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Abstract. Image matching is the core of many computer vision applica-
tions for cultural heritage. The standard image matching pipeline detects
keypoints at the beginning and freezes them until bundle adjustment, by
which keypoints are allowed to move in order to improve the overall scene
estimation. Recent deep image matching approaches do not follow this
scheme, historically imposed by computational limits, and progressively
refine the localization of the matches in a coarse-to-fine manner.
This paper investigates the use of traditional computer vision approaches
based on template matching to update the keypoint position throughout
the whole matching pipeline. In order to improve the accuracy of the tem-
plate matching, the usage of the coarse-to-fine refinement is explored and
a novel normalization strategy for the local keypoint patches is designed.
Specifically, the proposed patch normalization assumes a local piece-wise
planar approximation of the scene and warps the corresponding patches
according to a “middle homography”, so that, after normalization, patch
distortion is roughly equally distributed within the two original patches.
The experimental comparison of the considered approaches, mainly fo-
cused on cultural heritage scenes but straightforwardly generalizable to
other common scenarios, shows the strengths and limitations of each
evaluated method. This analysis indicates promising and interesting re-
sults of the investigated approaches, which can effectively be deployed
to design better image matching solutions.

Keywords: Image matching · Keypoint refinement · Cross correlation ·
Middle homography · Patch normalization · Pixel-Perfect SfM · Cultural
Heritage.

1 Introduction

1.1 Image Matching Perspectives

Image matching plays a key role in computer vision [26] and photogrammetric
applications designed for cultural heritage and archaeology [11]. Among these,
Structure-from-Motion (SfM) is generally devised as a downstream task of image
matching and its advancements are significantly contributing to document and
digitally preserve archaeological artifacts and 3D art works [8]. In order to obtain
high-quality digital models replicating the geometry and texture of the original
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objects with accurate details, image matching needs to register images so that
the localization precision of corresponding matches is the highest possible [16].

1.2 Common Ground of Deep and Non-deep Image Matching

Thanks to the ever increasing availability of both data and computational re-
sources, the rise of deep learning has led to impressive advancements in computer
vision and its sub-fields, including image matching. State-of-the-Art (SotA) deep
image matching includes sparse methods such as SuperGlue [24], Accurate and
Lightweight Keypoint Detection and Descriptor Extraction (ALIKE) [28] and
Accurate Shape and Localization Features (ASLFeat) [20], or semi-dense meth-
ods such as Local Feature Transformer (LoFTR) [25] and the more recent Dense
Kernelized Feature Matching (DKM) [7]. The mentioned approaches are end-to-
end architectures, whose main advantage with respect to pipelines composed by
standalone, separate modules is to allow a global optimization and synchroniza-
tion of the process. Nonetheless, current end-to-end image matching methods
are the final results of the efforts made by the research community on each
individual part of the matching pipeline, which can be summarized in terms
of multiple reiterations of these steps: keypoint detection, patch normalization,
feature description extraction and matching.

Keypoint detection Traditional keypoint detectors combines image deriva-
tives to define corners and Difference-of-Gaussian (DoG) blobs, extracted by the
popular handcrafted Harris [13] and Scale Invariant Feature Transform (SIFT)
[19] detectors, respectively. Filters designed according to the above functions of
the image derivatives are applied to the images and the peaks in the filter re-
sponse maps obtained by Non-Maximum Suppression (NMS) provides the final
keypoints. The Keypoint Network (Key.Net) [2] was the first to introduce the
softmax operator, that enables differentiable NMS on the filter response maps,
obtained from learned convolutional layers but also by explicitly including first
and second order derivatives of the input image. Moreover, differentiable NMS
is used to achieve sub-pixel precision in ALIKE [28] or analogously to refine
the matches established by correlation by LoFTR [25]. The basic idea for the
sub-pixel keypoint estimation is to interpolate the discrete response map around
the local neighborhood of the peak so as to obtain the true maximum. Classic
approaches use parabolic interpolations [27] or approximate the response map by
its derivative as in the case of SIFT [19]. Deep sub-pixel estimation acts instead
as Gaussian process regression interpolation, explicitly employed in DKM [7].

