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Abstract. The goal of next-activity prediction is to forecast the fu-
ture behavior of running process instances. Recent publications in this
field predominantly employ deep learning techniques and evaluate their
prediction performance using publicly available event logs. This paper
presents empirical evidence that calls into question the effectiveness of
these current evaluation approaches. We show that there is an enor-
mous amount of example leakage in all of the commonly used event logs
and demonstrate that the next-activity prediction task in these logs is a
rather trivial one that can be solved by a naive baseline. We further argue
that designing robust evaluations requires a more profound conceptual
engagement with the topic of next-activity prediction, and specifically
with the notion of generalization to new data. To this end, we present
various prediction scenarios that necessitate different types of general-
ization to guide future research in this field.

Keywords: Predictive Process Monitoring · Process Prediction · Gen-
eralization · Leakage

1 Introduction

Predictive process monitoring (PPM), or process prediction, is a branch of pro-
cess mining that is concerned with the forecasting of how a running process
instance will unfold in the future [3]. For example, PPM approaches may predict
what the outcome of the process instance will be, how long it will take to com-
plete, or which activities will be executed next. In contrast to techniques like
process discovery or conformance checking, process prediction is forward-facing,
and aims to identify process execution problems like delays or compliance vi-
olations before they occur, thus enabling an organization to preemptively take
preventive counteractions [3].

Whereas older approaches to process prediction relied on explicit models of
process behavior, such as transition systems or probabilistic automata [1], recent
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research has almost exclusively tackled the problem with neural networks [4]. The
majority of this research has also focused on control-flow predictions, specifically
the prediction of the next activity in a trace [6]. At a high level, all existing contri-
butions approach next activity prediction as a self-supervised machine learning
problem [7, 9, 11]: An existing event log is randomly split into a training and a
test set. A machine learning model, typically a deep neural network, is shown
incomplete traces from the training set, such that it learns to predict the next
activity in that trace. The performance of the trained model is then evaluated
by predicting the next activity for incomplete traces of the unseen test set and
computing performance measures. Almost all existing publications train and
evaluate their models on a relatively small collection of event logs for their eval-
uation. This includes the Helpdesk event log [14] and the logs from the Business
Process Intelligence Challenges (BPIC) 2012, 2013, and/or 2017.

In this paper, we argue that this current way of training and evaluating
next activity prediction models is biased in the sense that it does not evaluate
how well these models would generalize to unseen data. We argue that, in order
to design reliable evaluation procedures, it is necessary to first engage with the
topic of next-activity prediction on a more conceptual level. Our line of argument
is based on several observations about the aforementioned event logs: First, the
next-activity label is almost entirely determined by the control-flow of the prefix.
Second, when only considering the control-flow perspective, there is an enormous
amount of example leakage in all logs, so that most predictions are made on
prefixes that were already seen during training. Third, as other research has
already shown [10], incomplete traces can often continue in different ways, so
that the maximal achievable accuracy in this evaluation setting is unknown and
probably much lower than 100%.

After introducing basic concepts in section 2, we provide empirical evidence
for each of these observations and demonstrate that the next-activity prediction
task in these event logs is a rather trivial one that can be solved by a naive
baseline (section 3). section 4 presents various scenarios for generalization in
process prediction which are grouped into three types of generalization. Finally,
we discuss related work in section 5 and conclude the paper in section 6

2 Background

Event Log Data. PPM works on event log data, gathered from the execution
of business processes in information systems. An event log is a collection of
cases. A case is represented by a trace t, i.e., a sequence of events ⟨e1, . . . , en⟩
of length n. Each event e has two mandatory attributes: the activity and the
case ID. In addition, events can have additional attributes, such as a timestamp
or an executing resource, which describe the context in which the event has
occurred. Similar to events, traces can also have additional attributes, such as
an allocated project. A case represents a completed process execution. For PPM,
we are interested in predicting the future behavior of running cases, which are
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represented by trace prefixes. A trace prefix of a trace t of length p is defined as
a subsequence ⟨e1, . . . , ep⟩, with 1 ≤ p < n.

