
PassGPT: Password Modeling and (Guided)
Generation with Large Language Models

Javier Rando1[0000−0002−2723−7660], Fernando Perez-Cruz1,2[0000−0001−8996−5076],
and Briland Hitaj3[0000−0001−5925−3027]

1 ETH Zürich, Turnerstrasse 1, 8092 Zürich
jrando@ethz.ch

2 Swiss Data Science Center, Turnerstrasse 1, 8092 Zürich
fernando.perezcruz@sdsc.ethz.ch

3 SRI International, New York, NY 10165 USA
briland.hitaj@sri.com

Abstract. Large language models (LLMs) successfully model natural
language from vast amounts of text without the need for explicit super-
vision. In this paper, we investigate the efficacy of LLMs in modeling
passwords. We present PassGPT, an LLM trained on password leaks for
password generation. PassGPT outperforms existing methods based on
generative adversarial networks (GAN) by guessing twice as many previ-
ously unseen passwords. Furthermore, we introduce the concept of guided
password generation, where we leverage PassGPT sampling procedure
to generate passwords matching arbitrary constraints, a feat lacking in
current GAN-based strategies. Lastly, we conduct an in-depth analysis
of the entropy and probability distribution that PassGPT defines over
passwords and discuss their use in enhancing existing password strength
estimators.

Keywords: Password Guessing · LLMs · Generative AI

1 Introduction

Passwords still retain their status as the authentication mechanism of choice
despite the ever-increasing number of alternative technologies [46,37], primarily
thanks to passwords being easy to deploy and remember. Furthermore, most
applications rely on passwords as a fallback mechanism when other methods
do not succeed. Considering their prevalence, password leaks [22,49] are one
of the main threats institutions (and individuals) face. Not only do password
leaks enable adversaries to break into systems but they also make it possible to
research and identify hidden patterns within human-generated passwords that
guide creation and refinement of effective password cracking tools [1,31].

Machine learning (ML) has played (and continues to play) a prominent
role in extracting and learning meaningful features from vast password leaks,

Code and models can be accessed at https://github.com/javirandor/passgpt

ar
X

iv
:2

30
6.

01
54

5v
2

 [
cs

.C
L

]
 1

4
Ju

n
20

23

https://github.com/javirandor/passgpt

2 J. Rando et al.

resulting in major contributions primarily towards two main areas of research:
(1) password guessing [26,25,32,35,34] and (2) password strength estimation
mechanisms [44,26,10,19,20].

At the same time, Large Language Models (LLMs), a family of ML models, has
demonstrated tremendous effectiveness in natural language processing (NLP) and
understanding (NLU). These models are based on the Transformer architecture;
well-known examples include the Generative Pre-trained Transformer (GPT)
models [9,29], PaLM [13] or LLaMA [43]. Given their recent success, we pose
the following question: How effectively can LLMs capture the underlying
characteristics and cues hidden in the complex nature of human-
generated passwords?

To answer this question, we present and thoroughly evaluate an LLM-based
password-guessing model called PassGPT. Suitable for both password guessing
and password strength estimation, PassGPT is an offline password-guessing
model based on the GPT-2 architecture [38]. When compared with prior work on
deep generative models [25,34], PassGPT guesses 20% more unseen passwords,
and demonstrates good generalization capabilities to novel leaks. Moreover, we
enhance PassGPT with vector quantization [55]. The resulting architecture is
PassVQT, which can increase the perplexity of generated passwords.

Unlike previous deep generative models that generate passwords as a whole,
PassGPT sequentially samples each character,thus introducing the novel task of
guided password generation. This method ensures a more granular (character-level)
guided exploration of the search space, where generated passwords are sampled
based on arbitrary constraints. Finally, PassGPT, in constrast with GANs,
provides an explicit representation of the probability distribution over passwords.
We show that password probabilities align with state-of-the-art password strength
estimators: PassGPT assigns lower probabilities to stronger passwords. We also
look for passwords that can be easily guessed by generative approaches, even
though they are considered "strong" by strength estimators. We discuss how
password probabilities under PassGPT can be valuable for enhancing existing
strength estimators.

1.1 Contributions and Remarks

Given the nature of LLMs, as well as the probabilistic nature of DL-based
password generation, we position ourselves in offline password guessing.
Such a setup is in line with prior work in the domain [25,36,35,32,17]. In these
scenarios, the adversary is in possession of one or more password hashes obtained
from a target system and their primary goal is to obtain the plaintext version
corresponding to the respective password/s hash [7]. In general, a powerful
adversary can employ a series of heuristics [3,4,2,30,47,17] using a combination
of tools [1,31] While doing so, the adversary seeks to avoid a worst-case scenario
in which they would need to enumerate all potential guesses, i.e., brute-force.

PassGPT: Password modeling and generation with LLMs 3

In this work, we narrow down our experiments and comparisons to deep
generative models for offline password guessing.4 We acknowledge the field is
broader than that (e.g., Markov models and online guessing), but we restrict
ourselves to comparable architectures. Our goal is to provide additional tools
in the password-guessing landscape rather than establishing a default go-to
architecture. We summarize our contributions as follows:

– We introduce PassGPT, an autoregressive transformer that obtains state-of-
the-art results in password generation and generalization to unseen datasets.

– We show how PassGPT enables a novel approach to password generation
under arbitrary constraints: guided password generation.

– We examine password probabilities under PassGPT and how they align with
strength. We discuss how this metric could be used to improve current strength
estimators.

– We present PassVQT, a similar architecture enhanced with vector quantization
to increase generation perplexity.

2 Background and Related Work

In this paper, we make heavy use of LLMs and generative AI. In this section, we
introduce the concepts relevant to generative models (Section 2.1) and transformer
models (Section 2.2). We conclude discussing progress in password guessing
and strength estimation, focusing on works that use deep generative models
(Section 2.3).

