iterated to a local fixpoint.

Example 8. Consider using the above algorithm for the case from Example 7:

Junassume((p = &i ∨ p = &j) ∧ *p ≥ 0)K♯ {p 7→ {&i}, i 7→ [0, 0], j 7→ [0, 0]}.

As formalized in Appendix A, the first backward propagation returns for p = &i∨
p = &j the partial map {p 7→ {&i, &j}} and uses *p ≥ 0 to relax *p. To do so,
backward operator

←−
≥ ♯ uses the expected true result and its forward-evaluated

right argument [0, 0] to propagate the expected value [0,∞] into its left argument.
Using forward evaluated p 7→ {&i}, backward propagation of the lvalue *p, acting
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as a leaf, returns the partial map {i 7→ [0,∞]}. The new constructed environment
is {p 7→ {&i, &j}, i 7→ [0,∞], j 7→ [0, 0]}.

The second backward propagation does all of the above and also includes
j 7→ [0,∞], due to the new points-to set. The final fixpoint environment is
{p 7→ {&i, &j}, i 7→ [0,∞], j 7→ [0,∞]}.

In Example 8 the two iterations induced V = {p, i, j}, which used with naïve
unassume yields the issue described in Example 7. Therefore propagating unas-
sume is not equivalent to simply using its induced variable set with a naïve unas-
sume. Propagating unassume fuses the multiple steps involved together into one
algorithm which avoids intermediate imprecision and undefined behavior. We
do not give an exact characterization of the result computed by the modified
algorithm as it has remained an open problem for HC4-revise itself [11, 36].

In case the value lattice has infinite chains, the local iteration of propagating
assume must use narrowing to ensure termination [27, 47]. Similarly, the local
iteration of propagating unassume must instead use widening.

Example 9. Consider using the above algorithm to compute the following:

Junassume(i ≤ i+ 1)K♯ {i 7→ [0, 0]}.

The algorithm makes following iterations:

1. The first forward propagation computes [0, 0] ≤♯ [1, 1]. Backward propaga-
tion then returns {i 7→ [−∞, 1] ⊓ [−1,∞] = [−1, 1]}.

2. The second forward propagation computes [−1, 1] ≤♯ [0, 2]. Backward prop-
agation then returns {i 7→ [−∞, 2] ⊓ [−2,∞] = [−2, 2]}. If no widening is
applied, then these bounds keep growing by one per iteration. If widening is
applied, then we get [−1, 1]∇ [−2, 2] = ⊤.

3. The third forward propagation computes ⊤ ≤♯ ⊤. Backward propagation
cannot relax anything further, so the result is {i 7→ ⊤}. This is consistent
with expectation: all values of i, where the tautology holds.

6 Evaluation

We implement the unassume operator in a state-of-the-art abstract interpreter.
Since the analyzer is sound, this yields a sound witness validator. However, a
sound validator can trivially be obtained by replacing the unassume operator
with the identity operator and ignoring the witnesses entirely. Therefore, our
experimental evaluation aims to demonstrate that our witness-guided verifier ef-
fectively uses witnesses. More specifically, we seek to confirm that “the effort and
feasibility of validation depends on witness content” [15]. To assess the analyzer’s
dependency on witness content, we pose the following questions:

Precision. Can the witness-guided verifier leverage witnesses to validate ver-
ification results that it could not confirm without a witness?

Performance. Do witnesses influence the verification effort in the application
domain of the analyzer?
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It is worth noting that the performance improvement from technology-agnostic
correctness witnesses is expected to be modest. In fact, Beyer et al. [15] observed
no consistent trend in performance gains.

Experimental Setup and Data. Our benchmarks are executed on a laptop run-
ning Ubuntu 22.04.3 on an AMD Ryzen 7 PRO 4750U processor. For reliable
measurements, all the experiments are carried out using the BenchExec frame-
work [21], where each tool execution is limited to 900 s of CPU time on one core
and 4GB of RAM. The benchmarks, tools and scripts used, as well as the raw
results of the evaluation, are openly archived on Zenodo [51].

Implementation. Goblint is an abstract interpretation framework for C pro-
grams [59]. We have extended the framework with unassume operators and
YAML witness support. The correctness witnesses proposed by Beyer et al. [15]
and subsequently used in SV-COMP [14] provide invariants using an automaton
in the GraphML format. The witnesses we consider (defined in Section 2.1) are
much simpler and, thus, we use the newly-proposed YAML format [55, 57], which
directly matches our notion. To this end, our implementation includes parsing
of YAML witnesses and matching provided invariants to program locations such
that the unassume operator can be applied. Our implementation contains two
unassume operators:

1. Propagating unassume (Section 5.1) for non-relational domains. The existing
propagating assume in Goblint could be generalized and directly reused,
yielding an unassume operator capable of handling, e.g., C lvalues, not just
variables, with no extra effort (see Appendix A).

