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Adaptation Strategy for a Distributed
Autonomous UAV Formation in Case of Aircraft

Loss

Tagir Muslimov

Abstract Controlling a distributed autonomous unmanned aerial vehicle (UAV)

formation is usually considered in the context of recovering the connectivity graph

should a single UAV agent be lost. At the same time, little focus is made on how

such loss affects the dynamics of the formation as a system. To compensate for the

negative effects, we propose an adaptation algorithm that reduces the increasing

interaction between the UAV agents that remain in the formation. This algorithm

enables the autonomous system to adjust to the new equilibrium state. The algorithm

has been tested by computer simulation on full nonlinear UAV models. Simulation

results prove the negative effect (the increased final cruising speed of the formation)

to be completely eliminated.

Key words: UAV Formation Flight, Fault-tolerant Formation Control, Drone Flock-

ing, Formation Reconfiguration

1 Introduction

For a decentralized formation of unmanned aerial vehicles (UAVs), the formation

needs to be capable of reconfiguration should one of the UAVs fail. Some pa-

pers approach this problem by developing algorithms to optimize the recovery or

maintenance of connectivity. For instance, paper [1] investigates reconfiguring the

communication topology to minimize the communication cost in case of the UAVs in

the formation losing their links. When considering a UAV formation as a multiagent

system, existing approaches become applicable, see, e.g., [2] for an overview. Paper

[3] investigates the possibility of reaching consensus should agents stop communi-

cating. Work [4] covers the effectiveness of a swarm intelligence in a multiagent

system that loses its agents. Article [5] investigates controlling a multiagent system
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when links between agents are lost. Paper [6] proposes a novel approach that relies on

a Negative Imaginary (NI) theory-based control algorithm that keeps a decentralized

system of single integrators stable when several agents are lost. Work [7] covers an

agent loss-tolerant multiagent system. One of the approaches covered therein consists

in adding redundant links to make the group robust to agent loss.

Being a complex system, a UAV formation does affect the reconfiguration algo-

rithms in development.The way it does so depends, for instance, on the mission being

planned or on the dynamics of the aircraft themselves. Paper [8] presents a concept of

fault-tolerant formation control for cases of UAV loss. The control strategy consists

in adjusting the objective function that keeps the entire formation functional. Work

[9] covers a situation of UAV loss and proposes an algorithm that performs priority

ranking in order to choose a UAV to replace the lost one. Article [10] presents an

approach where the lost UAV agents are replaced on a priority basis in a forma-

tion caught in an natural disaster. Paper [11] covers operating a UAV formation in

a wildfire. Should a single UAV be lost, the proposed algorithm reconfigures the

formation by adjusting for the lost links. Numerous papers cover UAV formation

control strategies in cases of actuator faults. For instance, work [12] demonstrates

the use of UAV formations to tackle wildfires; it shows that cooperative tracking er-

rors could be bounded even in case of actuator faults. Article [13] investigates UAV

formation stability by applying a Lyapunov function, assuming both actuator faults

and communication interrupts. Adaptive control enabled the authors to compensate

for actuator faults.

The above paper overview leads to a conclusion that the existing publications make

little focus on how losing a UAV agent affects the dynamics of the entire formation. Of

particular interest are cases where the system has completely decentralized control,

i.e., each UAV agent relies exclusively on readings on the adjacent aircraft to stir

itself. Yamaguchi et al. have developed one of the most effective control methods

for distributed autonomous systems. Paper [14] was the first to propose a model

that enabled completely decentralized control. The approach was further enhanced

in a series of subsequent papers that showed using this method to enable a group

of autonomous robots to generate a variety of shapes [15] as well as to encircle a

target [16]. Yamaguchi state this approach is based on formation vectors. The idea

is that each agent in a formation has its own formation vector that is calculated

from the adjacent agents’ readings. Work [17] also showed that when autonomous

robotic agents are configured to maintain different distances to their neighbors, the

general stability of the formation can be maintained by running a special adaptation

algorithm.

However, this cycle of papers did not focus on losing an agent from the formation.