Patch normalization Patch normalization warps the local neighborhood of
the keypoints so that patches become roughly aligned in order to compare them.
The main assumption in the non-deep approaches is that any general spatial or
radiometric transformation can be locally approximated by a simpler one with
less degrees of freedom. Normalization by the mean and standard deviation of the
intensity values of the patch is generally sufficient to achieve good radiometric
invariance [19]. Robust spatial patch normalization is instead more complex to
obtain. In the case of SIFT, normalization assumes to work with patches related
only by a similarity (scale and orientation) transformation [19], and experiences
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decreasing performances in the presence of more severe perspective distortions.
Local affine normalization [21] better tolerates these scene configurations. SotA
affine patch normalization is achieved by the deep Affine Network (AffNet) [23]
so that similar patches are clustered together in the transformed space of the
normalized patches. This is not achieved explicitly according to some patch char-
acteristic, e.g. edge shapes, but implicitly using hard negative mining triplet loss
introduced in the Hard Network (HardNet) [22] descriptor. ASLFeat extends
deep patch normalization on dense maps by employing Deformable Convolu-
tional Networks (DCNs) [15] which basically act in two steps: in the first one
DCNs look locally inside the patch, then according to the gathered information
decide the shape of the convolution filter to use. While a better shape adapt-
ability is guarantee, this is still dependent from the local data. This dependency
has been surpassed by transformers, successfully employed by SuperGlue and
LoFTR, which extract relations between distant image areas.

Feature description extraction and matching Keypoint description ex-
tracts features able to compare the keypoint local patches. Ideally, in the case
of perfectly registered patches and in absence of noise, the cross correlation of
the normalized image patches would be the optimal choice. For real scenarios,
robust handcrafted feature descriptors are generally based on histograms of the
orientations of the image gradient, as for SIFT [19], candidate matches are estab-
lished to Nearest Neighbor (NN) strategies [3], and final matches are obtained
by robust correspondence filtering based on spatial constraints through RAN-
dom SAmple Consensus (RANSAC) [9]. Spatial constraints include strong ones
such as planarity and stereo epipolar geometry [14], or loose constraints such as
the spatial neighborhood consistency used in Adaptive Locally-Affine Matching
(AdaLAM) [6] and Delaunay Triangulation Matching (DTM) [3]. Since the orig-
inal aim of deep architectures is to extract features, feature descriptors were the
first components of the image matching pipeline to be successfully implemented
by deep networks. HardNet is a deep SotA standalone feature descriptor which
extracts features by processing the patch through successive convolutional lay-
ers. Conversely, effective keypoint matching was accomplished by deep learning
only later. The first architecture to succeed was SuperGlue, which employs the
Sinkhorn algorithm behaving as a differentiable NN matching and graph neural
networks (of which the transformer can be thought as a later and lightweight
version) to infer and apply spatial constraints to the matches. Match similarity
is measured by the correlation in the feature space of the corresponding patches.

Image matching pipeline evolution A last, essential characteristic that has
contributed to the success of end-to-end deep image architectures is to be sought
in the deep structure of the networks composed by a sequence of stacked layers.
Even without explicitly designing the network to have a coarse-to-fine architec-
ture as for LoFTR [25] and DKM [7], the deep structure allows to progressively
and successively refine the matching process. On the one hand, this can be as-
sociated to multiple successive passes of a base matching pipeline. On the other
hand, patch normalization and the effective keypoint matching can be thought
of the same image matching process at micro and macro levels, respectively:
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inside a patch, point-like features are extracted and matched according to spa-
tial constraints to get their correspondences and to decide if the patches match;
inside the whole image, patch-like features are extracted and matched according
to spatial constraints to get their correspondences and to decide if the images
match. Pixel-Perfect SfM [18] is a deep architecture which extends this idea to
the whole SfM pipeline, as it takes keypoint tracks computed by image matching
on multiple image pairs and refines them both before SfM and after on the basis
of the SfM output together with the 3D coordinates of the keypoints.

1.3 Paper Contribution

The aim of this paper is to investigate how to improve match localization ac-
curacy according to the aforementioned design concepts, yet avoiding the use
of deep architectures. The idea is to let every step of the matching pipeline
to be explicitly described in an algorithmic way. Such analysis of the process
can contribute to implement optimized handcrafted matching pipelines and to
understand better and improve deep matching architectures.