Next Activity Prediction. The goal of next activity prediction is to predict
which activity is performed next in a running case. Formally, this problem is
framed as multi-class classification, where each class represents one activity. For
each trace t in a given event log, pairs (x, y) of features x and labels y are created.
x is a prefix of t with length p, which represents the running case. y, which is
often called the label of x, represents the activity at position p + 1 of t, i.e.,
the next activity, which should be predicted. These pairs (x, y) are provided to
a machine learning model, typically a deep neural network, such that it learns
a predictor function f that maps the prefix to the correct next activity, i.e.,
the class to which the prefix belongs. To learn and evaluate f , the event log is
split into two parts, the training set and the test set. The model is trained on
the prefix-label pairs from the training set and evaluated on those from the test
set. Therefore, for each prefix x, its prediction ŷ := f(x) is compared with the
ground truth label y and performance measures like accuracy and F1 score can
be computed.

3 Validity Issues in Existing Research

In this section, we examine various phenomena that pose threats to the validity
of next-activity prediction research. To substantiate our discussion, we present
empirical evidence that was generated in a setting that is representative of the
typical evaluation setup used in the field. We employ five commonly used event
logs (Helpdesk, BPIC12, BPIC13 Incidents, BPIC17 Offer, and MobIS [12]) and
generate six splits for each log: five in which we randomly allocate traces so that
80% of them are part of the training set and 20% are part of the test set, and one
in which the split is time-based so that the 20% of traces with the most recent
start timestamps end up in the test set. We then generate n−1 prefix-label pairs
(x, y) from each trace with lengths p ∈ [1, n−1] and calculate prediction accuracy
as the percentage of prefixes in the test set for which the correct next-activity
label was predicted, i.e., ŷ = y. We do not apply log preprocessing or make any
other changes to the data. The code and data needed to reproduce our results are
available at https://gitlab.uni-mannheim.de/jpmac/ppm-generalization.

3.1 Example Leakage

Leakage in machine learning refers to information being made available to a
model during training that it would not have access to when classifying unseen
data [5]. This can lead to an unrealistic assessment of the model’s performance
with respect to the classification task at hand. One particular type of leakage
is example leakage, which occurs when the same example (more specifically, the
same feature vector) is present in both the training and the test set. In this
case, the classification is a trivial one, as the model is not required to learn
generally-valid relationships between features and labels. Example leakage can be

https://gitlab.uni-mannheim.de/jpmac/ppm-generalization
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a considerable problem when doing prediction on event logs, due to the repetitive
nature of the process executions recorded in them [15].

In order to quantify example leakage in next-activity prediction, we first
need to establish when two prefixes can be considered identical. We can limit
the set of features that need to be considered when establishing equality to those
that are actually relevant for predicting the next activity. Previous research has
already examined the extent to which context attributes, such as resource or
time, enhance prediction performance compared to solely considering the previ-
ous control-flow recorded in a prefix [2]. They have found that, in most cases,
including context attributes does improve predictions compared to only consid-
ering control-flow features, but that these improvements are rather insignificant
(low single-digit percentage increases in accuracy). Based on these findings, we
can conclude that in most cases, the next-activity label can be correctly predicted
when only the control-flow of the prefix is known. In the following, we therefore
consider two prefixes to be identical if they exhibit the same control-flow, i.e., if
they have the same activities in the exact same order.

With this equality criterion, we can now quantify example leakage by cal-
culating the percentage of prefixes in the test set that is also included in the
training set. The amount of example leakage in the event logs commonly used
for the evaluation of next-activity prediction techniques is shown in (Figure 1).
We observe that, across all datasets and splits, example leakage is above 80%,
and even close to 100% in the Helpdesk and MobIS event logs. This means that
most of the predictions made on the test set are trivial ones, and consequently,
that one cannot draw valid conclusions about how well a prediction model would
perform on unseen data from this evaluation setting.

