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Abstract. Masking is a well-known and provably secure countermea-
sure against side-channel attacks. However, due to additional redundant
computations, integrating masking schemes is expensive in terms of per-
formance. The performance overhead of integrating masking countermea-
sures is heavily influenced by the design choices of a cryptographic algo-
rithm and is often not considered during the design phase.

In this work, we deliberate on the effect of design choices on integrating
masking techniques into lattice-based cryptography. We select Scabbard,
a suite of three lattice-based post-quantumkey-encapsulationmechanisms
(KEM), namely Florete, Espada, and Sable. We provide arbitrary-order
masked implementations of all the constituentKEMs of the Scabbard suite
by exploiting their specific design elements. We show that the masked im-
plementations of Florete, Espada, and Sable outperform the masked im-
plementations of Kyber in terms of speed for any order masking. Masked
Florete exhibits a 73%, 71%, and 70% performance improvement over
masked Kyber corresponding to the first-, second-, and third-order. Sim-
ilarly, Espada exhibits 56%, 59%, and 60% and Sable exhibits 75%, 74%,
and 73%enhanced performance for first-, second-, and third-ordermasking
compared to Kyber respectively. Our results show that the design deci-
sions have a significant impact on the efficiency of integrating masking
countermeasures into lattice-based cryptography.

Keywords: Post-quantum cryptography · Key-encapsulation mechanism · Side-
channel attacks · Scabbard · Higher-order masking

1 Introduction

Physical attacks such as fault injection and side-channel attacks are potent threats
to any cryptosystemdeployed in the public domain.Classical cryptographic schemes
such as elliptic-curve cryptography [25] and RSA [27] went through decades of
testing, analysis, and invention of different physical attacks and their countermea-
sures to generate enough confidence to be successfully deployed in the real world.
In comparison, post-quantum cryptography (PQC), or specifically lattice-based
cryptography (LBC) has gone through significantly less amount of investigation
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in the context of physical attacks. Therefore, although the United States gov-
ernment’s National Institute of Standards and Technology (NIST) has recently
proposed some standard PQC schemes [1], for a successful transition to PQC, it
is imperative that we concentrate our research efforts in this direction.

Masking [11] is an interesting countermeasure against passive physical attacks or
side-channel attacks (SCA) such as power analysis, electromagnetic radiation anal-
ysis, etc. On a fundamental level, masking works by splitting the secret into multi-
ple random shares and performing the same computation as the unmasked version
on each share. Thus, the security of masking is based on the same information-
theoretic principles, such as Shamir’s secret sharing [29] or multi-party compu-
tation [30]. Masking can provide provably secure countermeasures against side-
channel attacks. Nevertheless, due to the duplication of computations, the runtime
of a masked implementation theoretically grows significantly with the increase in
the order of masking. For example, in the case of Kyber, a post-quantum key-
encapsulation mechanism (KEM) scheme that has been selected as standard in
the NIST’s procedure, the runtime of the first, second, and third order of masked
implementation is 12, 20, and 30 times of the unmasked implementation on ARM
Cortex-M4 platform [10].