Besides, they only covered linear integrators as agents. Paper [18] proposed an

adaptation algorithm for a decentralized system of linear oscillators, which also

covered the case of losing a single oscillator. This approach can be modified for use

in a system of autonomous robots including flying ones/UAVs.

Thus, the novelty hereof lies in that we (i) investigate the feasibility of imple-

menting an agent loss adaptation algorithm in a completely decentralized/distributed

autonomous agents, from the standpoint of its dynamics; (ii) test the proposed al-
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gorithm on full nonlinear UAV models engaged in cooperative target tracking in a

circular formation.

2 Adaptation Algorithm for a Decentralized UAV Formation

2.1 Distributed Autonomous System Model

A decentralized system usually consists of interchangeable locally interconnected

systems. The structural similarity of such systems to their biological counterparts is

what makes researchers believe these systems could be flexible and adaptable. This

gives rise to two problems: controlling the entire system with only local data at hand;

and implementing adaptation mechanisms. Of particular interest is the development

of a fault-tolerant algorithm to adapt the UAV formation to losing a faulty UAV agent

when tracking a ground target. This model is based on the Japanese researcher’s work

[18–20], where they developed an adaptation algorithm for the locomotion model of

an oscillatory network of motor neurons in a biological organism; they also developed

a multicylinder engine model [21]. These papers consider locally interconnected os-

cillators that maintain relative phase angles to create locomotion rhythms that control

walking, running, swimming, and other types of organism locomotion. In a target-

tracking decentralized UAV formation, UAV agents, too, communicate locally and

maintain the present relative phase angles (phase shifts) of orbiting the target. This is

why this model, when further modified and developed, could become the foundation

for an adaptive UAV formation reconfiguration algorithm for fault-tolerant control.

Fig. 1 Losing one UAV in a

formation due to failure

Fig. 2 Reconfiguring a decen-

tralized system by means of an

adaptation algorithm. Figure

partly adapted from [18]
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We further describe a distributed autonomous system per [18]. The system consists

of # interchangeable subsystems {(8}8=1,...,<. Interchangeability means that the

dynamics of such subsystems can be described with differential equations of the

same form. For analysis, consider a subsystem state written as the state variable @8 .

This could be the phase angle of orbiting the target in a formation. Consider the

vector Q = [@1, . . . , @<]
) .

In a decentralized formation, UAVs do not have one-to-all communications, i.e.,

a single UAV agent will not be able to communicate with all other UAV agents in the

formation. In other words, the UAV agent dynamics contains the state variables for

the limited set of adjacent UAV agents. Interaction refers herein to receiving the state

readings of the adjacent UAV agents. Let # (@8) = {@; |@; is_interacting_with @8}

be the set of such adjacent UAVs.

Each pair of interacting UAVs, e.g., (8 and ( 9 , have a linear functional dependency

relationship as ?: = ?:
(
@8 , @ 9

)
, where : = 1, . . . , = are the ordinal numbers of

interactions. The difference between the respective subsystem states is an example of

such functional dependency. Consider the vector P = [?1, . . . , ?=]
) . The functional

dependencies in the formation can be written as the equation P = LQ, where

L ∈ '=×<.

Control consists in finding such subsystem dynamics ¤@8 = 58 (# (@8)) that the

functional dependencies P converge to the desired values P3 = [?31, . . . , ?3=]
) . For

brevity, let us refer to the desired geometric shape of the UAV formation (depends

on P3) as the pattern. An important assumption here is that the desired values of the

functional dependencies P3 are predetermined, i.e., there is such vector Q that the

condition LQ = P3 holds. Write such condition as (I − LL+) P3 = 0, where L+ is

the pseudoinverse of matrix L, and I is a unit matrix.

UAV formation control applies when the vector P converges to the vector P3, i.e.,

each element of the vector P converges to the correspondingly numbered element

of the vector P3. However, the vector P3 is not always attainable for a variety of

reasons. For instance, it will not be attainable if one or more UAVs in a formation

fail. Thus, creating an adaptation (or adaptive reconfiguration) algorithm boils down

to developing a vector P3 tuning algorithm.