BPIC12 BPIC13 BPIC17 Helpdesk MobIS
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Fig. 1: Example leakage percentage for each event log, averaged over the splits.
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3.2 Baseline and Accuracy Limit

We can further illustrate this issue by demonstrating that the prediction accuracy
of state-of-the-art models lies in a relatively narrow corridor that is bounded by
a naive baseline with little to no generalization capacity on the lower end, and
by the maximal accuracy that can be achieved with only control-flow features
on the upper end.

We construct the baseline as follows: for each unique prefix in the training
set x := ⟨e1, . . . , ep⟩, where e represents the activity only, it simply predicts
the most common next activity. If an unknown prefix is encountered (i.e., an
example that has not leaked), it instead predicts the most common next activity
associated with only the last activity ep in the prefix, similar to a bigram model,
i.e., x := ep.

The upper bound is based on the observation that a common implicit as-
sumption in supervised learning, that each unique combination of feature values
maps to exactly one label, does not hold in the process mining domain. Event
logs nearly always contain traces that have identical control-flow up to a point
but diverge afterwards, for example due to exclusive continuation paths or con-
current activity execution. In the context of next-activity prediction, this means
that a prefix exhibits label ambiguity [10]. If a prediction model that predicts
a single next-activity label is tasked with classifying a label-ambiguous prefix,
the best prediction in terms of the resulting overall accuracy it can make is the
activity that is most frequently associated with that prefix. All other activities
will never be predicted.

From this, we can derive that there is an accuracy limit that a prediction
model can achieve on a given (test) dataset when it only makes predictions based
on the control-flow of the prefix. This accuracy limit is simply calculated as the
percentage of examples in the test set in which the label is the most common
label for the corresponding prefix.

Figure 2 shows the prediction accuracy achieved by the baseline prediction
model described above and the MPPN [9], a state-of-the-art neural network pre-
dictor that includes contextual attributes for its prediction. The accuracy limit
for each test split is also included. Of course, this comparison is limited since it
only includes a single state-of-the-art model. However, given that benchmark ex-
periments in previous research have consistently shown that many next-activity
prediction models achieve almost the same accuracy when evaluated on the same
data (e.g., [7,9,11]), our observations are likely to apply to other models as well.

In the Helpdesk and MobIS logs, the training and test set almost completely
overlap. Predicting the next activity in these event logs is therefore trivial, and
consequently, both models achieve the same prediction accuracy. In fact, the only
reason that they do not reach 100% accuracy is label ambiguity, which is why
the observed accuracy for these models is almost identical to the accuracy limit.
In other event logs, which exhibit slightly less example leakage, the accuracy
of the naive baseline is still very close to the one of the state-of-the-art model,
although there is a notable gap of a few percentage points. It is, however, unclear
to which extent this performance gap can be attributed to the MPPN’s ability
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Fig. 2: Prediction accuracy of the naive baseline and the MPPN neural network,
along with the accuracy limit in the test set. Each split plotted separately.

to generalize to unseen examples. An alternative explanation would be that its
consideration of context features allows it to resolve the label ambiguity in some
traces, and thereby improve its predictions, whereas the baseline only considers
control-flow features; this would be consistent with the findings of [2], i.e., that
incorporating context slightly improves prediction accuracy.

Given that the evaluation setting that we used in this section has been so
widely employed in existing publications on next-activity prediction, our findings
suggest that a significant portion of the perceived advancements in the field may
be – in a sense – illusory. As a research community, we now have a large num-
ber of proposed next-activity prediction techniques that employ several different
neural network architectures, inductive biases, and strategies to incorporate dif-
ferent types of features. However, we have very little idea to what extent these
techniques would be able to generalize well enough to make good predictions
on unseen data – and consequently, if they would be able to provide value in a
real-world application.

Although it would also be possible to address the issues that we have pointed
out in this section on a technical level, we argue that they are symptomatic of
a broader problem in process prediction research, namely a lack of engagement
with the topic on a conceptual level. In particular, we believe that there is an
insufficient understanding of what generalization means in a process prediction
context.