Our primary motivation in this work is to assess how the design decisions of a
lattice-based KEM scheme, such as the choice of quotient polynomial, distribu-
tion of secrets and errors, underlying hard problems, modulus, etc., influence their
masking performance. We also want to test how close we can get to the theoret-
ical upper bound of efficiency in masking. For our experiments, we have chosen
the post-quantum KEM suite Scabbard [5] with 3 different lattice-based schemes.
First, a ring-learning with rounding (RLWR) based scheme Florete with ring size
comparable to NewHope [2], second a module-learning with rounding (MLWR)
based scheme Sable with ring size similar to Saber [15] and Kyber [8], and finally
anMLWR-based schemeEspada with unique smaller ring size. The choice of Scab-
bard helps us to demonstrate our methods on diverse KEM schemes with many
variations in the design. Scabbardwas proposed to improve the NIST PQCfinalist
KEM Saber [15]. The designers of Scabbard argued that all the design decisions of
Scabbard had been propelled by the experience gained in the research and devel-
opments in the field of lattice-based cryptography of previous years. Therefore, it
inherits all the advantages of Saber i.e. less randomness due to rounding, power-
of-two modulus for efficient masking, simple algorithms for efficiency and faster
deployment on diverse platforms, etc. Further, the design of Scabbard improves in
areas like suitability for parallel implementation, flexibility, efficiency, and adapta-
tion of faster masking schemes.Wewill discuss the schemes of Scabbard in Sec. 2.1.
In the original publication [5], the authors have provided different implementa-
tions on hardware and software platforms to prove their claims on efficiency. It
was shown before that the design of Saber is highly conducive to masking [4]. Due
to these reasons, Scabbard is an ideal choice to demonstrate the interplay between
design choices and masking performance in lattice-based KEMs.
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In this work, we propose arbitrary-ordermasked implementations of all the KEMs
in the suite Scabbard.We implement and benchmark them on anARMCortex-M4
microcontroller platform using the PQM4 [21] library to prove the masking friend-
liness of its design. The ring size of the polynomial length matches the number of
message bits, which is 256 for Saber or Kyber as well as Sable. So, the encoding of
message bits to the ciphertext polynomial is trivial in these cases. However, this is
not the case for Florete and Espada, and these schemes use original msg function
for message decoding and arrange msg function for message encoding. This work
introduces a higher-ordermasked version of original msg and arrange msg func-
tion. These functions can be applied to all LWR-based KEMs with different ring
sizes than 256 and even learning with errors (LWE) based KEMs with some mod-
ifications. The schemes of Scabbard use different centered binomial distributions
compared to Saber or Kyber. For this purpose, we modified the masked centered
binomial distribution (CBD) algorithms proposed by Schneider et al. [28] for each
scheme of Scabbard and optimized it for them. Public and re-encrypted cipher-
text comparison is an important part of the Fujisaki-Okamoto transformationused
in LWE-/LWR-based KEM. It is faster for unmasked or first-order masking but
becomes computationally expensive for higher-order maskings. Here, we modified
the ciphertext comparator of [23] for each scheme of Scabbard to obtain better per-
formance. These masked components are faster in Scabbard than Kyber, thanks
to the choice of RLWR/ MLWR hard problem, power-of-two moduli and slightly
reduced parameter sets.

As performance results, the overhead factor we obtained for masked Florete for
the first-, second-, and third-order are approximately 2.7x, 5x, and 7.7x, com-
pared to the unmasked implementation. For Espada, the overhead cost of the
first-, second-, and third-order masked versions are roughly 1.8x, 2.8x, and 4x
than the unmasked one. The performance cost of masked Sable for the first-,
second-, and third-order are around 2.4x, 4.3x, and 6.3x over the unmasked ver-
sion.We compare the masked implementations of Florete, Espada, and Sable with
the state-of-the-art masked implementation of Kyber and Saber. We show that
the masked implementations of all the schemes of Scabbard surpass the masked
implementations of Kyber in terms of performance for any order masking, and
masked implementations of Florete and Sable outperform masked implementa-
tions of Saber for arbitrary order.More specifically, masked Florete performs 73%,
71%, and 70% better than maskedKyber, corresponding to the first-, second-, and
third-order. Espada shows 56%, 59%, and 60% performance improvement for first-
, second- and third-order masked implementations compared to Kyber. Masked
Sable exceeds the execution time of masked Kyber by 75%, 74%, and 73% for
the first-, second-, and third-order. Our masked implementations are available at
https://github.com/Suparna-Kundu/Masked_Scabbard.git.

To conclude this section, we want to draw attention to the fact that although the
NIST standardizationprocedure for PKE/KEMhas been finalizedwith Kyber, we
firmly believe that further investigations and innovations are required to improve
side-channel secure PQC schemes. The NIST procedure opened the possibility of
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exploring different possibilities to improve various aspects of PQC schemes. We
have witnessed this throughout the course and even after the NIST procedure.
For example, Mitaka [16] has been proposed, which is a masking-friendly version
of Falcon [17], a NIST standard for digital signatures. Kyber-90s version of Kyber
was proposed to use the advanced encryption standard (AES) as a pseudo-random
number generator instead of the slower Keccak extended output function. Simi-
larly, Saber-90s and uSaber were proposed as alternate versions of the NIST PQC
standardization finalist scheme Saber to improve efficiency and ease of masking.
As discussed earlier, Scabbard [5] was an improvement of Saber. The design of
Scabbard has further influenced the design of PQC KEM Smaug [12], which is
a candidate scheme from ongoing Korean PQC standardization [22]. Therefore,
exploring various design choices and their effect on different aspects of the perfor-
mance of existing PQC schemes is an interesting research direction.