2.1 Deep Generative Models
Deep generative models are a class of deep learning (DL) techniques designed
to autonomously grasp the characteristics underlying a set of samples from a
distribution, i.e., training set, and to generate new samples from that distri-
bution [21,42]. The primary distinction between the two major categories of
generative models is how they represent probability distributions. Generative
models can be either: (1) implicit or (2) explicit. Implicit models do not estimate
the distribution of the training data directly; rather they learn a function that
generates samples similar to the ground truth. The most notable example is
Generative Adversarial Networks (GANs) [21]. Explicit models, on the other
hand, explicitly model the underlying distribution of the training data, that can
be later accessed [41]. Our models fall under this second category.

Generative Adversarial Networks [21]. GANs consist of two main com-
ponents: (1) a generator G(z; θg) : Rn → Rn, a neural network that takes in
random noise from a prior pz and generates samples resembling the training data

4 Our experiments are limited in scale by GPU access. All experiments are done on a
single consumer GPU. Scaling is a crucial factor to improve performance and training
on larger leaks.

4 J. Rando et al.

and (2) a discriminator D(x; θd) : Rn → [0, 1], also a neural network, trained to
distinguish between training samples and outputs from the generator.

minG maxD V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (1)

Both G and D are trained adversarially in a zero-sum game until the generator
produces samples that are indistinguishable from real ones (see Equation 1).
GANs can approximate sharp distributions and generate high-quality samples
without defining a likelihood function.

Autoregressive Generative Models (AGMs). These explicit generative models
make it possible to sample from the target distribution. They do so by specifying
a probability density function over the data and decomposing it into the product
of conditionals via the chain rule of probability. These conditionals can be
parametrized using neural networks with parameters θ that take as input the
preceding entries in the sequence (see Equation 2). This explicit definition makes
it possible to train these models using maximum likelihood estimation unlike
implicit generative models. Our models match this definition.

p(x) ≈ p(x; θ) =

n∏
i=0

p(xi|x0, . . . xi−1; θ) =

n∏
i=0

p(xi|x<i; θ). (2)

2.2 Transformers
Choosing the right neural network to model conditional probabilities in deep
autoregressive models has received a lot of attention in recent research [8]. Two
commonly used architectures are recurrent neural networks (RNNs) [40] and
transformers [45]. Transformers are the most successful because of faster, more
stable, and parallelizable training [45].

Transformers rely entirely on the attention mechanism [41] to model dependen-
cies within the input sequence regardless of distance. The original transformer [45]
consists of an encoder and a decoder, both made up of multiple layers of self-
attention and feed-forward neural networks. The main difference between the
encoder and the decoder lies in how they consume the input. The encoder uses
all information in the input sequence to generate a latent representation for each
token, while the decoder can only use information from previous tokens. Recent
work has proposed using only the decoder for autoregressive language modeling,
where words are generated conditioned only on previous ones. GPT models [38,9]
have revolutionized NLP by relying solely on transformer decoders.

2.3 Related Work
This section focuses primarily on the use of deep generative models for password
guessing and password strength estimation.

Password Guessing is a widely studied class of attacks [27,18], where the
adversary either has a limited number of guesses (online password guessing) or is
already in possession of a copy of the password hashes and needs to break them

PassGPT: Password modeling and generation with LLMs 5

(offline password guessing). In both these scenarios, the adversary seeks to crack
passwords before they run out of budget, i.e., the number of tries in an online
service, or computing resources available for offline guessing.

The research community has explored different approaches to guessing pass-
words efficiently.

Tools like Hashcat [1] or John the Ripper [31] employ heuristics, such as
mangling-rules, dictionary attacks, association attacks, hybrid attacks, and
more [2,5,4,3,30]. Further work in the domain has proposed and evaluated the
use of Markov models [28,17], probabilistic context-free grammars (PCFG) [47],
(deep) neural networks [26,14,36,33], or composition of techniques [54]. Our work
focuses on the use of generative deep neural networks.

Deep Generative Models for Password Guessing. To the best of our
knowledge, PassGAN [25] is the first work implementing generative models, in
particular GANs, for password guessing. PassGAN uses the improved Wasserstein
GAN (IWGAN) [23] to learn the underlying distribution of the RockYou password
leak [52] and then evaluates the model performance on additional leaks like
LinkedIn data [50]. Pasquini et al. [36] suggested an improved version of PassGAN
by adding random noise to the input representation to improve training stability.
Follow-up work has explored different architectures obtaining similar results. For
instance, PassFlow employs normalizing flows instead of GANs [32].

Password Strength Estimation aims to define a password robustness metric
against guessing [44,11]. Similarly to password guessing, this has resulted in a
variety of different approaches such as Markov models [12,16], PCFGs [47], or
neural networks [26]. Our work uses the lightweight estimator zxcvbn [48], as
recommended by Carnavalet et al. [11].

3 Experimental Setup

In Section 2.3 we introduced the central problem we are exploring: password
guessing. This section presents the datasets (Section 3.1) and novel architectures
(Section 3.2) used throughout our experiments.

3.1 Datasets
We chose datasets previously utilized in password guessing work and security
research5 that enable comparison of our techniques. The diverse characteristics
of these password sets enhance the robustness of our evaluation and demonstrate
generalization capabilities. Table 1 summarizes the key information about each
dataset. The largest leaks that we consider for training are RockYou and LinkedIn,
as done by previous work [36,25,32].

We split the previous datasets into training and test sets using the same
approach as PassGAN [25] and follow-up work [36]. For RockYou, we take the

5 This work makes use of publicly available password datasets. We consider this practice
to be ethical and consistent with prior security research, e.g., [25,36,26].