4 Generalization in Process Prediction

In machine learning, generalization refers to the ability of a trained model to
make correct predictions on samples that it has not seen during training. This
in an important capability because a model should not only be able to handle
the samples that it is already familiar with, but also other samples that it will
be faced with when applied in its respective application context.
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As pointed out in the previous section, splitting an event log into training and
test sets with the goal of having samples in the test set that were not present in
the training set does not work as expected. This means that, although general-
ization is a characteristic of interest for machine learning in general and process
prediction in particular, the generalization capabilities of PPM algorithms have
so far not been explicitly evaluated, in the sense of applying an algorithm on a
test log that has little to no overlap with the training data3. Such an evaluation
is undoubtedly necessary, but it requires a discussion on what generalization
means in a process context and how it should be measured.

To contribute to this discussion, this section presents several exemplary pre-
diction scenarios, classified into different generalization types, and discusses
which predictions a PPM algorithm should reasonable make in each. These sce-
narios are not meant to be complete. Rather, they are intended to serve as a
starting point for understanding generalization in process prediction.

4.1 Prediction Scenarios

In all scenarios, we suppose to train a prediction model on the mentioned log,
i.e., we create all prefixes for all traces t in the log L and train the model on the
resulting samples (x, y). For each scenarios we show prefixes that are not seen
so far, i.e., that are not included in the log. Given the unseen prefix as input
to the model, we explain which predictions are plausible to be made. Thus, we
only assume what could be the correct ground truth label. If the model is able
to make this prediction on the unseen prefix, we say that it can generalize in
this scenario.

In all scenarios, we focus on the problem of predicting the next activity only.
Predicting attributes like resource, time or properties like the process outcome
are related problems, but the correct predictions differ, so they require a separate
discussion. Furthermore, we assume that we do not have access to additional
information like a process model; only the observations in the event log are
given.

Event Log L1

⟨A, B, C1, C2, C3, D, E⟩
⟨A, B, C2, C1, C3, D, E⟩
⟨A, B, C2, C3, C1, D, E⟩
⟨A, B, C3, C1, C2, D, E⟩
⟨A, B, C3, C2, C1, D, E⟩
Table 1: Concurrency

Event Log L2

⟨A, B, C, D, E, F, G, H⟩
⟨A, B, C, F, D, G, E, H⟩
⟨A, B, C, D, F, E, G, H⟩
⟨A, B, F, C, D, G, H, E⟩

Table 2: Concurrency
with label ambiguity

Event Log L3

⟨A, B, C, D⟩
⟨A, B, B, C, D⟩

Table 3: Loops

Unseen Control-flow Log L1 in Table 1 shows the scenarios where activities
C1, C2 and C3 can occur in any order. L2 in Table 2 shows a similar, yet more

3 A notable exception to this is [8], which focuses on process model structures
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complex scenario with C, D, E, F , G, H in any order. This can be caused, e.g.,
by concurrent activities and is a common phenomenon in real-world event logs.
Another common scenario is the appearance of activities that can be executed
multiple times after another as shown in L3. For event logs with such patterns,
four interesting scenarios can occur:

1. L1 and prefix ⟨A, B, C1, C3, C2, D⟩. Expected prediction: E. Although the
model has not seen this prefix due to a new order of C1, C2 and C3, it should
have learned that the case always continues with E after D, regardless of
the order of the previous activities.

2. L1 and prefix: ⟨A, B, C1, C3, C2⟩. Expected prediction: D. Again, the pre-
diction model should have learned that regardless of the order of C1, C2 and
C3, D always follows.

3. L2 and prefix: ⟨A, B, C, D, F, G⟩. As seen in L2, both E and H have hap-
pened after G. However, in each trace, either E or D directly follows G. This
is the situation of label ambiguity described in [10]. Both options, E and D
are valid continuations and thus valid predictions.

4. L3 and prefix: ⟨A, B, B, B, C⟩. Expected prediction: D. The model should
have learned that the case always continues with D after C, no matter how
often B has happened.