2 Preliminaries

For a positive integer q, the set of integersmodulo q is denoted by Zq. The quotient
ring Zq[x]/f(x) is denoted byRn

q , where f(x) is a n degree cyclotomic polynomial
over Zq[x]. We use lowercase letters to denote an element of this ring, which is a
polynomial. We indicate the ring of l length vectors over the ringRn

q as (Rn
q )

l and
use bold lowercase letters to denote an element of this ring which is a vector of
polynomials. The ring of l× l length matrices over the ring Rn

q as (Rn
q )

l×l. The
elements of this ring are l× l matrices of polynomials and are represented by up-
percase letters. x←χ(S) represents that x is sampled from the set S and follows
the distribution χ. When x is generated using a pseudo-random number generator
expanding a seed seedx over the set S, we denote it as x←χ(S;seedx). We use U
to denote the uniform distribution and the CBD whose standard deviation

√

µ/2
is presented by βµ. We denote the rounding operator with ⌊·⌉, which returns the
closest integer and is rounded upwards during ties. These operations can be ex-
tended over the polynomials by applying them coefficient-wise. The polynomial
multiplication between two polynomials of length n is represented using n×nmul-
tiplication. We use {xi}0≤i≤t to represent the set {x0, x1, ..., xt} which contains
t+1 elements of the ring R.

2.1 Scabbard: a Post-Quantum KEM Suite

Scabbard is a suite of post-quantum KEMs proposed by Mera et al. [5] that im-
proved state-of-the-art LBC schemes by incorporating different design choices
and newer developments in the field. The security of the schemes in the Scabbard
depends on some variants of learningwith rounding (LWR) problems,more specif-
ically,module-LWR(MLWR) and ring-LWR(RLWR) problems.Banerjee et al. [3]
introduced the LWR problem and also showed that the LWR problem is as hard as
the LWE problem. If A←U((Zq)

l×l), secret s←βµ((Zq)
l), error e←βµe

((Zq)
l),

and b←U((Zq)
l) then distinguishing between (A, As+e) and (A, b) is hard and

this problem is known as the decision version of LWE problem. The decision ver-
sion of the LWR problem states that if A←U((Zq)

l×l), secret s←βµ((Zq)
l), and
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for some p<q,b←U((Zp)
l) then distinguishing between (A, ⌊(q/p)As⌉) and (A, b)

is hard [3]. In the LWR problem, the explicit sampling of error e in the LWE is re-
placed by the rounding operation. In case of theMLWR problem,A←U((Rn

q )
l×l),

s←βµ((R
n
q )

l), b←U((Rn
p )

l) and the MLWR problem states that (A, ⌊(q/p)As⌉)
and (A, b) are computationally indistinguishable [24]. In standard LWR-based
and RLWR-based constructions, the ranks of underlying matrices are respectively
l and n, with very high probability. On the other hand, MLWR-based construc-
tions are proposed as a trade-off between standard LWR-based and RLWR-based
structures. The rank of underlying matrices in MLWR-based schemes is l× n.
It makes the structures of MLWR-based constructions more generic, as we can
convert the MLWR-based scheme to a standard LWR-based one by fixing n= 1
and an RLWR-based one by setting l=1. Therefore, we use MLWR notations to
describe the schemes in Scabbard below. AKEMneeds to be secure against chosen
ciphertext attacks (IND-CCA/IND-CCA2: indistinguishable against a-posteriori
chosen-ciphertext attacks). In LWR-based KEM, it is accomplished by apply-
ing Jiang et al.’s version [20] of Fujisaki-Okamoto (FO) transformation [18] over
the generic LWR-based public-key encryption (PKE), where the PKE needs to
be secure against chosen plaintext attacks (IND-CPA: indistinguishable against
chosen plaintext attack). We denote generic LWR-based PKE as LWR.PKE and
generic LWR-based KEM as LWR.KEM, which are shown respectively in Figure 1
and Figure 2. In LWR.KEM,H, G, and KDF three hash functions are required as part
of FO transformation. This suite of KEMs consists of three schemes: (i) Florete,
(ii) Espada, and (iii) Sable. We briefly describe these three schemes with their
specific features below.