The main idea is to re-process image matches already extracted by the match-
ing pipeline. For this objective, template matching approaches [10] which require
a robust initial solution can be used since after the first pass raw matches have
been roughly detected. Moreover, raw matches define a planar piece-wise ap-
proximation of the scene in the local neighborhood of the match, which is more
general and adheres better to the actual warping than an affine transformation.
Patch normalization is updated according to the knowledge from the previous
pass in order to improve the template matching. Worth to note that upgrading
patch local transformation was already shown to be effective at improving the es-
timated scene structure [1]. Sub-pixel registration of the patch is also considered
in order to refine the matches. Finally, multiple passes of the match localization
refinement are considered too.

The rest of the paper is organized as follows. The different base modules
employed for the match refinement are described in detail in Section 2, while the
experimental analysis is presented and discussed in Section 3. Conclusions and
future work are provided in Section 4.

2 Match Refinement Base Modules

2.1 Normalized Cross Correlation (NCC) Matching

Given two images I1, I2 : R2 → R and a coarse match (x,x′), where x,x′ ∈ R
2

are the corresponding keypoint coordinates in the two images, NCC for the
patches centered on the given keypoints with radius r is [10]

Cr
x,x′ =

∑

‖∆‖∞≤r

(I1(x+∆)− µI1{x,r}
)(I2(x

′ +∆)− µI2{x′,r}
)

σI1{x,r}
σI2{x′,r}

(1)

with µS , σS indicating the mean and standard deviation over the set S, respec-
tively, and

Ii{w,r} = {Ii(w +∆) : ‖ ∆ ‖∞≤ r} (2)
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representing the patch centered in w as a set. Assuming I1 as reference, the
keypoint on I2 is updated by cross correlation as x′ + ∆⋆, where the discrete
offset ∆⋆ maximizes the correlation between the two patches, i.e.

∆⋆ = argmax
‖∆′‖∞≤r

Cr
x,x′+∆′ (3)

Notice that NCC is invariant to local affine illumination changes, as the inten-
sity values are normalized by the mean and standard deviation over the local
patch windows. Moreover, NNC provides a response map by which to refine the
keypoint by sub-pixel interpolation.

2.2 Adaptive Least Square (ALS) Correlation Matching

ALS correlation [12] performs an iterative affine registration between the two
patches. The aim of the method is to estimate an affine patch warping A ∈ R

2×3

and an affine transformation of the intensity values L ∈ R
1×2 to register the two

patches. Defining z̃ = [z 1]T as the normalized homogenous vector associated to
z, the registration error is given by

Eθ,r
x,x′ =

∑

‖∆‖∞≤r

fk(θ) =
∑

‖∆‖∞≤r

‖ I1(x+∆)− LĨ2(Ax̃′ +∆) ‖2 (4)

where θ = {A,L} indicates the transformation parameters and ∆ = [i j]T such
that k = (i+ r)+ (2r+1)(j+ r) is an univocal linear index for each pixel of the
patch. Assuming I1 as reference, the keypoint on I2 is updated as A⋆x̃′, where
A⋆ minimized the patch error, i.e.

A⋆ = argmin
A∈R2×3

Eθ,r
x,x′ (5)

The best parameter set θ⋆ = {A⋆,L⋆} is found by non-linear least square min-
imization, which is basically the gradient descent employed in deep learning.
The initial configuration θ′ = {A′ = [I 0] ,L′ = [1 0]} assumes that the original
patches are almost registered, and the errors fk(θ) are approximated linearly by
Taylor expansions as

fk(θ) = fk(θ
′ +∆θ) = fk(θ

′) +
∂fk

∂θ
∆θ (6)

The minimal error solution is then equivalent to

F(θ′) + Jθ∆θ = 0 (7)

where F(θ′) =
[

f1(θ
′) · · · f(2r+1)2

]T
and Jθ =

[

∂f1
∂θ

· · ·
∂f(2r+1)2

∂θ

]T

is the Jaco-

bian matrix obtained from the discrete derivatives so that

∆θ = −J+θ F(θ
′) (8)

and the parameters of the transformation get updated iteratively until conver-
gence as θ′ + α∆θ, where α = 0.5 is introduced to prevent that the solution
diverges due to the forced linearization of the error function.
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2.3 Fast Affine Template Matching (FAsT-Match)

FAsT-Match [17] patch error formulation is analogous to ALS correlation but
the Sum-of-Absolute-Differences (SAD)

Aθ,r
x,x′ =

∑

‖∆‖∞≤r

|I1(x+∆)− LĨ2(Ax̃
′ +∆)| (9)

is used instead of the Euclidean distance. Again, assuming I1 as reference, the
keypoint on I2 is updated by A⋆x̃′, where A⋆ minimizes the error between the
two patches, i.e.

