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Abstract

The inception of large language models has helped advance state-of-the-art per-
formance on numerous natural language tasks. This has also opened the door
for the development of foundation models for other domains and data modalities
such as images, code, and music. In this paper, we argue that business process
data representations have unique characteristics that warrant the development of a
new class of foundation models to handle tasks like process mining, optimization,
and decision making. These models should also tackle the unique challenges
of applying AI to business processes which include data scarcity, multi-modal
representations, domain specific terminology, and privacy concerns.

1 Introduction

Artificial intelligence, especially since the emergence of deep learning, has disrupted many areas
of our lives from personal assistants like Alexa [Schneider, 2020] to autonomous driving [Bernhart
and Winterhoff, 2016]. It has also been a disruptive force for businesses1; deep learning is estimated
to provide between $3.5 trillion and $5.8 trillion of annual value Chui et al. [2018] and can be the
difference between companies’ rise or demise.

In enterprise settings, business processes provide a structured framework for work. They define
tasks, and identify their executors while capturing dependencies and providing logging and tracking
capabilities. They also capture company policies and compliance with regulations. With many
enterprises relying on the business process management paradigm to standardize their work, process
management tools grew to a $11.84 billion industry and is projected to grow to $26 billion in 20282.

However, the existing landscape of work has been rapidly changing, requiring companies to move
from their static business process practices to more agile and automated methods due to increased
supply chain disruptions and skill shortages from the recent pandemic. Thus, companies are making
significant investments to adopt AI-driven tools for tasks like process prediction, visualization,
translation, etc. [McKendrick, 2021], evidenced by the $1+ million investments made by companies
3 and the projected $3.2+ trillion business value produced by AI tech gar [2018]. Foundation models’
recent success presents an opportunity to improve business process automation and management.

1https://www.gartner.com/smarterwithgartner/the-disruptive-power-of-artificial-intelligence
2https://www.marketwatch.com/press-release/business-process-management-market-size-growth-with-top-

leading-players-growth-key-factors-global-trends-industry-share-and-forecast-2022-2031-2022-08-18
3https://www.gartner.com/en/newsroom/press-releases/2021-09-29-gartner-finds-33-percent-of-

technology-providers-plan-to-invest-1-million-or-more-in-ai-within-two-years
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Figure 1: Example of a mortgage loan application process (Source: Chakraborti et al. [2020b])

Similar to natural language, images, or code snippets, business processes are yet another information
representation paradigm. However, the unique and particular nature of process features and modalities
can render existing foundation models inadequate to accurately understand and reason over them.
Hence, developing successful foundation models for business process decision making requires
research efforts to treat process data in a holistic manner instead of separate, independent modalities.

In this paper, we propose an approach to creating foundation models that factor in the complexity
of process data. We also discuss some of the challenges of creating foundation models for business
processes and the risks and opportunities of foundation models’ emergent behavior. First, however,
we provide an overview of business processes, their unique properties and the tasks4 that may be best
suited for foundation models.

2 Background

2.1 Business Process Management

A business process is a collection of ordered tasks, followed by a business to produce a product
or a service Weske [2012]. Figure 1 shows the example of a mortgage application process where
every application must go through the same steps before a decision is made. This allows mortgage
lenders to structure their process, improve consistency across loan officers and track the execution of
the process for accountability, auditing and improving the provided service. A graphical notation,
known as business process model and notation (BPMN) Grosskopf et al. [2009], is generally used to
represent such processes, capturing the relationship between tasks (rectangular boxes with rounded
edges) that must be completed by employee roles within an organization, events (circles) that can
trigger processes or specific tasks within them, and decision points (diamonds) that allow paths within
the process flow to merge or diverge. Swim lanes are usually defined to place specific tasks within
the scope of an employee role or department. A trace is an execution of a process; each process can
produce many distinct traces when executed depending on input events and other factors.