Yuasa and Ito published a series of papers [19, 20] where they solved the

above-mentioned control problem on determining the dynamics of subsystems

¤@8 = 58 (# (@8)) for oscillators by proving a number of theorems. However, their

solution was developed with linear agents in mind and would require a substantial

modification for use on nonlinear agents. To begin with, the equation ¤@8 = 58 (# (@8))

can be rewritten in vector form as ¤Q = F (Q) , where F = [ 51, . . . , 5<]
) . The equa-

tion can be transformed as ¤P = L ¤Q=LF (Q).

Theorem 1 (Yuasa and Ito [19]). Dynamics of P in the equation ¤P = L ¤Q=LF (Q)

can be described as an autonomous system if and only if F in the equation ¤Q = F (Q)

satisfies the following condition: L mF
mQ

(I − L+L) = 0.

Theorem 2 (Yuasa and Ito [19]). If the dynamics of P can be described as a gradient

system with the potential function + (P), i.e., P = − m+
mP

, then F can be written as

F =

(
m+X (X)

mX

))
+ (I − L+L) Q′, where X = −L) P, +X (X) = +X

(
−L) P

)
= + (P) ,
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and Q′ is an arbitrary vector that has the same dimensionality as Q. Conversely,

if F can be described with the equation above, there exists such potential function

+ (P) that the dynamics of P would be described as P = − m+
mP

.

Suppose that the subsystem dynamics can be described as ¤@8 = 5̄8 + 5̃8 (G8), where[
5̄1, . . . , 5̄<

])
= F̄ ∈ ker L and

[
5̃1, . . . , 5̃<

])
= F̃ ∈ (ker L)⊥. Dynamics of P

is only determined by the summand 5̃8 (G8) since LF̄ = 0. Given this, write the

dynamics of P as ¤P = LF̃. Paper [18] also proves the following theorem.

Theorem 3 ([18]). If 5̃8 (G8) satisfies the following conditions: 1. 5̃8 (G8) = 0 at the

point G8 = G38 , 2.
m 5̃8 (G8)

mG8

���
G8=G83

> 0, then X = X3 (here X3 = −L) P3) will be one of

the equilibrium states. Besides, if the following holds: 3. 5̃8 (G8) · (G8 − G38) > 0, then

X = X3 becomes the only equilibrium state.

The authors of [19] prove this theorem under an assumption that the dynamics of P

become a gradient system. When all the three conditions of this theorem are satisfied,

X = X3 is the global minimum of the potential function + (X) =
∑<

8=1

∫
5̃8 (G8)3G8 .

Below is a variant of dynamics satisfying this theorem:

¤@8 = 5̄8 + 5 +8 (G8 − G38) , (1)

where 5 +8 (·) is an odd increasing function.

2.2 Adaptation Strategy for a Distributed Autonomous System

In paper [18], the authors refer to losing one or more oscillators as an environment

variation. In a UAV formation, it can be referred to as a structural variation in the

formation. Should the formation lose a single UAV as shown in Fig. 1, the desired

phase shifts between the UAVs will be altered, as they are assumed to depend on the

total number of UAVs in the formation. In other words, the pattern P3 configured

before losing a faulty UAV becomes unattainable. Pattern P3 being unattainable

means there is no such matrix Q that would satisfy the equation LQ = P3. From

the above equations X3 = −L) P3 and X = −L) P, derive X − X3 = −L) (P − P3).

Apparently, X − X3 = 0 is necessary but insufficient to satisfy P − P3 = 0. In other

words, if P − P3 ≠ 0 and also P − P3 ∈ ker L, then X − X3 = 0.

Thus, P3 needs to be adaptively tuned. Such tuning involves estimating the current

system. From the engineering standpoint, it is reasonable to use the function

� =
1

2

∑=

8=1
(?8 − ?38)

2. (2)

Fig. 2 shows the minimum of this function is attained when the desired pattern P3

is formed; local interactions between the adjacent UAVs are null. If the pattern P3

cannot be attained due to losing a UAV from the formation, then the interaction
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is ongoing, and a new pattern emerges as a result of balancing such interactions,

see Fig. 2b. To reduce subsystem interaction while preserving the newly emerged

pattern, P3 needs to be tuned, see Fig. 2c.