A⋆ = argmin
A∈R2×3

Aθ,r
x,x′ (10)

Unlike ALS correlation, which assumes continuous functions, FAsT-Match ex-
ploits discretization by partitioning the space of the allowable transformations
and employing a branch-and-bound strategy to efficiently explore the solution
spaces and find the best transformation. The vertical sub-pixel offset derivation
is similar. FasT-Match is computationally intensive so that in the evaluation to
bound the running times default parameters were set to ǫ = 0.5 and δ = 0.75
respectively, and the allowable scale factor to 3 and the orientation range were
limited by ±π

3 . These settings improve the running times with no accuracy loss.

2.4 Parabolic sub-pixel peak interpolation

Parabolic interpolation refines NNC response map D(u, v) = Cr
x,x′+∆′ , where

∆′ = [u v]T, as follows. Assume that x′ has been updated as described in Sec-
tion 2.1, so that the patch is centered in the peak, i.e. ∆⋆ = 0. Then, the keypoint
sub-pixel offset is computed as

∆p =

[

−
b

2a
−

b′

2a′

]T

(11)

The horizontal sub-pixel offset corresponds to the vertex x-coordinate of the
parabola ax2 + bx+ c = y, interpolated from the 3 points

Pd = (d, Cr
x,x′+[0 d]T) = (d, yd), d ∈ {−1, 0, 1} (12)

along the horizontal dimension of D, which leads to a =
y1 − 2y0 + y−1

2
and

b =
y1 − y−1

2
. The vertical sub-pixel offset is computed analogously.

2.5 Taylor approximation sub-pixel peak interpolation

This adapts the SIFT detector sub-pixel precision method [19]. In this case, the
second order Taylor expansion of the response map gives around the peak ∆⋆

D(∆′) = D(∆⋆ +∆l) = D(∆⋆) +
∂DT

∂∆′
∆l +

1

2
∆T

l H∆′∆l (13)
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where H∆′ is the Hessian matrix of D, computed by discrete derivatives. The
maximum is achieved when the derivative of D(∆′) is zero, i.e. when

∂DT

∂∆′
+H∆′∆l = 0 (14)

which implies that the requested sub-pixel correction offset is

∆l = −H−1
∆′

∂DT

∂∆′
(15)

Actually, in the original SIFT paper, the offset space is 3D, since the DoG filter
operates also on scales.

2.6 Middle Homography (MiHo) Patch Normalization Updating

Patch normalization updating assumes that a set of matches M = {(x,x′)}
has been obtained after the first matching pipeline pass. It also assumes that
matches for the subset P ⊆ M are related by a planar homography x̃′ = H⋆x̃,
where H⋆ ∈ R

3×3 is non-singular, using the same conventions of [14]. The idea
of MiHo is to find an associated pair of planar homographies (H,H′) so that

m̃ = Hx̃ ∧ m̃ = H′x̃′ , ∀(x,x′) ∈ P (16)

where m = x+x
′

2 . As shown in Fig. 1a, this heuristic procedure inspired by [4]
tends to distribute equally the distortion error over the two patches when these
are normalized by H and H′, respectively. Since interpolation degrades with up-
sampling, MiHo aims to provide a balance with down-sampling the patch at finer
resolution and up-sampling the patch at the coarser resolution. Also, a planar
homography is a better local approximation than an affine transformation.

The Direct Linear Transform (DLT) [14] is used to find H and H′. Actually,
MiHo pairs estimation can be repeated on the warped keypoint pairs (Hx̃,H′x̃′)
to refine the solution, by concatenating all the successive homographies. It was
experimentally observed that three iterations generally suffice.