LWR.PKE.KeyGen()

1. seedAAA←U({0,1}
256)

2. AAA←U((Rn
q )

l×l; seedAAA)
3. r←U({0, 1}256)
4. sss←βµ((R

n
q )

l; r)
5.

bbb=((AAATsss+hhh) mod q)≫ (ǫq−ǫp)∈(R
n
p )

l

6. return (pk=(seedAAA, bbb), sk=(sss))

LWR.PKE.Enc(pk=(seedAAA,bbb),m∈R2;r)

1. AAA←U((Rn
q )

l×l; seedAAA)
2. if: r is not specified:
3. r←U({0, 1}256)
4. s′s′s′←βµ((R

n
q )

l; r)

5. uuu=((AAAsss′+hhh) mod q)≫ (ǫq−ǫp)∈(R
n
p )

l

6. cm=bbbT (sss′ mod p)∈Rn
p

7. v=(cm+h1−2
ǫp−Bm mod p)≫

(ǫp−ǫt−B)∈Rn
2Bt

8. return c=(uuu, v)

LWR.PKE.Dec(sk=sss,c=(uuu,v))

1. u′′=uuuT (sss mod p)∈Rn
p

2. m′′=(u′′−2ǫp−ǫt−Bv+h2) mod p

3. m′=m′′≫ (ǫp−B)∈Rn
2Bt

4. return m′

Fig. 1: Generic LWR.PKE [5]

2.1.1 Florete: This scheme is based on the RLWRproblem i.e. l=1 in Figure.1
and designed for faster running time. Here, the cyclotomic polynomial used to con-
struct the quotient ringsRn

q ,R
n
p , andR

n
t is (x768−x384+1). In Florete, one mes-

sage bit is encoded in three coefficients of the polynomial v in line 7 of LWR.PKE.Enc
algorithm of Figure 1. So, during the encapsulation process, as shown in line 2 of
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LWR.KEM.KeyGen()

1. (seedAAA,bbb,sss)=LWR.PKE.KeyGen()
2. pk=(seedAAA,bbb)
3. pkh=H(pk)
4. z←U({0, 1}256)
5.

return (pk=(seedAAA, bbb), sk=(sss, z, pkh))

LWR.KEM.Encaps(pk=(seedAAA, bbb))

1. m′←U({0,1}256)
2. m=arrange msg(m′)
3. m=H(m)
4. (K̂,r)=G(H(pk),m)
5. c=LWR.PKE.Enc(pk,m;r)
6. K=KDF(K̂,H(c))
7. return (c,K)

LWR.KEM.Decaps(sk=(sss, z, pkh),pk=(seedAAA, bbb), c)

1. m′′=LWR.PKE.Dec(sss,c)
2. m′=original msg(m′′)
3. (K̂′,r′)=G(pkh,m′)
4. c∗=LWR.PKE.Enc(pk,m′;r′)
5. if: c=c∗
6. return K=KDF(K̂′,H(c))
7. else:
8. return K=KDF(z,H(c))

Fig. 2: Generic LWR.KEM [5]

LWR.KEM.Encaps algorithm of Figure 2, a conversion from 256 bits of message to
a polynomial of length 768 is performed with the help of arrange msg function
and it is defined as: arrange msg(m′) =m′||m′||m′ . The inverse of arrange msg

function is used in the LWR.KEM.Decaps algorithm named as original msg, and
the original msg : Z768

2 −→ Z
256
2 is defined as if original msg(m′′) = m′ and

b ∈ {0, 1, ... , 255} then m′[b] =

{

0 if m′′[b]+m′′[b+256]+m′′[b+512]≤1

1 otherwise
. In

Florete, 768×768 polynomial multiplication is used, and it is performed using the
combination of Toom-Cook 3-way, Toom-Cook 4-way, 2 levels of Karatsuba, and
16×16 schoolbook multiplication.

2.1.2 Espada: This scheme is designed to reduce the memory footprint on
software platforms. It is based on the MLWR problem, and the cyclotomic poly-
nomial is used to construct the underlying quotient ring of the lattice problemRn

q

is (x64+1). The polynomial length here is 64, so the dimension of vectors of poly-
nomial l is taken equal to 12 to maintain security. In Espada, the 256 bit message
is encoded inside the 64 length polynomial v, so four message bits are encoded in
a coefficient of the polynomial v. The arrange msg :Z256

2 −→Z
64
4 and the function

is defined as: arrange msg(m′)=m′′, where for b∈{0, 1, ..., 63}

m′′[b]=m′[4∗b+3]||m′[4∗b+2]||m′[4∗b+1]||m′[4∗b]. (1)