2. Strengthening-based dual-narrowing unassume (Section 4.3) for relational
domains. Although Apron [41], which Goblint uses for its relational do-
mains, does not provide dual-narrowing, the generic approach described in
Example 5 works for, e.g., octagons and convex polyhedra. Since the rela-
tional analysis is just numeric, V is collected syntactically.

To prevent unintended precision loss when widening from initially reached ab-
stract values to the unassumed ones, we must take care to delay the application
of widening. We tag abstract values with the identifiers of incorporated witness
invariants (UUIDs from the YAML witness) and delay the widening if this set
increases [44]. Such widening tokens ensure that each witness invariant can be
incorporated without immediate overshooting.

6.1 Precision Evaluation

We collected and provide a set of 11 example programs (excluding duplicates)
from literature [3, 26, 37, 47] where more advanced abstract interpretation tech-
niques are developed to infer certain invariants, where standard accelerated solv-
ing strategies fail. We configure Goblint the same as in SV-COMP [49, 50],
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except autotuning is disabled and relational analysis using polyhedra is uncon-
ditionally enabled. We manually created YAML witnesses containing suitable
loop invariants for these programs. We also used two state-of-the-art verifiers
from SV-COMP 2023 to generate real witnesses: CPAchecker [20, 32] and
UAutomizer [39, 40]. Both verifiers are able to verify these programs and pro-
duce GraphML witnesses. Following Beyer et al. [22], we use CPAchecker in
its witness2invariant configuration to convert them into YAML witnesses that
Goblint can consume.

Table 1: Evaluation results on literature examples (excluding duplicates). The
Goblint column indicates whether it can verify the program without any wit-
ness. Remaining columns indicate results with corresponding witnesses: witness
validated (✓ ), program verified with witness-guidance but witness not validated
(✓✗ ) or program not verified with witness-guidance (✗ ).

Goblint

w/o witness

Goblint w/ witness from

Author(s) Example Manual CPAchecker UAutomizer

Miné [47] 4.6 ✗ ✓ ✓✗ ✓

4.7 ✗ ✓ ✓✗ ✓

4.8 ✓ ✓ ✓ ✓

4.10 ✓ ✓ ✓✗ ✓

Halbwachs and
Henry [37]

1.b ✓ ✓ ✓✗ ✓✗

2.b ✗ ✓ ✓✗ ✓

3 ✗ ✓ ✓✗ ✓✗

Boutonnet and
Halbwachs [26]

1 (polyhedra) ✗ ✓ ✓✗ ✓✗

3 ✗ ✓ ✗ ✓

“additional” ✗ ✓ ✗ ✓

Amato and
Scozzari [3]

hybrid ✗ ✓ ✓✗ ✓

Total 11 ✓: 3 ✓: 11 ✓✗: 8 , ✓: 1 ✓✗: 3 , ✓: 8

The results are summarized in Table 1. Goblint manages to verify the de-
sired property for 3 of these programs without any witness, but can validate
all handwritten witnesses, despite not implementing any of the advanced tech-
niques needed for their inference. With CPAchecker witnesses our validator
can verify 9 out of 11 programs and validate 1 out of 11 witnesses. With UAu-

tomizer witnesses our validator can verify all 11 programs and validate 8 out
of 11 witnesses. Furthermore, our abstract interpreter can validate the witnesses
from model checkers orders of magnitude faster than it took to generate them.

The evaluation, however, shows many instances where the program was only
verified thanks to witness-guidance, but not all witness invariants could be val-
idated, especially for CPAchecker. This is precisely due to the phenomenon
described in Example 2: in these small programs bounded model checking is suc-
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cessful and yields disjunctive invariants over all the finitely-many cases. Surpris-
ingly, an invariant is useful for witness-guided verification, even when it cannot
be proven to hold abstractly.

Example 10. The invariant from Example 2 relaxes an abstract state:

Junassume{x}(x = 1 ∨ x = 2)K♯ {x 7→ [1, 1]} = {x 7→ [1, 2]}.