Defining an inlier match (x,x′) for a generic H according to the threshold r

by the maximum reprojection error

PH,r
x,x′ =

{

1 if max(‖x̃′−Hx̃‖,‖x̃−H−1
x̃
′‖)≤r

0 otherwise
(17)

an inlier for the MiHo pair (H,H′) is straightforwardly defined as the product

P
(H,H′),r
x,x′ = PH,r

x,m PH′,r
x
′,m (18)

In order to discover simultaneously both the approximated planes on the scene
and their associated MiHo pairs, the whole process is embedded into the RANSAC
framework. Starting from M0 = M , RANSAC is used at iteration i to extract
the i-th best MiHo pair (Hi,H

′
i) using threshold r, and strong inliers are removed

for the next iteration according to a stricter threshold r
2 , i.e.

Mi+1 = Mi \
{

(x,x′) : (x,x′) ∈ Mi ∧ P
(Hi,H

′
i),

r
2

x,x′

}

(19)
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until Mi = ∅ or last MiHo has only 4 inliers, i.e. the minimum model size. Finally,
since more than one MiHo pair can satisfy a match, the MiHo pair (Hx,x′ ,H′

x,x′)
assigned to a match (x,x′) is the one with the larger consensus set

(Hx,x′ ,H′
x,x′) = argmax

P
(Hi,H

′
i
),r

x,x′ =1





∑

(xj ,x
′
j
)∈M

P
(Hi,H

′
j),r

xj ,x
′
j



 (20)

In case no MiHo pair is compatible with a match, the identity matrix will be
used for the corresponding patch normalization.

Figure 1b shows an example of rough planes associated to a same MiHo pair.
Notice that the input images should not be roughly rotated by 180◦ in order
for MiHo to work. This can be understood considering the case when the global
transformation within the images is close to a reflection through a point. In
this case, the mid-points m corresponding to a match (x,x′) tend to accumulate
about the center of reflection, thus providing a configuration close to degeneracy.

3 Evaluation

As shown in Fig. 1c, the evaluation dataset considers 12 image pairs representing
scenes of interest for cultural heritage on which 20 matches (x,x′) have been
manually selected by expert users as ground-truth (GT). The images have a
resolution of 20 MegaPixel (MP), and the keypoint accuracy for the selected
matches at the original resolution is up to 1 px. By down-scaling the images
with a factor of 5, images maintain a feasible testing resolution and matches get
a sub-pixel accuracy. Bilinear interpolation [10] is used to warp patches for its
efficiency. Code and data are freely available1.

The patch radius is set to r = 15 px for NCC, ALS correlation and FAsT-
Match. GT keypoints x on I1 are used as reference, while keypoints x′ on I2 are
perturbed by adding a noise offset of n = 1, . . . , 11 px in one or both directions at
testing resolution. Specifically, for a given noise offset n, 4 noisy matches (x,y′

n)
are obtained where

y′
n ∈







x′ +
{

n
[

±1
0

]

, n
[

0
±1

]}

if n is odd

x′ +
{

n
[

±1
±1

]

, n
[

±1
∓1

]}

if n is even
(21)

for a total of 20× 11× 4 = 880 tested keypoint matches for each image.
In order to evaluate MiHo patch normalization update, initial matches were

estimated using SotA matching pipelines to which noisy matches were added.
To make RANSAC plane discovery unrelated from the GT matches, matches
within 2r of GT matches were removed before including the noisy matches,
see Fig. 1b. The employed pipelines are Hz+ [5] and Key.Net+AffNet+ Hard-
Net+AdaLAM 2, both with and without upright constraints.

1 https://drive.google.com/drive/folders/12jPMbU4doWoDRv57unBctjyxXUKhDHRF
2 https://kornia.github.io/

https://drive.google.com/drive/folders/12jPMbU4doWoDRv57unBctjyxXUKhDHRF
https://kornia.github.io/
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(a) (b) (c)

Fig. 1: (a) Differences between common homography warping and MiHo. I1 and
I2 original and warped images are respectively on the left and right sides. In the
top and middle rows the original image (framed in blue) is used as reference to
apply the standard warping to the other image (sided), MiHo warped pairs are
shown in the bottow row. (b) Corresponding clusters of raw planes associated to
a same MiHo pair for an image pair. Matches are extracted by Hz+, GT matches
are highlighted by black circles. (c) Image pairs of the evaluation dataset (best
viewed in color, for high resolution images see the additional material1).