The original msg :Z64
4 −→Z

256
2 function is defined as: original msg(m′′)=m′

and follows Equation 1. Lastly, the 64×64 polynomial multiplication is performed
using 2 levels of Karatsuba and 16×16 schoolbook multiplication.
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2.1.3 Sable: This scheme can be interpreted as an alternate version of Saber
and is designed to improve performancewith lessmemory footprint. It is also based
on theMLWR problem, and similar to Saber, the cyclotomic polynomial used here
in the quotient rings is (x256+1). The arrange msg function and original msg

function are described as: arrange msg(m′)=m′ and original msg(m′′)=m′′=
m′, respectively. The polynomial multiplication used in Sable is identical to Saber.
The 256×256 polynomial multiplication is realized by the combination of Toom-
Cook 4-way, 2 levels of Karatsuba, and 16×16 schoolbook multiplication.

The concrete security of these schemes depends on the parameter set, which in-
cludes the three power-of-two ring moduli t < p < q, the length of a polynomial
n, the dimension of the vector of polynomial l, the CBD parameter µ, and the
number of message-bit encoded in a coefficient of the polynomial is represented
by B. Table 1 presents the parameter sets for all three schemes that achieve the
NIST security level 3.We humbly refer to the original Scabbard paper [5] for more
insightful details.

Table 1: Parameters of Scabbard suite

Scheme Name
Ring/Module
Parameters

PQ
Security

Failure
probability

Moduli
CBD
(βη)

Encoding
Key sizes for
KEM (Bytes)

n: 768 ǫq : 10 Public key: 896

Florete 2157 2−131 ǫp: 9 η=1 B=1 Secret key: 1152
l: 1 ǫt: 3 Ciphertext: 1248
n: 64 ǫq : 15 Public key: 1280

Espada 2128 2−167 ǫp: 13 η=3 B=4 Secret key: 1728
l: 12 ǫt: 3 Ciphertext: 1304
n: 256 ǫq : 11 Public key: 896

Sable 2169 2−143 ǫp: 9 η=1 B=1 Secret key: 1152
l: 3 ǫt: 4 Ciphertext: 1024

2.2 Masking

The effectiveness ofmasking against SCAhas beenwell demonstrated for symmetric-
key block ciphers [26,13] and recently extended for LBC [4,23,9]. In n-th order
masking, we split the sensitive data x into (n + 1) shares and perform all the
operations on each share separately. So, an adversary with a limited number of
probes, such as at most n probes, does not receive any advantages compared to
another adversary who does not have access to those probes. The nth order mask-
ing technique can prevent up to nth order differential power attacks. However,
the integration of masking techniques in LBC schemes affects the performance of
the algorithm significantly with the increment of the masking order. The design
decision of cryptographic schemes affects the performance of masked versions of
the lattice-based schemes. This is why even though the unmasked performance of
NIST finalist Saber is almost the same as Kyber, the masked version of Saber is
way faster than masked Kyber for any masking order. Masked version Saber gains
this advantage thanks to the choice of LWR problem and power-of-two moduli.
TheKEMs in the suite Scabbard also use power-of-twomoduli and further improve
the efficiency of the LWR-based schemes. In this work, we investigate whether the
efficiency of Scabbard will translate to the masked domain.
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3 Masking Scabbard

The CCA-secure KEM schemes are used to share secrets among communicating
parties. Here, the secret key is non-ephemeral i.e. the key generation is run once
to generate a long-term secret key that can be used for multiple sessions and
communicating with multiple entities. Therefore, in a KEM scheme, only the de-
capsulation is executed multiple times to retrieve the secret data from multiple
entities throughmultiple sessions. However, this is also advantageous for an adver-
sary. The adversary can run the decapsulation operationmultiple times to improve
the precision of its fault injection or take multiple side-channel traces to reduce
noise in its measurements, thus improving its success probability. Mounting at-
tacks on other operations, such as key generation and encapsulation, are relatively
harder. Once an adversary compromises the secret key, it can use it to expose the
secret keys of multiple sessions. Therefore, protecting the decapsulation operation
from side-channel attacks is critical for the side-channel security of a KEM. We
display the flow of the decapsulation algorithm of generic LWR-based KEM in
Figure 3 and denoted vulnerable operations in the color gray. Here original msg

and arrange msg functions are shown by OMsg and AMsg. In this section, we will
describe the masking methods of all the components susceptible to SCA in the
decapsulation operation of the Scabbard schemes.