6 J. Rando et al.

list of all passwords of at most 10 and 16 characters, respectively. In this leak,
passwords may appear more than once. We take 80% of this list as training
data. From the remaining 20%, we keep as test data all passwords that are
not contained in the training split, keeping only passwords with low frequency.
The most commonly used password in the test set appears only 7 times in the
entire leak. The average frequency of test passwords is 1.03. In comparison, the
most frequent password in RockYou –123456– appears 290,731 times, and the
average frequency in the entire leak is 2.28. This method allows us to test our
model’s generation abilities on low-probability passwords that were not seen
during training.

Since the LinkedIn leak does not provide information about password fre-
quency, we take 80% as training data and the remaining 20% for evaluation.
We ensure that no password appears in both sets. Additionally, we define cross-
evaluation test sets by removing RockYou training passwords from the LinkedIn
evaluation set and vice versa to evaluate generalization to unseen distributions.

Finally, we also consider the MySpace, phpBB, and Hotmail [52] leaks as
evaluation sets. We perform the analogous cross-evaluation procedure to remove
RockYou and LinkedIn training data from all of them.

Table 1: Main facts about the datasets used in this work.
Name Unique passwords Year

LinkedIn [50] 60,505,270 2012
RockYou [51,52] 14,344,391 2009

phpBB [52] 184,318 2009
MySpace [52] 37,144 2006
Hotmail [52] 8,931 Unknown

3.2 Our Models
Transformers are a versatile and broad family of deep-learning models as discussed
above in Section 2.2. For password guessing, we are interested in autoregressive
generative models (see Section 2.1). PassGPT and PassVQT model the proba-
bility of a character in a password, given the previous ones: p(xi|x0, · · · , xi−1; θ).
Sampling sequentially from this distribution can generate likely passwords. Our
models operate over a vocabulary, Σ, comprising 256 UTF-8 characters.

Neural networks require a vector representation of tokens as input. We define
a tokenizer as a function that maps every character σ in the vocabulary to an
integer,

tokenizer : Σ 7→ [0, |Σ| − 1]. (3)

Then, a vector representation is created for each token σ using a one-hot encoding
of its image under the tokenizer function. This results in a vector of dimension

PassGPT: Password modeling and generation with LLMs 7

|Σ|, with all entries equal to zero and a single entry equal to 1 at position
tokenizer(σ).

PassGPT , depicted in Figure 1, is an implementation of the GPT-2 architecture
[39]. GPT models utilize the decoder component of transformers and are trained
to predict the next token in a sequence autoregressively. To predict a specific
character xi in a password, the transformer decoder considers only previous
characters x0, . . . , xi−1 as input, and outputs a latent vector with dimension d
(d = 768 in our work). This latent vector is then mapped into a real vector of
dimension |Σ| through a linear layer and further transformed into a probability
distribution over the vocabulary using the softmax function. The output distri-
bution over the vocabulary represents p(xi|x<i; θ). This distribution is optimized
using cross-entropy loss with respect to the one-hot-encoding representation of
the true character found at that position.

Fig. 1: PassGPT autoregressively predicts the input character at position n using all
previous tokens. Green indicates correct prediction; red indicates incorrect.

Once the network is trained, it provides us with a parameterized distribution
over our vocabulary conditioned on previous tokens, namely, p(xi|x<i; θ). For
generation purposes, we can start from the start-of-password token, <s>, and find
p(x1|x0 = <s>). This assigns a probability to every character in our vocabulary
to be the first token in the password. If we sample from this distribution, we
can fix the first character and repeat the process to find the second one by
computing p(x2|x0, x1). The sampling process for a password finishes when the
end-of-password token, </s>, is sampled from the distribution at any given step.
Unlike training, this process is sequential.

Our implementation of PassGPT uses the HuggingFace library [53] and has the
following specifications: 12 attention heads, 8 decoder layers, and GeLU activation
[24]. Additionally, we train all models for 1 epoch with AdamW optimizer and a
starting learning rate of 5e-5 with linear decay during training.

PassVQT enhances the transformer architecture with vector-quantization of the
latent space. In the computer vision domain, this has been shown to improve

8 J. Rando et al.

Fig. 2: Overview of PassVQT showing (left) an end-to-end model trained to compress
passwords into a quantized latent space, where each code represents a fixed vector
of dimension 768 and (right) an autoregressive GPT model that parameterizes the
conditional distribution of indices. The latter is trained once the first one has converged
and is required for generation. Transformer decoders in both models are independent.

sample quality [55]. PassVQT follows the architecture designed by Yu et al. [55].
While modeling the same conditional distribution as PassGPT, we aim to assess
whether quantization can provide any additional benefits. In this architecture,
depicted in Figure 2, a transformer encoder maps each input token to a latent
representation with a dimension of 768. This latent representation is then mapped
to 10 dimensions using a linear layer and quantized using k-means and a codebook
with N entries. The quantized 10-dimensional vectors are mapped back to
768 dimensions through a linear layer and serve as input to a transformer
autoregressive decoder. This decoder is trained to reconstruct the input password
character by character, using only the quantized representations for previous
tokens.

We carried out a hyperparameter search by minimizing the reconstruction loss
on the RockYou leak’s training split. Our findings showed that deeper encoder and
decoder structures offered better results, with a codebook size of 300 providing
the best performance. PassVQT employs a transformer encoder and a GPT-2
decoder with 12 attention heads and 8 layers, respectively. It was implemented on
using the HuggingFace library [53] and trained end-to-end with AdamW optimizer
and a starting learning rate of 5e-5 with linear decay.