Table 1 shows the average keypoint shift error on the whole dataset for dif-
ferent noise offsets, ordered by their magnitude. Lighter bars indicate the error
percentage with respect to the noise offset magnitude when less than 100%,
darker bars when greater than 100%. NCC is used with no sub-pixel refinement,
⊞ indicates the base run with r = 15 px and ⊡⊞ a two-step coarse-to-fine run.
Specifically, in the latter case in the first step the keypoint is coarsely refined at
half testing resolution with r = 7 px, and in the next step the updated keypoint
is refined again at full resolution with r = 15 px. MiHo initial matches have been
estimated with Hz+. Detailed results are reported in the additional material1.

ALS correlation increases the accuracy only when the noise offset magnitude
is limited, due to the fact that the image approximation by its derivatives is valid
only in a small local neighborhood. NCC and FAst-Match absolute improvements
generally do not depend on the noise. For NCC the absolute error is about 4, 2 px
respectively without and with MiHo, for FAsT-Match this is 3 px. MiHo patch
update remarkably helps NCC, roughly halving the error. On FAsT-Match MiHo
improvements are lower, since the method itself uses affine adaptation. Never-
theless, the MiHo solution does better, which implies that planar homography
approximation is better than the affine one. When ALS correlation decreases
the error, MiHo normalization makes ALS behaves as FAsT-Match, since both
approaches perform an affine warping. Coarse-to-fine two-step solutions ⊡⊞ de-
grade the localization with respect to the base approaches ⊡, besides doubling
the running times. Concerning running times, code was implemented in Matlab
with no optimizations and was run on a Intel Core I9 10900K. The refinement
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Table 1: Average keypoint shift error (px) on the whole dataset.

Noise offset mag. (px) 1 2
√

2 3 5 4
√

2 7 6
√

2 9 11 8
√

2 10
√

2 avg.

⊞ 1.25 1.76 1.82 4.03 3.35 7.45 5.61 10.84 7.87 14.29 10.33 6.24no patch
norm. ⊡⊞ 1.87 2.27 2.23 4.15 3.44 7.45 5.53 10.85 7.74 14.17 10.25 6.36

⊞ 0.92 1.28 1.39 3.52 2.89 7.28 5.38 10.59 7.78 14.04 10.26 5.94A
L
S

MiHo
⊡⊞ 1.38 1.75 1.71 3.71 2.93 7.14 5.27 10.74 7.68 14.12 10.16 6.06

⊞ 3.62 3.64 3.64 3.57 3.66 3.70 3.69 3.76 3.78 3.81 3.78 3.70no patch
norm. ⊡⊞ 4.04 4.00 4.06 4.08 4.09 4.25 4.22 4.37 4.28 4.57 4.38 4.21

⊞ 1.75 1.92 1.79 2.06 2.00 2.14 2.07 2.20 2.19 2.44 2.25 2.07N
C

C

MiHo
⊡⊞ 1.93 2.09 1.99 2.23 2.12 2.40 2.30 2.40 2.40 2.72 2.50 2.28

⊞ 2.01 2.18 2.10 2.40 2.35 2.72 2.66 3.06 2.76 5.76 3.08 2.82no patch
norm. ⊡⊞ 2.59 2.66 2.65 2.77 2.80 3.06 2.99 3.40 2.96 5.54 3.58 3.18

⊞ 1.93 1.89 1.88 2.18 2.07 2.36 2.23 2.72 2.38 4.87 2.70 2.47

F
A

sT
-M

a
tc

h

MiHo
⊡⊞ 2.18 2.21 2.23 2.45 2.29 2.66 2.48 2.87 2.54 4.76 2.79 2.68

of a single match takes 0.05 s for both ALS correlation and NCC, while it is
close to 2 s for FAsT-Match. MiHo code is excluded from the current analysis.
Clearly, multiple matches can be refined in parallel and code optimization could
speed the computation.

According to this comparison, NCC with MiHo provides the best solution.
Table 2 adds further experiments with NNC, by including parabolic and Taylor
sup-pixel estimation. Moreover, a further two-step approach (indicated by ⊞⊠)
is evaluated where the NCC solution is further refined by ALS correlation since
the latter can better cope with small noise shifts. According to these results,
both parabolic interpolation and ALS refinement provide modest incremental
improvements, while Taylor sub-pixel offset generally degrades the base solution.
Notice also that ALS refinement doubles the running times.