Xuuu

sss

+

hhh2

v ≪ − ≫ OMsg G

pkh

K̂′

XOF βµ X

U

seedAAA

X

bbb

+

hhh

+

h1
AMsg

+ ≫

≫ uuu∗

v∗

=

return H(K̂′,c)

yes

return H(z,c)

no

Fig. 3: Decapsulation of LWR-based KEM. The operations in color gray are
involved with the long-term secret sss and are susceptible to side-channel attacks

Here,we have used twomasking techniques: (i) arithmeticmasking and (ii)Boolean
masking to mask the Scabbard suite’s schemes because these schemes consist of
some operations that are cheaper to mask using arithmetic masking and some are
easy to mask using Boolean masking. In both the t-order arithmetic and Boolean
masking techniques, first we split the sensitive operand x ∈Zq =Z2ǫq =Z

ǫq
2 into

(t+1) shares, such as x0, x1, ..., xt∈Zq. However, for arithmetic masking the rela-
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tion betweenx and (t+1) shares ofx isx=(x0+x1+···+xt) mod q, and inBoolean
masking the relation between x and (t+1) shares of x is x=(x0⊕x1⊕···⊕xt).

3.1 Arithmetic Operations

It can be seen from Figure 3 that the decapsulation algorithm of each KEM of the
suite Scabbard consists of mostly arithmetic operations, such as polynomial mul-
tiplications, polynomial addition, and polynomial subtractions. These operations
can be masked efficiently utilizing arithmetic masking. Here, we need to duplicate
these operations for each arithmetic share and perform them separately. The per-
formance cost of these operations grows linearly with the increase of arithmetic
shares.

Although this part is more or less similar for all the LWE/LWR-based KEMs
(for example, Kyber and Saber), the parameter set impacts the performance of
unmasked and masked versions of these operations. This also helps the schemes
of Scabbard to achieve better performance compared to other LBC-based KEMs
in some scenarios. The performance cost of the masked arithmetic operations in
Sable is less than Saber or Kyber because the total cost of arithmetic operations
of Sable is less than Saber or Kyber in the unmasked domain. It happens because
Sable uses a slightly reduced parameter set than Saber. However, the performance
cost of arithmetic operations in Florete or Espada is more than Saber or Kyber,
as is the case in the unmasked domain.

3.2 Compression

Compression operation is the final step of the LWR.PKE.Dec algorithm, and in this
step, encoded message bits are retrieved from the polynomialm′′ after performing
the reconciliation. For Florete and Sable, only the most significant bit is extracted,
and for Espada, the four most significant bits are extracted from each coefficient of
the polynomial m′′. After that, these message bits are used as input in SHA3-512

hash function for computing the seed s′ for the re-encryption procedure. These
message bits are also needed to construct the session key. The extraction of the
most significant bits is performed by using a logical shift operation in LWR-based
KEM. This operation is easy to protect with Boolean masking. However, in the
masked setting, the input of the compression operation is arithmetically masked,
as its previous steps consisted of arithmetic operations. So, in the masked com-
pression operation, first, we apply arithmetic to Boolean (A2B) conversion, and
then we perform coefficient-wise ǫp−B bit right shift operation [23].

This compress operation in Sable is very similar to the one used in Saber, except
for the value of ǫp. The value of the parameter ǫp is smaller in Sable than in Saber.
So, the performance of A2B conversion is relatively better in Sable compared to
Saber. Hence, the overall performance of the masked compress operation is better
in Sable than in Saber. The compress operation of Florete is also similar to the
compress operationused in Saber. The value of parameters ǫp in Florete is the same
as Sable and so a little smaller than in Saber. However, the degree of the message
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containing part of the ciphertext polynomial is 768 in Florete, while it is 256 in
Saber. So, the number of coefficients in Florete is three times compared to Saber.
The performance cost of A2B conversion and ǫp−1 right shift operation in Florete
is approximately three times the performance cost of these operations in Saber.
Therefore, the performance of the masked compress operation in Florete takes
approximately three times the cycles compared to the masked compress operation
in Saber. The scheme Espada encodes four message bits in a single coefficient
of ciphertext, and the polynomial size in Espada is 64, which is 1/4th of the
polynomial size in Saber. The value of ǫp in Espada is slightly bigger than in Saber.
However, the A2B conversion component is faster in Espada than in Saber due to
the small polynomial size. Also, for the same reason, the coefficient-wise ǫp−4 bit
right shift operation inEspada is faster than the coefficient-wise ǫp−1 bit right shift
operation of Saber. Overall, the performance of the masked compress operation of
Espada is roughly four times faster compared to themasked compress operation in
Saber. AsKyber uses primemoduli, themasked compress operation of Kyber is far
more complicated and has some extra steps. These extra steps includes conversion
of arithmetic shares from Zq to power-of-two modulus Z2kq , where log q < 2kq .
These are computationally quite expensive operations. Due to the power-of-two
moduli, schemes in Scabbard and Saber do not need these additional steps. This
results in more efficient masked compress operation for these schemes.