Once the encoder-decoder network has converged, the model can reconstruct
input passwords from a compressed quantized latent representation. If we model
the distribution of latent codes, we can sample from it to produce a likely sequence
of codes, which the decoder can then transform into likely passwords. For this,
we train an autoregressive codes model over the quantized representation of
the training dataset. During inference, we create new passwords by sampling
sequences of codes from the codes model and transforming them into passwords
using the original decoder. The encoder is no longer needed.

PassGPT: Password modeling and generation with LLMs 9

Table 2: Percentage of RockYou test set (10 characters or fewer) guessed from 107

generations. Models are trained on either all passwords or unique entries from RockYou.
Architecture Trained on % Test set guessed

PassGPT
Unique 4.25%

All passwords 0.53%

PassVQT
Unique 0.14%

All passwords 2.86%

4 Evaluation

Our foremost contribution focuses on password generation. This section compares
PassGPT and PassVQT with state-of-the-art deep generative models and demon-
strates their generalization to different datasets without the need for further
training. We also examine the probabilities and entropies of passwords under
PassGPT to provide insights into its capabilities and modeled distribution. Fi-
nally, we analyze the alignment of these probabilities with password-strength
estimators and discuss how they can be used to improve strength estimation.

4.1 Password Generation
For a fair comparison with PassGAN [25] and its improved version (PassGAN+)
[36], we train PassGPT and PassVQT using 80% of passwords of at most 10
characters in the RockYou leak. The evaluation of the generation process is
determined by the percentage of passwords from a disjoint test set that the
models can generate. In this case, the test set comprises the unique passwords in
the remaining 20% of the RockYou leak that are not in the training set.

We consider two variations of the training set: (1) unique passwords and (2)
all occurrences. PassGPT demonstrates superior generalization when trained
on unique passwords, as detailed in Table 2. Conversely, PassVQT experiences
difficulty generating in-distribution passwords when trained on unique entries
but significantly improves upon incorporating their absolute occurrences.

We sample increasingly large pools of password guesses from PassGPT (trained
on unique passwords) and PassVQT (trained on all passwords) and calculate the
percentage of the RockYou test split they recover. Results in Table 3 show that
PassGPT outperforms all other models. It recovers 41.9% of the test set among
109 guesses, whereas state-of-the-art GAN models matched 23.33%. PassVQT
performance surpasses that of the original PassGAN and stays close to that of
the PassGAN improved version.

Another important factor in password generation evaluation is the ability
to generate novel and distinct samples. We compared the percentage of unique
passwords generated by our models to those from PassGAN; results are shown in
Figure 3. PassGPT retains the highest percentage of unique passwords (60%),
whereas PassVQT drops to 20% of unique passwords among 109 guesses. Since
PassVQT was trained on all occurrences of passwords, under its distribution

10 J. Rando et al.

Table 3: Percentage of the RockYou test split (<10 characters) matched by samples
from various models. PassGAN* stands for the improved PassGAN presented in [36].
Results for GANs were taken directly from original papers [25,36] and not reproduced.
Guesses PassGAN PassGAN* PassVQT PassGPT PassGPT ∪ PassVQT

104 0.01% - 0.004% 0.01% 0.01%
105 0.05% - 0.05% 0.05% 0.10%
106 0.38% - 0.45% 0.50% 0.93%
107 2.04% - 2.90% 4.25% 6.39%
108 6.73% 9.51% 10.30% 19.37% 22.70%
109 15.09% 23.33% 21.46% 41.86% 44.66%

common passwords are more likely to be generated, reducing the number of novel
passwords. PassGAN stays between them with approximately 40% unique entries.

Fig. 3: Log-Linear plot of unique passwords generated by different architectures.

4.2 Generalizing to Longer Passwords and Unseen Distributions
Our models outperform state-of-the-art deep generative models in a common
setup. To further evaluate the effectiveness of our models, we extend the modeling
to longer passwords, which are more representative of real-world distributions. We
train PassGPT and PassVQT on passwords with up to 16 characters (including
longer passwords primarily increases entries that are difficult to guess). We again
train the models using both unique and all occurrences of the data. PassGPT, as
before, performs best when trained on unique samples. Surprisingly, PassVQT now
obtains better performance when trained on unique passwords. After training on
this new distribution, models retain similar accuracy. From 108 guesses, PassGPT
and PassVQT recover 15.5% and 8.57% of the test set, respectively, compared to
19.37% and 10.30% in the 10-character setting. From now on, we will focus on
16- character models for a richer analysis.

PassGPT: Password modeling and generation with LLMs 11

To assess the models’ generalization to unseen password distributions, we test
them on leaks different from the RockYou leak. Although users tend to reuse
passwords, they are likely to vary based on platform and year of creation[15,6].
We first analyze the LinkedIn leak, which is the largest of our samples and was
obtained 3 years after the RockYou leak. To determine how well RockYou models
generalize, we benchmark them against a PassGPT model trained solely on 80%
of LinkedIn data. We take the remaining 20% as the test set after excluding
any passwords present in the RockYou training set. This results in a test set of
over 11M unique passwords unseen by any of the models during training. We
evaluate the models’ performance by determining the percentage of test passwords
generated by each architecture. RockYou models achieve comparable results to
the LinkedIn-trained PassGPT, as shown in Table 4, demonstrating the ability of
autoregressive models to parameterize rich distributions that generalize beyond
the training leak without the need for retraining.

Table 4: Percentage of passwords from the LinkedIn test split guessed. Columns indicate
training distribution. The test set does not contain passwords in the RockYou training
set.

Guesses
PassGPT PassVQT

RockYou LinkedIn RockYou
104 0.001% 0.001% 0.001%
105 0.012% 0.010% 0.012%
106 0.11% 0.10% 0.13%
107 1.03% 0.94% 1.10%
108 6.03% 6.80% 5.41%

Finally, we evaluate the RockYou and LinkedIn models to determine which
training leak leads to a better generalization. The models are tested on three
additional datasets: phpBB, MySpace, and Hotmail (refer to Section 3.1), after
removing passwords present in either the RockYou or LinkedIn training sets. The
results are shown in Table 5. RockYou models exhibit superior performance, with
password recovery rates of 9.45%, 11.39%, and 7.22% from 108 guesses.