6.2 Performance Evaluation

To explore whether a suitable witness can reduce verification effort, we con-
sider larger programs, as runtimes for the literature examples are negligible.
Since Goblint specializes in the analysis of multi-threaded programs, we exam-
ine a set of multi-threaded POSIX programs previously used to evaluate Gob-

lint [52, 53]. We manually construct witnesses that contain core invariants for
these programs, based on how widenings were applied during fixpoint solving.
We configure Goblint as described earlier, but with relational analysis dis-
abled. In addition to CPU time, we measure analysis effort without a witness
and with witness-guidance via transfer function evaluation counts. This metric
of evaluations is proportional to CPU time, but excludes irrelevant pre- and
post-processing, and is independent of hardware.

Table 2: Evaluation results on Goblint benchmarks. The LLoC column counts
logical lines of code, i.e., only lines with executable code, excluding declarations.

w/o witness w/ witness Reduction

Program LLoC Evals CPU time (s) Evals CPU time (s) Evals CPU time

pfscan 559 4,194 0.86 2,919 0.73 30.4% 15.4%
aget 587 7,932 2.23 4,683 1.68 41.0% 24.7%
knot 981 29,588 4.92 21,432 4.54 27.6% 7.7%
smtprc 3,037 48,559 15.00 24,091 7.95 50.4% 47.0%

Average 37.3% 23.7%

The results, aggregated in Table 2, show a noticeable performance improve-
ment in the abstract interpreter when guided by a witness. However, the fixpoint-
solving process still requires numerous widening iterations. This is due to various
abstractions used by Goblint that cannot be expressed as C expressions, in-
cluding but not limited to array index ranges in abstract addresses and various
concurrency aspects. Nevertheless, the average 1.23× CPU time speedup is rela-
tively close to the average 1.63× improvement achieved by Albert et al. [2] when
using analyzer-specific certificates (see Section 7).

Admittedly, we have used a limited set of benchmarks and hand-crafted wit-
nesses because our automatically generated witnesses produce excessive infor-
mation. Large witnesses that express full proofs with numerous invariants can
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be problematic for a validator [1, 15], which must manipulate, use, and/or verify
them. In our case, the validator performs an unassume operation for each in-
variant each time the corresponding transfer function is evaluated. The speedup
gained from using the witness must outweigh the overhead to truly benefit from
witnesses. This amounts to witnesses containing partial proofs, like loop invari-
ants [15]. Moreover, our approach does not take advantage of exact invariants,
such as equalities outside of disjunctions, since these do not relax a reached
state already representing such exact values. Even if such invariants are useful
for some validators, they do not benefit our witness-guided verifier. Therefore,
the challenge remains for us, in collaboration with other tool developers, to de-
velop methods for generating suitable witnesses.

7 Related work

Fixpoint iterations involving widening and narrowing are well-studied [3, 4, 28,
29, 54], but focus mostly on improving precision and ensuring termination. Halb-
wachs and Henry [37] extend fixpoint iteration with partial restarting, which
derives from the narrowing result a new initial value for the following widening
iteration, hoping it improves the result. Their restarted value is analogous to
our partial initialization and could be used as such. They focus on finding such
values automatically, while we focus on using them to avoid all the computa-
tion leading up to it. Boutonnet and Halbwachs [26] improve the technique for
finding good restarting candidates. Cousot [28] extends fixpoint iteration with
dual-narrowing, hoping it improves the result further. Both approaches focus
purely on improving precision with more iterations, while we aim to skip that
iteration and arrive at the same result quicker, knowing the invariant. Hence,
the techniques can be combined: use theirs to find a precise invariant and use
ours to directly reuse it.

Arceri et al. [6] swap the abstract domain for a more precise one when switch-
ing from widening to narrowing. This can be considered a precision improvement
technique, which makes the narrowing phase more expensive. However, it can
also be viewed as an optimization, which makes the widening phase cheaper.
Either way, it can be combined with our approach: immediately using the more
precise domain with the final invariant, ideally skipping iteration in both ways.

Widening operators themselves are also well-studied [8, 25, 35, 44, 47]. Widen-
ing up to or with threshold use candidate invariants as intermediates to avoid
irrecoverably losing precision. Such automated techniques can identify which
candidates are true invariants. Using these as input to our approach is an effec-
tive way of supplying known good thresholds at specific program points, remov-
ing the need for retrying all the candidates on re-verification. This is one instance
of dealing with the inherent non-monotonicity of widening operators [28]. Fur-
thermore, widening thresholds require domain-specific implementation, whereas
our approach is more generic.