Business process management consists of many problems related to the modeling or design, execution
and governance of processes. Process mining or discovery analyzes event data to identify and derive
processes from raw, unstructured data Van Der Aalst [2012]. Ideally, process mining should produce
a BPMN or similar representation for the discovered process. Process optimization or re-engineering
looks to improve existing processes Arlbjørn and Haug [2010]. This requires making changes
to the process representation while maintaining the properties that characterize a valid process.
Conformance checking verifies that the “as-is” process (i.e., how the process is being executed in
reality) does not deviate from the “to-be” process (i.e., how the process was theoretically designed
to be executed) Dunzer et al. [2019]. Task automation through robotic process automation looks to
create automation scripts that can programmatically execute tasks instead of humans Van der Aalst
et al. [2018], whereas automation mining programmatically identifies the best tasks to automate
Geyer-Klingeberg et al. [2018].

2.2 Foundation Models

Foundation models, coined in Bommasani et al. [2021], refer to deep neural network models trained
on massive data and can be reused (with minimal modifications) for multiple downstream tasks.

4Since processes also call individual nodes within a process a task, we will use “downstream tasks” to refer
to foundation model specific prediction tasks and “process tasks” to refer to tasks within a process.
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A key characteristic of foundation models is “emergent” knowledge: the model is able to make
predictions and perform downstream tasks that it has never seen before and wasn’t trained on.

Large language models were the first examples of foundation models; trained on billions of English
sentences from the internet, the models learned the structure of language and became capable of
performing natural language understanding and generation tasks Devlin et al. [2019], Brown et al.
[2020]. This has been followed by a wave of new foundation models catering to problems across
different domains such as vision [Radford et al., 2021], programming code, clinical and biomedical
applications [Alsentzer et al., 2019], among others.

After training foundation models (generally) in an unsupervised or self-supervised paradigm, one of
two approaches can be taken to use the model for a specific task. Either fine-tune on a small set of
labeled data or create a prompt from labeled data to input to the model along with the input you want
a prediction for. Both approaches have their pros and cons and have spurred many new open research
questions and subfields of AI (e.g., prompt engineering [Liu et al., 2021]).

3 A Business Process Foundation Model

3.1 Overview

The business process management literature is already rich with machine learning solutions to
improve business processes (e.g. Nguyen et al. [2022]). In recent years, there has been increased
adoption of AI techniques (including natural language processing) in business processes for problems
including predicting the next task or outcome of a process Teinemaa et al. [2019], Evermann et al.
[2016], the remaining execution time of the process Tax et al. [2017], Navarin et al. [2017], decision
support Agarwal et al. [2022], resource allocations Żbikowski et al. [2021], detecting drifts in process
execution, and anomalous executions Huo et al. [2021]. Declarative AI planning Chakraborti et al.
[2020a] and reinforcement learning Silvander [2019] have been used for process optimization. Natural
language understanding has been used to declaratively extract process models Aa et al. [2019] and to
provide conversational interfaces López et al. [2019], Rizk et al. [2020].

What all these problems have in common is a fundamental understanding of what a process is,
its constituting components, its properties and its goals. However, the current narrow view of the
literature when tackling these problems would lead to narrow solutions that may not realize the full
potential of AI, especially when considering what foundation models could do. If we are able to
encode this information in a foundation model, then we would be able to leverage this model to
perform some of the tasks mentioned above.

Foundation models for language learn the building blocks of language. There is a finite number
of letters that words are made up of; not all letter sequences produce valid words. Sentences are
composed of word sequences that must abide by the syntactic structures imposed by language. Words
play specific syntactic and semantic roles within sentences and can have various semantic meanings
based on context. Sentences also convey a semantic meaning that must be understood by the entity
(person or otherwise) decoding the sentence. Similarly, foundation models for images learn that
pixels with coordinates and values (in gray-scale or RGB or others) are combined to form lines that
create shapes which have colors. An image has a foreground and a background; objects within an
image have various spacial relationships with each other.

For business processes, foundation models need to learn about process artifacts, notation, and
properties. Furthermore, intra- and inter-process features have been shown to have an effect on
the prediction Senderovich et al. [2017]. Once a deep learning network internalizes all these
concepts, then we can start performing more complex downstream tasks that rely on this foundational
understanding like optimizing processes or discovering them from unstructured data and events.