4.3 Guided Generation
We propose a novel approach to password generation: guided password generation.
Unlike previous deep generative methods that generate passwords as a whole,
PassGPT models each token separately, granting full control over each character.
This allows the generation process to meet specific constraints. Some examples of
these constraints are: password length, fixed characters (e.g., "a" at first position)
and templates (e.g., four lowercase letters and two numbers). This can be achieved
by restricting the sampling distribution p(xi|x0, · · · , xi−1) to consider only the
probability mass assigned to a subset of interest Σ′ ⊂ Σ; for instance, limiting Σ′

12 J. Rando et al.

Table 5: Percentage of phpBB, MySpace, and Hotmail leaks generated by PassGPT
trained on RockYou, compared with PassGPT trained on LinkedIn. Evaluation is
performed on the entire leak after entries contained in the RockYou training set are
removed.

Guesses
PassGPT trained on RockYou PassGPT trained on LinkedIn

phpBB MySpace Hotmail phpBB MySpace Hotmail
104 0.002% 0% 0% 0% 0% 0%
105 0.02% 0% 0.02% 0.008% 0% 0%
106 0.20% 0.22% 0.18% 0.10% 0.10% 0.05%
107 1.80% 2.06% 1.24% 0.77% 0.94% 0.61%
108 9.45% 11.39% 7.13% 6.02% 6.57% 4.67%

to lowercase letters for the first four tokens. The resulting password generation is
guided by these constraints while still being likely under the modeled password
distribution. Table 6 shows various templates and their corresponding generations
produced by PassGPT.

Table 6: Guided generation examples from PassGPT. Templates formatted using l for
lowercase, u for uppercase, d for digit, p for punctuation, and * for any character.

llllll lllldd ullppdd uuuu**dd

orange manb13 Nms__12 PARLA198
iluvma sall89 Zac&&09 CELAN777
gikiyd lowm12 Chl@(18 QWER1234

4.4 Probabilities and Entropies Estimates by PassGPT
One of the main advantages of autoregressive models is having access to an explicit
representation of the modeled distribution. We exploit this property to provide
further intuitions behind the PassGPT generation process.6 The probability of
a password is estimated as the product of the conditional probability for each
sampled character, which is more conveniently represented as the log probability
(Equation 4). Furthermore, the entropy measures the uncertainty in the model
for each token and is calculated according to Equation 5.

log10 p(x; θ) =

n∑
i=1

log10 p(xi|x1, . . . xi−1; θ). (4)

H(Xi) =
∑
xi∈Σ

p(xi|x<i; θ) · log2 p(xi|x<i; θ). (5)

6 For PassVQT, this is not possible, as the modeled distribution is in the codebook
space, and different codes can lead to the same password generation.

PassGPT: Password modeling and generation with LLMs 13

We computed the log probability and entropy for every position in all unique
passwords (<16 characters) in the RockYou dataset using PassGPT. Examples of
passwords with different probabilities under the model can be found in Appendix
A. Figure 4a depicts the distribution of the entropy for characters found at
specific positions in passwords of length 16. The entropy of the first character is
slightly above five; it is constant since p(x1|x0 = <s>) is equal across passwords.
The median entropy decreases as we move towards the last positions because the
model reduces uncertainty as more characters are observed. Figure 4b illustrates
how the log-probability of passwords decreases with length, with the median
log-probability dropping by approximately 1 unit for each additional character.
This corresponds to an average probability of 0.1 for each new character.

We can analyze password probabilities under the model compared to brute-
force search. Our vocabulary Σ contains 256 characters. Therefore, the log-
probability of discovering a password of length 3 through brute force can be
approximated as log10(1/256

3) ≈ −7.5. This value is close to the median log-
probability under PassGPT. However, the utility of generative methods becomes
evident when we deal with longer passwords that are computationally infeasible to
uncover through exhaustive search. For instance, the log-probability of successfully
recovering a 16-character password using brute-force attacks is −38.5. In contrast,
the median log-probability under PassGPT hovers around −18. This indicates
that finding a 16 character password using PassGPT is approximately 1020 times
more likely than relying on random guessing.

4.5 Discussion: PassGPT vs PassVQT
We wrap up this section with a brief discussion about the main differences
between PassGPT and PassVQT, and when to use each of them. Details can be
found in Appendix B. Overall, these models can surpass state-of-the-art deep
generative models and generalize to unseen distributions. Focusing on models
trained on 16 characters, we can highlight several differences:
1. PassVQT generates longer passwords than PassGPT.
2. PassGPT guesses weaker passwords, while PassVQT matches stronger pass-

words.
3. PassGPT generates more unique passwords than PassVQT: 84% vs 76%.
4. PassGPT can generate passwords faster than PassVQT: 12h vs 24h to generate

108 samples on 1 NVIDIA RTX3090.
All things considered, PassGPT seems better at modeling the actual leaked

distribution and generating in-distribution samples. On the other hand, PassVQT
is "more imaginative" and creates stronger passwords with a similar distribution
to that of the leaked file. Nevertheless, the sampling process of both models
can be tweaked to pursue specific goals. For instance, if we want to reduce
out-of-distribution samples, we can perform top-k sampling for each character,
considering only the most likely tokens under the model to avoid long-tail
passwords. Similarly, to incentivize the generation of stronger and less likely
passwords, we can increase the temperature of the softmax function, or avoid
sampling from the top-k most likely tokens.