Event Log L4

⟨(A, R1), (B, R100), (C, R2)⟩
⟨(A, R1), (B, R101), (C, R2)⟩
⟨(A, R1), (B, R101), (C, R2)⟩

Table 4: Example Log with different
resources R performing B

Event Log L5

⟨(A, 2e), (B, 2e), (C, 2e)⟩
⟨(A, 499e), (B, 499e), (C, 499e)⟩
⟨(A, 501e), (B, 501e), (D, 501e)⟩

Table 5: Example Log with decision
depending on cost after B.

Event Log L6

⟨(A, May 2022), (B, June 2022), (C, June 2022)⟩
⟨(A, July 2022), (B, July 2022), (C, July 2022)⟩
⟨(A, April 2023), (B, May 2023), (D, May 2023)⟩

Table 6: Example Log with concept drift in 2023.

Unseen Attribute Value Combinations In certain scenarios, the context
attributes like involved resources, timestamp or cost carry important information
to determine the continuation of the process instance [2, 12]. Considering the
contextual information is an important capability when dealing with event logs
which distinguishes next step prediction from other sequential prediction tasks.
As an example, we show three scenarios where we expect the prediction model
to generalize in presence of context attributes. Note that in these scenarios, the
models have seen the context attribute values before, i.e., they are not completely
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new. Just the combination of activity and context has not been seen so far. The
first example, L4 in Table 4, shows a situation in which different resources are
involved in the activities. Log L5 in Table 5 gives an example where the next
activity to execute depends on the amount of Euro. Lastly, log L6 in Table 6
shows an example where timestamps are involved.

1. L4 and prefix ⟨(A, R1), (B, R1)⟩. Expected prediction: C. In L4, different
resources are involved in activity B. However, C follows B every time. Thus,
the prediction model should know that regardless of the resourceR in activity
B, C always follows.

2. L5 and prefix ⟨(A, 2e), (B, 499e)⟩. Expected prediction: C. The value of
Euro has changed to 499e. However, the model should have learned that
with 499e C still follows.

3. L6 and prefix: ⟨(A, July 2022), (B, May 2023)⟩. Expected prediction: D. In
2023, a drift happened causing activity D to follow B instead of C, which
the prediction model should be able to express.

Unseen Attribute Values Sometimes, the training log might not be complete
with respect to the activities or other attributes contained. For instance, a new
activity (e.g. due to new requirements in the process) or a new resource (e.g.
a new person joining the process/company) might occur. To demonstrate these
scenarios, we use the logs L4, L5 and L6 from the previous section but discuss
other prefixes.

1. L4 and prefix ⟨(A, R1), (F, R100)⟩. As F is an activity the prediction model
has never seen before, there is no evidence from the event log how to continue.
One option is to indicate that the model does not know, e.g., by predicting
a special UNKNOWN token. Another option would be to predict any label
from the event log that could follow potentially, e.g., C as this has happened
in the third position in all traces in the log.

2. L4 and prefix ⟨(A, R1), (B, R37)⟩. This scenario is similar to the previous
one but with resource R37 never seen before. Again, the model could indicate
that it does not know or predict any label on positional basis, e.g., C.

3. L5 and prefix ⟨(A, 200e), (B, 200e)⟩. The value 200e is between the seen
values 2e and 499e. Thus, we argue that the prediction model should predict
C.

4. L6 and prefix ⟨(A, June 2024), (B, June 2024)⟩. The model should know
that the process has changed in 2023. If tasked with 2024, the most probable
next activity is D.

4.2 Implications

Generalization over unseen control-flow constructs involves dealing with unseen
control-flow variants in the prefix as shown in the scenarios in event logs L1, L2
and L3 in Table 1, Table 2 and Table 3. We assume that all activities in prefix
and label are known but the specific prefix has not been seen so far. The event
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log L2 in Table 2 is a special scenario as it is linked to label ambiguity [10].
Both options E and H are valid prediction. However, a deterministic model
will always make the same prediction when tasked with the same prefix. As H
has the higher frequency, the prediction model will most likely always predict
H although it should have – and probably has – learned that E can also fol-
low. When evaluating process prediction methods with point-measures like top-1
accuracy, which consider only the single most probable prediction, one cannot
assess generalization properly as it does not take into account whether the model
has learned that more than one option can follow. When evaluating whether the
model has learned that more than one option can follow, probabilistic measures
can be used that assess how much probability is given for each option.