3.2 Data Types in Business Processes

The data describing business processes and generated from their execution consists of many different
types of data. Whether we consider business process data to be a new modality in machine learning
Chakraborti et al. [2020b] or treat it as a multi-modal problem, we first need to understand what types
of data exist before we can effectively train foundation models.

3



Language Images Graphs

Shared Multi-Head 
Self-Attention

L-FFN V-FFN

G-FFGNN

Vision
Model

Language
Model

Graph
Model

Switching
Modality
Models

Process Model 
Notation

Process Trace

Apply for a loan; 
Obtain credit report …

V-FFN L-FFN

Multi-Head Self-Attention

Multi-Head Self-Attention

VL-FFN

Valid/Invalid

Process Model 
Notation

Multi-Head Self-Attention

V-FFN

Process Graph

Multi-Head Self-Attention

G-FFGNN

Notation-Graph
Contrastive Learning

Contrastive 
Learning

Matching

(Multi-modal inputs)

Figure 2: Using Mixture of Modality Experts (MoME) Transformer to pre-train a Business Process
Foundation Model on different tasks

The first type of data embodied in a business process is a graph which represents the control flow
of a process where tasks and decision points are connected to form a directed graph with cycles,
branches, root nodes and end nodes White [2004]. Once a process is executed, a sequence of events
is generated, referred to as a process trace. One process may have many different traces representing
the various traversals of the graph and different decisions at decision points.

Processes also have metadata associated with the process and with the events within a process which
are generally represented by a multi-dimensional set of attributes that can be binary, categorical or
continuous. For example, each task in the process is typically associated with a human worker (e.g.,
loan officer, claims processor) from the enterprise organization, who are geographically distributed,
have different working timezone, vacation, and holiday schedules. These human workers cannot
work on two process cases at once, which in turn creates an implicit limit on the number of associated
concurrent tasks across process instances. Events and tasks within a process can also have unstructured
documents associated with them (e.g., images, text, video, audio). Interactions between participants
(including social networks) in a process can be represented by graphs and times series data.

Considering only a subset of data would provide an incomplete view of the business process and may
lead to sub-optimal predictions by machine learning models. Thus, it is important to identify effective
approaches to handle these types of complex applications and interactions with diverse data types.

3.3 Downstream Tasks

We distinguish between two types of downstream tasks for foundation models: domain agnostic vs.
domain specific. Domain agnostic downstream tasks can be process mining, process optimization,
trace prediction, etc. Domain specific downstream tasks can be process task prediction, decision
recommendation at a decision point in a process, automation of process tasks, etc. Furthermore,
some of these downstream tasks can be time sensitive vs. not. For example, identifying a process
from unstructured data can be performed offline. However, a decision making step during process
execution is more time sensitive; the foundation model needs to make a decision within seconds or
minutes (possibly) as opposed to hours or days. Depending on the type of downstream tasks, we may
need different versions of foundation models (e.g., computational heavy vs. light-weight).

3.4 Model Architecture

Past work on pre-training foundation models in multi-modal settings have focused on Vision-
Language tasks. They learn cross-modal representations to align information using approaches
like contrastive learning, matching, masked modeling, etc [Radford et al., 2021, Kim et al., 2021,
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Yu et al., 2022]. These efforts primarily use one of two architectures. The first is a dual-encoder
architecture to encode different data modalities separately, and then use cosine-similarity of the
feature vectors for modality interaction. This shallow interaction between the different modalities
has been shown to perform poorly on several tasks [Jia et al., 2021]. The second is a fusion-encoder
architecture with cross-modal attention, to jointly encode all possible data pairs to compute similarity
scores for tasks. This results in a quadratic (for two modalities) time complexity and much slower
inference speed than dual-encoder models whose time complexity is linear.

We envision leveraging a recent approach, called Mixture-of-Modality-Experts (MoME) [Wang et al.,
2021, 2022], that uses a pool of modality models to replace the feed-forward network in a standard
transformer architecture. It switches between different modality models to capture modality-specific
information, and then uses shared self-attention across modalities to align information. Figure 2
describes our vision for implementing MoME for business process tasks, where we define expert
feed-forward network (FFN) and feed-forward graph neural network (FFGNN) models for different
modalities (language, vision, graph) and their combinations.