14 J. Rando et al.

(a) Entropy distribution per token for passwords of length 16 under PassGPT.

(b) Log-probabilities with respect to length for all passwords in RockYou.

Fig. 4: Entropy and log-probability of passwords in the RockYou leak under PassGPT

4.6 Password Strength Estimation

In the previous section, we carried out a comprehensive analysis of the fundamen-
tal characteristics of the probabilities and entropies of passwords in PassGPT. In
this section, we delve deeper into the relationship between probability, entropy,
and password strength to gain a better understanding of the modeled distribution.
For each unique password in the RockYou and LinkedIn leaks, we calculate its
log-probability and entropy under PassGPT and its strength as determined by
zxcvbn [48]. This method assigns a score ranging from 0 (very weak) to 4 (very
strong). The distribution of log-probabilities and entropies for each strength
score is illustrated in Figure 5. The results show that PassGPT assigns lower
probability and higher entropy to stronger passwords, thereby demonstrating
that weak passwords are more likely in the modeled distribution.

Finally, we conduct a manual examination of outliers in the distributions
to better understand when PassGPT does not align with zxcvbn. Our analysis
revealed three distinct phenomena where the model assigns low probabilities to
passwords that are considered weak by zxcvbn. These examples are hard to model
for PassGPT, but easy to detect using dictionary attacks.

PassGPT: Password modeling and generation with LLMs 15

Fig. 5: Log-probability and entropy under the model according to password strength
(zxcvbn)

1. Pattern repetition. These passwords are composed of a sequence that is
repeated several times. Examples: ":X:X:X:X:X:X", "qwertqwertqwert".

2. Replacement of characters in common words by similar symbols. A dictionary
attack is successful to find these passwords. Examples: "k1m83rly" (from
"kimberly") or "r00sevelt" (from "roosevelt").

3. Reversed words. These can also be easily detected by zxcvbn but are unlikely
under the model distribution. Example: "llabtooF" (from "Football").
On the other hand, there are very strong passwords, according to zxcvbn, that

obtain high probabilities under the model. We can also identify predominant
phenomena:
1. Passwords containing non-English words. zxcvbn tries to decompose them as

English words unsuccessfully. For example, the password "teamomiamorcito"
is formed by the Spanish words "te amo mi amorcito" ("I love you my love").
However, zxcvbn parses it as "team", "omi", "amorcito".

2. Love-related passwords. "iloveyou" is one of the most common passwords
in RockYou. When analyzing passwords with strength 4 that obtained high
probabilities, we found copious variations of it. Examples: "ilovematt4eva",
"ilovetoby4eva", "ilovetyler4ever", "ilovehotmail", "iloveyousomuch". The
suffixes "4ever" and "4eva" are very common among these passwords.
It is crucial for strength estimators to minimize the number of false negatives,

i.e., classifying passwords that can be guessed by any existing technique as strong.
Our analysis revealed instances of very strong passwords with high probabilities
under PassGPT, indicating that they are likely to be discovered by such a model.
We believe that incorporating the log-likelihood from generative models into
existing password strength estimators could provide valuable supplementary
information and improve the accuracy of these systems for high-stake scenarios.

5 Conclusions

In this work, we investigated the use of large language models to model password
distributions without explicit supervision. We introduced two autoregressive
architectures that model the conditional distribution of characters based on

16 J. Rando et al.

previous ones: PassGPT and PassVQT. PassGPT might be preferable because it
provides access to an explicit probability distribution, is simpler, and provides
faster generation. However, PassVQT might still be helpful for scenarios where
we want to express more variability and generate more complicated passwords
that are still close to the training distribution.

Advantages of autoregressive models over state-of-the-art GAN generators in-
clude guided password generation and access to an explicit probability distribution.
We have analyzed how the log-probabilities of passwords under PassGPT align
with their strength, and how this metric could be used to mitigate limitations in
strength estimators.

Overall, this work seeds many promising research directions in the field of
password modeling using large language models that are to be explored by future
research.

References

1. Hashcat: Advanced password recovery. https://hashcat.net/hashcat/
2. Hashcat: Advanced password recovery - Attacks Wiki. https://hashcat.net/wiki/
3. Hashcat: Advanced password recovery - Mask attack. https://hashcat.net/wiki/

doku.php?id=mask_attack
4. Hashcat: Advanced password recovery - Rule-based attack. https://hashcat.net/

wiki/doku.php?id=rule_based_attack
5. Hashcat: Advanced password recovery - Slow candidates mode. https://github.

com/hashcat/hashcat/blob/master/docs/slow-candidates-mode.md
6. Bailey, D.V., Dürmuth, M., Paar, C.: Statistics on password re-use and adaptive

strength for financial accounts. In: Security and Cryptography for Networks: 9th
International Conference, SCN 2014, Amalfi, Italy, September 3-5, 2014. Proceedings
9. pp. 218–235. Springer (2014)

7. Blocki, J., Harsha, B., Zhou, S.: On the economics of offline password cracking. In:
2018 IEEE Symposium on Security and Privacy (SP). pp. 853–871. IEEE (2018)

8. Bond-Taylor, S., Leach, A., Long, Y., Willcocks, C.G.: Deep generative modelling: A
comparative review of vaes, gans, normalizing flows, energy-based and autoregressive
models. IEEE transactions on pattern analysis and machine intelligence (2021)

9. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot
learners. Advances in neural information processing systems 33, 1877–1901 (2020)

10. de Carné de Carnavalet, X., Mannan, M.: From very weak to very strong: Analyzing
password-strength meters. In: Network and Distributed System Security Symposium
(NDSS 2014). Internet Society (2014)

11. Carnavalet, X.D.C.D., Mannan, M.: A large-scale evaluation of high-impact pass-
word strength meters. ACM Transactions on Information and System Security
(TISSEC) 18(1), 1–32 (2015)