For generalization over unseen context combinations, the prediction model
must be able to interpret the context attributes and to distinguish between those
scenarios where the context attributes have influence on the next activity to be
predicted and those scenarios where they do not. This involves scenario as shown
in logs L4, L5 and L6 in Table 4, Table 5 and Table 6. There can be much more
complex scenarios with other context attributes where the next activity depends
not only on one but the combination of multiple attribute values.

Generalization over new and unknown attribute values are scenarios where a
new attribute value like a completely unknown activity or resource occur. In such
scenarios, defining plausible predictions is often not trivial and might depend one
the use-case. Furthermore, dealing with never seen attribute values in the input
is challenging as the model has to have learned whether there is a influence on
the process or not - and in case there is which influence it has. For numerical
and temporal attributes, unseen attribute values are more diverse. For instance,
the number of unique values for cost in Table 5 can be very large and the chance
that all values have been seen is rather low. Similarly, temporal attributes can be
continuous and the prediction model might in practice be tasked with prefixes
with year 2024 or 2025. The most reasonable approach is to make a decently
confident prediction for the most likely next activity and to indicate whether
the model knows the correct answer or whether it does not know. For instance,
the model might predict a certain activity which usually occurred in this position
in the trace but at the same time indicate that it did predict this activity only
on positional basis as it has never seen this attribute value in the trace.

In practice, these scenarios might not occur in isolation. For instance, an
unseen sequence of activities in the prefix can also come with unseen combina-
tion of context attributes or new attribute values which makes generalization in
process prediction a challenging task.

5 Related Work

So far, the conceptual flaws of process prediction beside label ambiguity [10] have
been discussed little. The majority of papers have introduced new approaches
for process prediction, starting from the first deep learning based model [4], to
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more complex architectures [7, 9]. Limited work has been conducted to ensure
realistic evaluation settings or test generalization capabilities.

Weytjens et al. [15] introduce a pre-processing algorithms to prevent leakage
in process prediction focusing on the remaining time prediction problem. Their
approach splits the traces on a temporal basis such that there is no temporal
overlap between the prefixes used for training and test. However, this does not
prevent example leakage on prefix-level.

In [13], the authors compare discovery-based algorithms to sequence-learning
algorithms in terms of their accurateness and generalization capabilities. The
event logs are split into training and test sets. However, as the paper does not
mention any technique to prevent example leakage, it is very likely that the splits
used in the experiments face a similar high portion of leaked prefixes which limits
the validity of generalization capabilities measured.

Peeperkorn et al. [8] propose an evaluation strategy to leave certain vari-
ants out of the training set and only have them in the test set. They used this
splitting strategy to evaluate whether prediction models can learn process model
structure of the unknown system behind the log, focusing mainly on concurrent
activities in process models. Thus, they did not systematically cover all gener-
alization scenarios introduced in this paper. They found that the generalization
capabilities of LSTM prediction models are inversely correlated with the num-
ber of variants left out. However, as they measured with accuracy, it is unclear
how label ambiguity affected the experiments. In comparison to their work, we
propose several generalization scenarios.

6 Conclusion

In this paper, we have critically analyzed the current procedure of evaluating
PPM algorithms in research and found that little to no generalization capa-
bilities can be tested that way. The proposed generalization scenarios can be
used to measure how much difference between train and test set there is and
which generalization capabilities are required for which log, i.e., which scenarios
are present and which not. Furthermore, synthetic event logs containing these
pattern can be simulated and existing one split accordingly to test for general-
ization. Guided by the plausible predictions, new prediction algorithms can be
developed that specifically account for these.