Depending on the modality of the input vectors, the transformer selects the appropriate mixture of
expert models to process the input. For instance, if the input consists of vectors representing process
traces and process model notations, the transformer would pick the language and vision models to
encode the inputs and a vision-language model to capture more modality interactions. Traditional
pre-training tasks like contrastive learning, masking, matching, etc, can be performed to capture
cross-modal information in the business process context, and we show an example of two pre-training
tasks in Figure 2.

4 Challenges

4.1 Data Scarcity and Privacy Concerns

A majority of foundation model training efforts consider tasks involving the generation of natural
language (e.g., OpenAI GPT-3, Google T5), images (e.g., the recent DALL·E 2 model) or code
syntax (e.g., GitHub Copilot, Amazon CodeWhisperer). An inherent advantage of these tasks, is the
prevalence of a variety of relevant and labeled/unlabeled training data that have been collected and
open-sourced by the larger research community.

However, for business processes, there is a lack of sufficient labeled open-source real-world data to
train foundation models. A big reason for this, is the inherent proprietary nature of business processes,
resulting in most corporations being unwilling to share their data and models. While there have been
some efforts towards democratizing business process data, such as the Business Process Intelligence
(BPI) Challenges5, they have also stated the growing difficulties in obtaining real-world data from
corporations, citing privacy concerns.

Therefore, enabling foundation models for business processes would require addressing the critical
challenge of data availability. This could entail solutions involving privacy-preserving training such
as federated learning approaches, wherein models can be trained on data across multiple business
units and corporations without involving any data sharing. Other possible solutions could involve
data generation and augmentation techniques to leverage patterns from the literature (e.g., insertion
of new tasks in the process, optionalization of tasks that were previously required in the process, and
resequentialization of tasks Maaradji et al. [2017]) or ones existing in the data to create realistic new
process data . Generative models (e.g., GANs) could be used to create new data instances hallucinated
from existing processes. However, such approaches would also require crowd-sourced data validation
(by subject matter experts) and labeling efforts to ensure training data quality.

4.2 Breadth of Tasks

As with other domains, business process mining, monitoring, and automation can comprise of a
multitude of possible tasks. These could be (1) process predictions – such as predicting a future
process sequence given a partial trace, process completion time, process failures, etc., (2) process
synthesis – including synthesising new process models from specifications or natural language input,

5https://www.tf-pm.org/newsletter/newsletter-stream-2-05-2020/bpi-challenges-10-years-of-real-life-
datasets
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process visualizations, etc., (3) explainability and summarization – wherein models are expected to
explain various business process decisions and predictions, as well as provide accurate summaries of
process traces, among other tasks.

These tasks involve different data modalities and input/output structures. Some of these tasks operate
using text, some with images, and others with graphs. Hence, training a singular foundation model
across these different tasks is a significant challenge. Determining the appropriate model parameters
in this situation would require techniques like meta-learning [Finn et al., 2017] to ensure minimal
additional training to perform well on different downstream tasks.

There have been several recent research efforts to incorporate multi-modality in foundation models.
For example, Zeng et al. [2022] propose a prompt-driven approach to combine language, vision and
audio models in a symbiotic manner to exchange information with each other and capture multi-modal
knowledge. Similarly, Wang et al. [2022] propose a multi-modal foundation model BEIT-3 for vision
and language tasks, that uses a multiway transformers network to align various modalities. However,
these models do not work for many business process automation tasks, thereby requiring a new
foundation model initiative.

4.3 Domain Specific Language

Tasks based on natural language have well-defined language constructs and semantic meaning for
models to reason on. However, business processes often have acronyms and technical phrases which
are not common knowledge, but are critical for the model to understand. Additionally, process models
often adhere to different standards and graphical notations such as the Business Process Model and
Notation (BPMN), Decision Model and Notation (DMN), Case Management Model and Notation
(CMMN), etc. [White, 2004, Wiemuth et al., 2017].