Our naïve unassume with its havoc and assume bears some similarity to
the generation of verification conditions from user-supplied loop invariants [34].
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However, there one additionally refines the state with the loop condition and then
checks that the loop invariant is preserved. We avoid the former to remain sound
by construction, but effectively do the latter when validating witness invariants.

Albert et al. [2] introduce Abstraction-Carrying Code (ACC) as an abstract-
interpretation–based instance of Proof-Carrying Code (PCC). For validation
they use a simplified analyzer which only performs a single pass of abstract
interpretation and no fixpoint iteration. Thus, it requires certificates to supply
invariants for all loops. This is more restrictive than our validation approach,
which runs in a single pass if all necessary invariants are provided, but also allows
some fixpoint iteration if this is not the case. Nevertheless, we could handicap
our analyzer with this stronger restriction.

Albert et al. [1] develop a notion of reduced certificates which can be smaller
and are used by the validator to reconstruct full certificates. Besson et al. [12]
propose a fixpoint compression algorithm to further compact the certificates. In
follow-up work, Besson et al. [13] develop a theory for studying the issue of cer-
tificate size. Rather than using the strongest information from the least fixpoint
of an analysis, they seek the weakest information still sufficient for implying cor-
rectness. This omits irrelevant information, leading to smaller witnesses. Such
techniques could also be used when generating witnesses for our validator.

8 Conclusion

We have demonstrated how to turn abstract-interpretation–based tools into
witness-guided verifiers and witness validators, by equipping them with unas-
sume operations. These can be constructed from abstract transformers for as-
sumes, non-deterministic assignments, joins and (optionally) dual-narrowings,
which allow retaining more precision for relational abstract interpretation. A
powerful syntax-directed unassume operation for non-relational domains can
be derived from a classical algorithm with minimal changes. Our implementa-
tion and evaluation demonstrate that unassuming invariants from witnesses can
both speed up the analysis and make it more precise. The experiments further
show that the abstract interpreter can benefit from witnesses produced by model
checkers, and thus indicate that the approach is suited even for cross-technology
collaboration.
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A Pointers

In Section 5.1 we claim that the algorithms generalize from variables to lvalues.
The key machinery for this is the variable set variance described in the paper.
While the original HC4-revise algorithm directly refines variables at leaf nodes,
we handle pointers by letting leaf nodes create partial states containing the
dynamically resolved variables.

Let l ::= x | *x be the grammar for lvalues, which can either be variables
or dereferencing of variables. Let abstract value domain for pointer variables be
may-point-to sets of variables 2V . Let constants include address-taking as &x for
a variable x ∈ V .

Evaluation. The forward evaluation of address-taking is defined by (&x)♯ = {x}.
Forward evaluation of lvalues uses the following helper function for evaluating
lvalues to may-point-to sets:

LJlK♯ : D→ 2V

LJxK♯ d = {x}

LJ*xK♯ d = d x

The forward evaluation of lvalues is then a join over all the possibilities:

EJlK♯ d =
⊔

x∈LJlK♯ d

d x.

Assume. The backward evaluation of lvalues is defined analogously:

←−
E JlK♯ v′ d =

⊔

x∈LJlK♯ d

d[x 7→ d x ⊓ v′].

However, it is easier understood using the following equivalent formulation:

←−
E JlK♯ v′ d =

{

d[x 7→ d x ⊓ v′], if LJlK♯ d = {x},

d, otherwise.

Thus, in the case of an ambiguous may-point-to set, no refinement takes place.
This is because each variable is refined in one of the joinees, while left untouched
in others, leaving the joined value also unchanged.

Unassume. Unassuming of lvalues is also defined analogously:

ẼJlK♯ v′ d =
⊔

⋆

x∈LJlK♯ d

{x 7→ v′}.

However, it is also easier understood using the following equivalent formulation:

ẼJlK♯ v′ d = {x 7→ v′ | x ∈ LJlK♯ d}.
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This can be seen as a special case of abstract assignment:

ẼJlK♯ v′ d = Jl ← γ v′K♯ {x 7→ ⊥ | x ∈ LJlK♯ d},

where Jl ← eK♯ d is the abstract operator for assigning the value of expression e

to the lvalue l. In this special case the assigned abstract value is v′, not EJeK♯ d.
Therefore, propagating unassume for lvalues can be implemented using exist-

ing primitives: backward operators and abstract assignment. This is not limited
to just simple pointers but works the same way for C lvalues, which also include
array indexing and structure field offsets.
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