As noted in [18], a UAV agent’s (8 interaction as a subsystem can be defined in

terms of the equation:

� 8: = −!:8 (?: − ?3: ) . (3)

Here, : is the ordinal number of the interaction, i.e., assuming that in the matrix

L, its elements !:8 and !: 9 are non-zero, that means the UAVs numbered 8 and 9

interact as subsystems in the formation.

Based on (3), the second term of the equation (1) can be written as [18]

5 +8 (G8 − G38) = 5 +8

(∑=

:=1
� 8:

)
.

Using (3), the objective function (2) can be transformed as follows [18]:

� =
1

4

<∑

8=1

=∑

:=1
!:8≠0

1

!2
:8

{
� 8:

}2
.

Apparently, minimizing the function � , we minimize the interactions � 8
:

between the

subsystems.

The key point of such adaptive reconfiguration is the separation of dynamics on

the time scale, i.e., the system dynamics needs to be much faster than the adaptive

tuning dynamics. Reason being, adaptation requires estimating the current state of

the system. Before a pattern can be adjusted and a new variation thereof can be made,

the current pattern (variation) needs to be suitability-tested.

Let us show how this approach could be used on a decentralized UAV formation

when tracking a target. Consider a 4-UAV formation orbiting the target at a preset

radius. Control aims at maintaining a predefined phase shift between UAVs numbered

8 and 8 + 1. The UAVs are engaged in an "open-chain" interaction, i.e., 1-2, 2-3, 3-4.

This phase shift is denoted as ?8,8+1 = i8+1 − i8 , where i∗ is the phase angle of

UAVs orbiting the target, with the subscript for the UAV’s ordinal number in the

formation. As this is a four-UAV group, 8 = 1, 2, 3, 4. Phase shifts should converge

to the desired values determined by the vector of the pattern P3 = [�1, �2, �3]
)
=

[2c/3, 9c/13,18c/29]) . Then we can obtain

P = LQ, L =



−1 1 0 0

0 −1 1 0

0 0 −1 1


,

where P =

[
?12 ?23 ?34

])
and Q =

[
i1 i2 i3 i4

])
. The kernel of the matrix L

in this case is defined as ker L =

[
1 1 1 1

])
, and from the relation X = −L) LQ, it

can be found that
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X =



?12

−?12 + ?23

−?23 + ?34

−?34



=



−i1 + i2

i1 − 2i2 + i3

i2 − 2i3 + i4

i3 − i4



.

UAV formation dynamics in case of encircling a target is defined as

¤Q =



¤i1

¤i2

¤i3

¤i4



=



l1

l2

l3

l4



+



{ 5 (2/{cd1}) arctan (: \ (?12 − �1))

{ 5 (2/{cd2}) arctan (: \ (−?12 + ?23 + �1 − �2))

{ 5 (2/{cd3}) arctan (: \ (−?23 + ?34 + �2 − �3))

{ 5 (2/{cd3}) arctan (: \ (−?34 + �3))



,

where l∗ and d∗ are the angular velocity of UAVs orbiting the target, and the

radius of such orbit, respectively; subscripts match the UAVs’ ordinal numbers in the

formation. Applying a nonlinear arctan (·) function limits the minima and maxima

of the speed control signal. Thus, it avoids the undesirable integral windup that

might cause the UAV formation to go unstable. Here { 5 is a positive constant that

determines the maximum added speed; : \ is a positive constant that determines the

smoothness of how the UAV reaches its orbit.