On average, no methods achieve a sub-pixel refinement, i.e. an error less than
1 px. Nevertheless, as reported by further analyses in the additional material1,
the situation is more articulated. Specifically, considering the sub-pixel accuracy
in terms of percentages of keypoints with error less than 1 px after the refinement,
ALS correlation achieves for noise offset magnitude less than 2 px values about
55%, 70% without and with MiHo, respectively. FAsT-Match percentage is stable
around 40% in any case. For the base NCC, sub-pixel accuracy percentage is
the same of FAsT-Match but increases to about 55%, 59% and 60% as MiHo,
parabolic fitting and ALS correlation are incrementally included, respectively.
The results are in accordance with the previous observations, but also show that
it is possible to achieve sub-pixel accuracy with the investigated approaches.

4 Conclusions and Future Works

This paper has presented a thorough comparative analysis of non-deep, conven-
tional approaches to improve the localization accuracy of keypoint matching,
focusing in particular on cultural heritage and archaeological scenes. The results
suggest that patch normalization is crucial for improving the match localization
and that simple NCC paired with parabolic fitting, and optionally ALS correla-
tion, can provide promising results. Future works will focus on further analyses,
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Table 2: Average keypoint shift error (px) of NCC sub-pixel on the whole dataset.

Noise offset mag. (px) 1 2
√

2 3 5 4
√

2 7 6
√

2 9 11 8
√

2 10
√

2 avg.

⊞ 3.62 3.64 3.64 3.57 3.66 3.70 3.69 3.76 3.78 3.81 3.78 3.70no patch
norm. ⊞⊠ 3.51 3.51 3.50 3.42 3.50 3.55 3.54 3.61 3.63 3.65 3.64 3.55

⊞ 1.75 1.92 1.79 2.06 2.00 2.14 2.07 2.20 2.19 2.44 2.25 2.07n
o
n
e

MiHo
⊞⊠ 1.73 1.85 1.75 1.98 1.93 2.07 1.98 2.13 2.10 2.36 2.17 2.00

⊞ 3.69 3.78 3.76 3.66 3.77 3.92 3.90 3.98 4.02 4.44 4.35 3.93no patch
norm. ⊞⊠ 3.52 3.59 3.56 3.45 3.60 3.71 3.70 3.77 3.84 4.24 4.19 3.74

⊞ 1.67 1.78 1.72 1.94 1.88 2.00 1.96 2.22 2.10 2.66 2.37 2.03

p
a
ra

b
o
li
c

MiHo
⊞⊠ 1.62 1.75 1.69 1.90 1.85 1.98 1.94 2.17 2.07 2.63 2.36 2.00

⊞ 3.81 4.00 4.09 4.02 4.39 4.07 4.39 4.15 4.49 4.13 4.24 4.16no patch
norm. ⊞⊠ 3.64 3.75 3.82 3.73 4.03 3.78 4.05 3.86 4.06 3.84 3.89 3.86

⊞ 1.99 2.32 2.28 2.60 2.90 2.48 3.07 2.61 3.20 2.82 3.04 2.66T
ay

lo
r

MiHo
⊞⊠ 1.90 2.17 2.10 2.42 2.55 2.32 2.73 2.40 2.90 2.62 2.70 2.44

incorporating the evaluated modules in practical applications, even between the
pipeline steps. Moreover, extension to multi-view patches will be explored and
comparisons with deep solutions will be carried out. MiHo results are also quite
interesting and will be further investigated, also in the context of its applications
to planar matching and benchmarking.