12. Castelluccia, C., Dürmuth, M., Perito, D.: Adaptive password-strength meters from
markov models. In: NDSS (2012)

13. Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham,
P., Chung, H.W., Sutton, C., Gehrmann, S., et al.: Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311 (2022)

https://hashcat.net/hashcat/
https://hashcat.net/wiki/
https://hashcat.net/wiki/doku.php?id=mask_attack
https://hashcat.net/wiki/doku.php?id=mask_attack
https://hashcat.net/wiki/doku.php?id=rule_based_attack
https://hashcat.net/wiki/doku.php?id=rule_based_attack
https://github.com/hashcat/hashcat/blob/master/docs/slow-candidates-mode.md
https://github.com/hashcat/hashcat/blob/master/docs/slow-candidates-mode.md

PassGPT: Password modeling and generation with LLMs 17

14. Ciaramella, A., D’Arco, P., De Santis, A., Galdi, C., Tagliaferri, R.: Neural network
techniques for proactive password checking. IEEE Transactions on Dependable and
Secure Computing 3(4), 327–339 (2006)

15. Das, A., Bonneau, J., Caesar, M., Borisov, N., Wang, X.: The tangled web of
password reuse. In: NDSS. vol. 14, pp. 23–26 (2014)

16. Dell’Amico, M., Michiardi, P., Roudier, Y.: Password strength: An empirical analysis.
In: 2010 Proceedings IEEE INFOCOM. pp. 1–9. IEEE (2010)

17. Dürmuth, M., Angelstorf, F., Castelluccia, C., Perito, D., Chaabane, A.: Omen:
Faster password guessing using an ordered markov enumerator. In: Engineering
Secure Software and Systems: 7th International Symposium, ESSoS 2015, Milan,
Italy, March 4-6, 2015. Proceedings 7. pp. 119–132. Springer (2015)

18. Feldmeier, D.C., Karn, P.R.: Unix password security-ten years later. In: Advances
in Cryptology—CRYPTO’89 Proceedings. pp. 44–63. Springer (2001)

19. Golla, M., Beuscher, B., Dürmuth, M.: On the security of cracking-resistant password
vaults. In: Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security. pp. 1230–1241 (2016)

20. Golla, M., Dürmuth, M.: On the accuracy of password strength meters. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. pp. 1567–1582 (2018)

21. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In:
Advances in Neural Information Processing Systems. vol. 27. Curran
Associates, Inc. (2014), https://proceedings.neurips.cc/paper/2014/file/
5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

22. Greenbag, A.: Hackers are passing around a megaleak of 2.2 billion records. https:
//www.wired.com/story/collection-leak-usernames-passwords-billions/
(2019)

23. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of wasserstein gans. Advances in neural information processing systems 30
(2017)

24. Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415 (2016)

25. Hitaj, B., Gasti, P., Ateniese, G., Perez-Cruz, F.: PassGAN: A deep learning ap-
proach for password guessing. In: International conference on applied cryptography
and network security. pp. 217–237. Springer (2019)

26. Melicher, W., Ur, B., Segreti, S.M., Komanduri, S., Bauer, L., Christin, N., Cranor,
L.F.: Fast, lean, and accurate: Modeling password guessability using neural networks.
In: 25th USENIX Security Symposium (USENIX Security 16). pp. 175–191 (2016)

27. Morris, R., Thompson, K.: Password security: A case history. Communications of
the ACM 22(11), 594–597 (1979)

28. Narayanan, A., Shmatikov, V.: Fast dictionary attacks on passwords using time-
space tradeoff. In: Proceedings of the 12th ACM conference on Computer and
communications security. pp. 364–372 (2005)

29. OpenAI: Chatgpt: Optimizing language models for dialogue. https://openai.com/
blog/chatgpt/ (2022)

30. Openwall: John the ripper markov generator. https://openwall.info/wiki/john/
markov

31. Openwall: John the ripper password cracker. https://www.openwall.com/john/
32. Pagnotta, G., Hitaj, D., De Gaspari, F., Mancini, L.V.: PassFlow: Guessing pass-

words with generative flows. In: 2022 52nd Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN). pp. 251–262. IEEE (2022)

https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://www.wired.com/story/collection-leak-usernames-passwords-billions/
https://www.wired.com/story/collection-leak-usernames-passwords-billions/
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://openwall.info/wiki/john/markov
https://openwall.info/wiki/john/markov
https://www.openwall.com/john/

18 J. Rando et al.

33. Pal, B., Daniel, T., Chatterjee, R., Ristenpart, T.: Beyond credential stuffing:
Password similarity models using neural networks. In: 2019 IEEE Symposium on
Security and Privacy (SP). pp. 417–434. IEEE (2019)

34. Pasquini, D., Ateniese, G., Bernaschi, M.: Interpretable probabilistic password
strength meters via deep learning. In: European Symposium on Research in Com-
puter Security. pp. 502–522. Springer (2020)

35. Pasquini, D., Cianfriglia, M., Ateniese, G., Bernaschi, M.: Reducing bias in modeling
real-world password strength via deep learning and dynamic dictionaries. In: 30th
USENIX Security Symposium (USENIX Security 21). pp. 821–838 (2021)

36. Pasquini, D., Gangwal, A., Ateniese, G., Bernaschi, M., Conti, M.: Improving
password guessing via representation learning. In: 2021 IEEE Symposium on
Security and Privacy (SP). pp. 1382–1399. IEEE (2021)

37. Paterson, K.G., Stebila, D.: One-time-password-authenticated key exchange. In:
Information Security and Privacy: 15th Australasian Conference, ACISP 2010,
Sydney, Australia, July 5-7, 2010. Proceedings 15. pp. 264–281. Springer (2010)

38. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving language
understanding by generative pre-training (2018)

39. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language
models are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)

40. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by
error propagation. Tech. rep., California Univ San Diego La Jolla Inst for Cognitive
Science (1985)

41. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. Advances in neural information processing systems 27 (2014)

42. Tomczak, J.M.: Deep generative modeling. Springer (2022)
43. Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.A., Lacroix, T.,

Rozière, B., Goyal, N., Hambro, E., Azhar, F., et al.: Llama: Open and efficient
foundation language models. arXiv preprint arXiv:2302.13971 (2023)

44. Ur, B., Kelley, P.G., Komanduri, S., Lee, J., Maass, M., Mazurek, M.L., Passaro,
T., Shay, R., Vidas, T., Bauer, L., et al.: How does your password measure up? the
effect of strength meters on password creation. In: USENIX Security Symposium.
pp. 65–80 (2012)

45. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in neural information
processing systems 30 (2017)

46. Wayman, J.L., Jain, A.K., Maltoni, D., Maio, D.: Biometric systems: Technology,
design and performance evaluation. Springer Science & Business Media (2005)

47. Weir, M., Aggarwal, S., De Medeiros, B., Glodek, B.: Password cracking using
probabilistic context-free grammars. In: 2009 30th IEEE Symposium on Security
and Privacy. pp. 391–405. IEEE (2009)

48. Wheeler, D.L.: zxcvbn: Low-budget password strength estimation. In: USENIX
security symposium. pp. 157–173 (2016)

49. Whitney, L.: Billions of passwords leaked online from
past data breaches. https://www.techrepublic.com/article/
billions-of-passwords-leaked-online-from-past-data-breaches/ (2021)

50. Wikipedia: 2012 linkedin hack. https://en.wikipedia.org/wiki/2012_LinkedIn_
hack (2023), last accessed 21 Jan 2023

51. Wikipedia: Rockyou. https://en.wikipedia.org/wiki/RockYou#Data_breach
(2023), last accessed 21 Jan 2023

52. WikiSkull: Password datasets. https://wiki.skullsecurity.org/index.php/
Passwords (2023), last accessed 21 Jan 2023

https://www.techrepublic.com/article/billions-of-passwords-leaked-online-from-past-data-breaches/
https://www.techrepublic.com/article/billions-of-passwords-leaked-online-from-past-data-breaches/
https://en.wikipedia.org/wiki/2012_LinkedIn_hack
https://en.wikipedia.org/wiki/2012_LinkedIn_hack
https://en.wikipedia.org/wiki/RockYou#Data_breach
https://wiki.skullsecurity.org/index.php/Passwords
https://wiki.skullsecurity.org/index.php/Passwords

PassGPT: Password modeling and generation with LLMs 19

53. Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P.,
Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C.,
Jernite, Y., Plu, J., Xu, C., Scao, T.L., Gugger, S., Drame, M., Lhoest, Q., Rush,
A.M.: Transformers: State-of-the-art natural language processing. In: Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations. pp. 38–45. Association for Computational Linguistics,
Online (Oct 2020), https://www.aclweb.org/anthology/2020.emnlp-demos.6

54. Xu, M., Wang, C., Yu, J., Zhang, J., Zhang, K., Han, W.: Chunk-level password
guessing: Towards modeling refined password composition representations. In: Pro-
ceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security. pp. 5–20 (2021)

55. Yu, J., Li, X., Koh, J.Y., Zhang, H., Pang, R., Qin, J., Ku, A., Xu, Y., Baldridge,
J., Wu, Y.: Vector-quantized image modeling with improved vqgan. arXiv preprint
arXiv:2110.04627 (2021)

A Passwords at the quantiles of the distribution

In our analysis in Section 4.4, we examined password probabilities under PassGPT
in relation to password strength. PassGPT assigns lower probabilities to stronger
passwords and higher probabilities to weaker ones. In Figure 6, we illustrate
some passwords along with their log-probabilities under PassGPT for visual
exploration.

Fig. 6: Passwords in RockYou located at the quantiles of the probabilities distribution
for different password lengths. The lower the quantiles, the more unlikely the password
is under the model.

B PassGPT vs PassVQT

This section includes a detailed comparison between PassGPT and PassVQT
generations. Table 7 illustrates how many passwords are guessed by each method

https://www.aclweb.org/anthology/2020.emnlp-demos.6

20 J. Rando et al.

conditioned on their strength. Finally, Figure 7 depicts a histogram of the length
of passwords generated by each architecture. PassVQT overall tends to generate
longer and more difficult passwords, but PassGPT better fits the distribution of
easy passwords, improving its overall performance.

Table 7: Detailed statistics on the matched passwords by different models from RockYou
test set (<16 characters) with respect to their strength. Passwords are only considered
once.

Strength Total
Guessed by

Not guessed
PassGPT ∩ PassVQT PassGPT PassVQT

0 2,035 41 (2.0%) 481 (23.7%) 28 (1.4%) 1485 (73%)
1 752,137 150,945 (20.1%) 111,704 (14.9%) 66,004 (8.8%) 423,484 (56.3%)
2 926,826 45,337 (4.9%) 50,704 (5.5%) 53,782 (5.8%) 777,003 (83.8%)
3 558,029 4,501 (0.8%) 7,831 (1.4%) 8,832 (1.6%) 536,865 (96.2%)
4 158,635 88 (0.06%) 194 (0.1%) 152 (0.09%) 158,201 (99.7%)

2,397,662 200,912 (8.38%) 170,914 (7.12%) 128,798 (5.37%) 1,897,038 (79.12%)

Fig. 7: Histogram of generated password length by each model on a subset of 108

samples.

	PassGPT: Password Modeling and (Guided) Generation with Large Language Models