Hence, it is a critical challenge to develop a domain specific language (DSL) to enable foundation
models to reason over such business process specific terminology. In addition, such a DSL would
also enable users to enforce business policies and ensure the validity of the model outputs using
techniques such as constrained semantic decoding [Poesia et al., 2022]. However, the number of
business domains and terminology is ever-increasing and nearly impossible to fully capture. This
would result in situations where the model has limited knowledge or information, reflecting zero-shot
or few-shot settings, that would require approaches like prompt-based fine-tuning of the model.

4.4 Prompt Engineering for Business Processes

Many real-world tasks may have very little, or no data available to fine-tune foundation models.
However, the use of prompts and in-context examples have been shown to enable language models
to perform significantly well in zero-shot and few-shot settings [Radford et al., 2019, Brown et al.,
2020, Sanh et al., 2021]. The popularity of language tasks has even resulted in a public repository
[Bach et al., 2022] of natural language prompts.

While the use of prompts has demonstrably improved performance, foundation models have also been
shown to be extremely sensitive to prompt engineering. For instance, Zhao et al. [2021] and Min et al.
[2022] have shown that small changes to the prompt such as changing the prompt structure, reordering,
and even the number of examples, can result in a significant drop in model performance. They also
demonstrate how model biases arising from the pre-training data, can impact its performance when
fine-tuned for downstream tasks.

This presents several challenges for business process models. Firstly, while the structure of prompts
may often be straightforward for language tasks (e.g., questions for question-answering), this is not
the case for many business process tasks. For instance, tasks involving the translation of natural
language specifications to process models or summarizing process models using text, would require
careful prompt engineering. Prompts in the business process domain can involve images or even
graph structures, and identifying the most relevant examples or prompts also presents a challenge.
Moreover, ensuring the robustness of the model to biases during the pre-training process is critical.

4.5 Human-in-the-loop Feedback and Model Robustness

Many process automation tasks involve critical decision-making steps. The sensitive and regulated
nature of business domains often results in the requirement of human feedback to be present as part
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of the decision making pipeline. This feedback could involve the enforcement of corporate policies,
ensuring the validity of model outputs, changes to intermediate decisions of the process pipeline,
among others. Hence, process models would require an optimized approach to incorporate such
human-in-the-loop feedback. Since fine-tuning large foundation models is an expensive process, it
may not always be possible to continually update the model parameters with user feedback, thereby
requiring approaches to incorporate the feedback within subsequent input prompts.

Additionally, the influence of malicious actors and data biases on model decisions can have a
significant and costly impact on businesses. For instance, adversarial prompts and feedback could be
used to bias the model to output incorrect or inappropriate decisions, or even obtain any confidential
information used to train or fine-tune the model [Bommasani et al., 2021, Carlini et al., 2021].
Hence, approaches to improve model robustness are critical for business process tasks. For instance,
coupling constrained decoding with model outputs, where businesses can explicitly specify guardrails
or policies [Rizk et al., 2022], and careful consideration of data biases, distribution shifts, and
information leakage during the pre-training process are important.

5 Risks, Opportunities, and Next Steps

The emergent behavior of foundation models has been a point of intrigue and concern in various
fields like healthcare Wiggins and Tejani [2022] and education Blodgett and Madaio [2021]. For,
business processes, things are no different. On the one hand, as foundation models become capable of
generating, modifying and executing parts of a process, concerns around violating industry standards
or company policies, auditability and interpretability must be addressed to ensure wide-spread
adoption. On the other hand, using generative models to produce new business processes can unlock
tremendous optimizations and new ways to do work that can help business achieve profitability
without sacrificing sustainability and environmental impact. Also, foundation models can help make
data driven decision making a reality for business processes.

In summary, we believe that foundation models for business processes have tremendous potential
to advance the field of process management and integrate AI into their practices. Both AI and
BPM communities need to join forces to create the proper infrastructure to train and use such
foundation models. Next steps for the community include identifying existing data sources and
curating specialized datasets for training and fine-tuning. Safeguards should also be put in place to
ensure that foundation models’ emergent behavior does not have negative side-effects that may hinder
its adoption in industry.
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