References

1. Barath, D.: On making SIFT features affine covariant. Int. J. Comput. Vis. (2023)
2. Barroso-Laguna, A., Riba, E., Ponsa, D., Mikolajczyk, K.: Key.Net: Keypoint de-

tection by handcrafted and learned CNN filters. In: Proceedings of the International
Conference on Computer Vision (ICCV) (2019)

3. Bellavia, F.: SIFT matching by context exposed. IEEE Trans. Pattern Anal. Mach.
Intell. 45(2), 2445–2457 (2023)

4. Bellavia, F., Colombo, C.: Estimating the best reference homography for planar
mosaics from videos. In: Proceedings International Conference on Computer Vision
Theory and Applications (VISAPP). pp. 512–519 (2015)

5. Bellavia, F., Mishkin, D.: HarrisZ+: Harris corner selection for next-gen image
matching pipelines. Pattern Recognit. Lett. 158, 141–147 (2022)

6. Cavalli, L., Larsson, V., Oswald, M.R., Sattler, T., Pollefeys, M.: AdaLAM: Re-
visiting handcrafted outlier detection. In: Proceedings of the European Conference
on Computer Vision (ECCV) (2020)

7. Edstedt, J., Athanasiadis, I., Wadenbäck, M., Felsberg, M.: DKM: Dense kernelized
feature matching for geometry estimation. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2023)

8. Farella, E.M., Morelli, L., Grilli, E., Rigon, S., Remondino, F.: Handling critical
aspects in massive photogrammetric digitalization of museum assets. Int. Arch.
Photogram. Remote Sens. Spat. Inf. Sci. XLVI-2/W1-2022, 215–222 (2022)

9. Fischler, M., Bolles, R.: Random Sample Consensus: A paradigm for model fitting
with applications to image analysis and automated cartography. Commun. ACM
24(6), 381–395 (1981)



12 F. Bellavia et al.

10. Gonzales, R., Woods, R.E.: Digital Image Processing. Pearson College Division,
4th edn. (2017)

11. Gruen, A., Remondino, F., Zhang, L.: Photogrammetric reconstruction of the
Great Buddha of Bamiyan, Afghanistan. Photogramm. Rec. 19(107), 177–199
(2004)

12. Gruen, A.W.: Adaptive least squares correlation: a powerful image matching tech-
nique. South Afr. J. Photogram. Remote Sens. and Cartogr. 14(3), 175–187 (1985)

13. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of
the 4th Alvey Vision Conference. pp. 147–151 (1988)

14. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cam-
bridge University Press, 2st edn. (2000)

15. J. Dai, H.Q., Xiong, Y., Li, Y., Zhang, G., Wei, H.H.Y.: Deformable convolutional
networks. In: Proceedings of the International Conference on Computer Vision
(ICCV) (2017)

16. Karami, A., Menna, F., Remondino, F.: Combining photogrammetry and photo-
metric stereo to achieve precise and complete 3D reconstruction. Sensors 22(21),
8172 (2022)

17. Korman, S., Reichman, D., Tsur, G., Avidan, S.: Fast-Match: Fast affine template
matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 1940–1947 (2013)

18. Lindenberger, P., Sarlin, P., Larsson, V., Pollefeys, M.: Pixel-Perfect Structure-
from-Motion with Featuremetric Refinement. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision (ICCV) (2021)

19. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput.
Vis. 60(2), 91–110 (2004)

20. Luo, Z., Zhou, L., Bai, X., Chen, H., Zhang, J., Yao, Y., Li, S., Fang, T., Quan,
L.: ASLFeat: Learning local features of accurate shape and localization. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2020)

21. Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. Int.
J. Comput. Vis. 60(1), 63–86 (2004)

22. Mishchuk, A., Mishkin, D., Radenovic, F., Matas, J.: Working Hard to Know
Your Neighbor’s Margins: Local Descriptor Learning Loss. In: Proceedings of the
Conference on Neural Information Processing Systems (NeurIPS) (2017)

23. Mishkin, D., Radenovic, F., Matas, J.: Repeatability is not enough: Learning affine
regions via discriminability. In: Proceedings of the European Conference on Com-
puter Vision (ECCV) (2018)

24. Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperGlue: Learning fea-
ture matching with graph neural networks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2020)

25. Sun, J., Shen, Z., Wang, Y., Bao, H., Zhou, X.: LoFTR: Detector-free local feature
matching with transformers. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2021)

26. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer-Verlag, 2nd
edn. (2022)

27. Trucco, E., Verri, A.: Introductory Techniques for 3-D Computer Vision. Prentice
Hall (1998)

28. Zhao, X., Wu, X., Miao, J., Chen, W., Chen, P.C.Y., Li, Z.: ALIKE: Accurate and
lightweight keypoint detection and descriptor extraction. IEEE Trans. Multimed.
early access (2022)


	Progressive keypoint localization and refinement in image matching