The dynamics of the pattern ¤P, once the uniform radius d is attained, is written as

follows since l1 = l2 = l3 = l4 = {/d, where { is the final cruising linear speed

of the formation:

¤P =



¤?12

¤?23

¤?34


=



−{ 5 (2/{cd}) arctan (: \ (?12 − �1)) +

+{ 5 (2/{cd}) arctan (: \ (−?12 + ?23 + �1 − �2))

−{ 5 (2/{cd}) arctan

(
: \

(
−?12 + ?23

+�1 − �2

))
+

+{ 5 (2/{cd}) arctan

(
: \

(
−?23 + ?34

+�2 − �3

))

−{ 5 (2/{cd}) arctan (: \ (−?23 + ?34 + �2 − �3)) +

+{ 5 (2/{cd}) arctan (: \ (−?34 + �3))



.

We propose the following adaptation algorithm:

¤?38 = 0B 5B86<
(
g? (?8 − ?38)

)
, (4)

where 0 < g? < 1; 5B86< is a sigmoid odd function, e.g., an arctangent or hyperbolic

tangent; 0B is a positive coefficient to alter the maxima and minima of the function

0B 5B86<; for example, if an arctangent is picked for 5B86< , then this can be 0B = 2/c.

3 Simulation Results and Discussion

A 4-UAV simulation model based on full nonlinear models has been developed

in MATLAB/Simulink. For details on the models, refer to the monograph [22].

Simulation parameters are the same as in paper [23]. Find below the results of
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simulation modeling using full nonlinear models. Fig. 3a shows the trajectories of

a 4-UAV formation in case of a stationary target. Fig. 3b shows changes in phase

shift errors. Apparently, these errors reach zero over time. There are three phase shift

errors as the UAVs in the formation use open-chain interaction.

Stability can be proved as follows, similarly to [18]. Let the function � (2) be the

Lyapunov function. Then derivative of the Lyapunov function � along the trajectories

of the system (4), with an arctangent for 5B86<, is written as

¤� = −
∑=

8=1
g?

2

c
(?8 − ?38) arctan (?8 − ?38) < 0, ∀ (?8 − ?38) ≠ 0.

Here the condition of quasi-stationarity is accepted and taken into account, that is

?8 = const, and the system manages to attain a new state of equilibrium after losing

one or more UAVs, since, as mentioned earlier, the adaptation algorithm has much

slower dynamics than the system.
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Fig. 4a shows how phase shift errors change and that they do not reach zero

because losing UAV No. 3 makes the pattern unattainable. However, graphs also

show the system to reach a new state of equilibrium. There are two phase shift errors

here, as the UAVs in the formation use open-chain interaction; losing one makes it

a 3-UAV formation.

As noted earlier, the new equilibrium state exists as a result of interaction balanc-

ing. This can be seen in the UAV speeds graph when the formation loses one unit,

see Fig. 4b. UAV No. 3 is lost. The remaining UAVs fail to attain the initially precon-

figured cruising speed of 12 m/s. These are UAV No. 1 and UAVs No. 2, No. 4 that

the lost UAV was between. Failure to reach the required cruising speed is due to the

continuous inter-UAV communication that keep the system in this new equilibrium

state. Cruising at a speed other than the initially configured value is strongly undesir-

able for two reasons: (i) it may jeopardize the mission that the initial cruising speed

was meant for; (ii) it may be resource-suboptimal as the initial cruising speed was

optimized for the UAV’s aerodynamics to maximize fuel efficiency. Thus, reducing

interaction within the UAV formation subject to adaptive reconfiguration is directly

applicable to attaining the initially configured cruising speed.

We further implemented the adaptation algorithm (4) with the coefficient

g? = 0.1. As shown in Fig. 5a, this made every UAV in the formation reach its

preconfigured final cruising speed of 12 m/s. Fig. 5b shows change in the phase shift

between UAV No. 1 and UAV No. 2, UAV No. 2 and UAV No. 4. The new state of

equilibrium is different from that of the 4-UAV formation.

4 Conclusions

The adaptation strategy presented herein eliminates a negative effect that completely

decentralized UAV formations tend to show when losing one or more UAVs. The
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formation reconfiguration approach shown here could be applicable in more diverse

UAV formation control scenarios; the adaptation algorithms are further modifiable.

This adaptation scenario also necessitates designing a diagnostics module for UAVs;

further work will present its models.
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