While the generalization scenarios are inspired by real-world situations, real
event logs are required for setting the ground truth label of unseen prefixes. In the
scenarios presented, we assumed a ground truth label and argued whether such
a prediction will show generalization. In some scenarios, the expected label is
more clear than in other scenarios. However, these are only plausible predictions.
Real generalization can only be tested if the ground truth label is not assumed
but determined by the data.

Although we have focused on next-activity prediction and other prediction
situations were out of scope for this work, there might be more scenarios in next-
activity prediction that are not yet covered. Furthermore, the high percentage
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of example leakage between train and test set raises the question whether gen-
eralization capabilities are actually required if the behaviour in both sets is that
similar when considering the control-flow only. Following that, prediction models
that take context information into account might actually be able to general-
ize with respect to the scenarios of unseen attribute value combination, as they
reach comparable or higher accuracy as control-flow only models. Nevertheless,
this has yet not been shown explicitly.

In the future we plan to create a benchmark set of event logs that cover the
presented generalization scenarios. Furthermore, the scenarios can be adopted
to other prediction tasks like outcome prediction.

References

1. Breuker, D., Matzner, M., Delfmann, P., Becker, J.: Comprehensible predictive
models for business processes. MIS Quarterly 40(4), 1009–1034 (2016)

2. Brunk, J., Stottmeister, J., Weinzierl, S., Matzner, M., Becker, J.: Exploring the
effect of context information on deep learning business process predictions. Journal
of Decision Systems 29(sup1), 328–343 (2020)

3. Di Francescomarino, C., Ghidini, C.: Predictive process monitoring. In: Process
Mining Handbook. pp. 320–346. Springer, Cham (2022)

4. Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep
learning. Decision Support Systems 100, 129–140 (2017)

5. Kaufman, S., Rosset, S., Perlich, C.: Leakage in data mining: Formulation, detec-
tion, and avoidance. In: KDD Conf. vol. 6, pp. 556–563. ACM, NY (2011)

6. Neu, D., Lahann, J., Fettke, P.: A systematic literature review on state-of-the-art
deep learning methods for process prediction. Art. Int. Review 55, 1–27 (2022)

7. Pasquadibisceglie, V., Appice, A., Castellano, G., Malerba, D.: A multi-view deep
learning approach for predictive business process monitoring. IEEE Trans. Serv.
Comp. 15(04), 2382–2395 (2022)

8. Peeperkorn, J., Broucke, S.v., De Weerdt, J.: Can recurrent neural networks learn
process model structure? J. Intell. Inf. Syst. pp. 1–25 (2022)

9. Pfeiffer, P., Lahann, J., Fettke, P.: Multivariate business process representation
learning utilizing gramian angular fields and convolutional neural networks. In:
Business Process Management. pp. 327–344. Springer, Cham (2021)

10. Pfeiffer, P., Lahann, J., Fettke, P.: The label ambiguity problem in process predic-
tion. In: BPM Workshops. pp. 37–44. Springer, Cham (2023)

11. Rama-Maneiro, E., Vidal, J., Lama, M.: Deep learning for predictive business pro-
cess monitoring: Review and benchmark. IEEE Trans. Serv. Comp. 16(1) (2021)

12. Scheid, M., Rehse, J.R., Houy, C., Fettke, P.: Data set for mobis challenge 2019
(2018). https://doi.org/10.13140/RG.2.2.11870.28487

13. Tax, N., Teinemaa, I., van Zelst, S.J.: An interdisciplinary comparison of sequence
modeling methods for next-element prediction. Softw. Syst. Model. 19(6), 1345–
1365 (2020)

14. Verenich, I.: Helpdesk event log. https://doi.org/10.17632/39bp3vv62t.1
15. Weytjens, H., De Weerdt, J.: Creating unbiased public benchmark datasets with

data leakage prevention for predictive process monitoring. In: BPM Workshops.
pp. 18–29. Springer, Cham (2022)

https://doi.org/10.13140/RG.2.2.11870.28487
https://doi.org/10.17632/39bp3vv62t.1

	A Discussion on Generalization in Next-Activity Prediction