3.3 Message Decoding and Encoding

For Florete and Espada, the bit length of the message i.e 256 is not equal to
the sizes of the polynomial ring, which are 768 and 64, respectively. Authors of
Scabbard proposed techniques to encode and decode the message into the poly-
nomial named arrange msg and original msg respectively. The encoding and
decoding operation where the polynomial ring length is the same as the message
length is very straightforward, and we do not need any special masking gadget
for original msg and arrange msg functions. However, we need to use a special
masking component to mask the original msg function when polynomial length
equals r times message bits, where r > 1, e.g., Florete, NewHope [2]. We use r
coefficients to hide one message bit in this case. We also have to use a special
masking gadget to mask the arrange msg function if the number of message bits
equals B times a polynomial length, where B>1, e.g., Espada. In these schemes,
B message bits are hidden in a coefficient. We discuss these gadgets below.

Message Decoding: In Florete, 3 coefficients had been used to hide onemessage
bit. The original msg :Z768

2 −→Z
256
2 is defined here as if original msg(m′′)=m′

and b ∈ {0, 1, ..., 255} then m′[b] =

{

0 if m′′[b]+m′′[b+256]+m′′[b+512]≤1

1 otherwise
.

First, we perform secure additions (SecAdd) over Boolean shared data to mask
this function, and the possible output must be one of {0, 1, 2, 3}. Notice that it is
always a two-bit number for any bit b. The output of the original msg is equal
to the most significant bit, which is the 2nd bit. So, after performing the masked
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addition, we extract the most significant bit of the masked output shares (2nd
bit). At last, we return the most significant bit as output original msg for each
bit b∈{0, 1, ..., 255}. We present this masked function in Algorithm 1.

Algorithm 1: Masked original msg function for Florete

Input : {m′′
i }1≤i≤n where m′′

i ∈Z
768

2 such that
⊕n

i=1
m′′

i =m′′

Output : {m′
i}1≤i≤n

where m′
i∈Z

256

2 ,
⊕n

i=1
m′

i=m′ and original msg(m′′)=m′

1 for j=0 to 255 do
2 {xi[j]}1≤i≤n←m′′

i [j]; {yi[j]}1≤i≤n←m′′
i [256+j]; {zi[j]}1≤i≤n←m′′

i [512+j]

3 {wi}1≤i≤n←SecAdd({xi}1≤i≤n,{yi}1≤i≤n)
4 {w′

i}1≤i≤n←SecAdd({wi}1≤i≤n,{zi}1≤i≤n)
5 {m′

i}1≤i≤n←{w
′
i}1≤i≤n≫1

6 return {m′
i}1≤i≤n

Message Encoding: In Florete and Sable, a co-efficient of the message polyno-
mial carries a single message bit. Here, arrange msg is defined by arrange msg :
Z
256
2 −→Z

768
2 and arrange msg :Z256

2 −→Z
256
2 for Florete and Sable respectively.

The Boolean masked output of this function then takes part in the modular ad-
dition in the next step of the re-encryption stage as the message polynomial. As
the shares of each coefficient of the message polynomial are in Z2, the Boolean
shares are equivalent to the arithmetic shares. Hence, we can skip the Boolean
to arithmetic conversion here. However, for Espada, we encode four message bits
in a single co-efficient of the message polynomial, and arrange msg is defined by
arrange msg :Z256

2 −→Z
64
4 . So, we need to convert Boolean shares of each coeffi-

cient of message polynomial to arithmetic shares using the B2A algorithm. After
that, we perform the modular addition with two arithmetically masked inputs.

3.4 Hash Functions

Decapsulation algorithm uses one hash functions G (SHA3-512) and one pseudo-
random number generator XOF (SHAKE-128). These functions are different in-
stances of the sponge function Keccak-f[1600] [6]. It consists of five steps: (i) θ,
(ii) ρ, (iii) π, (iv) χ, and (v) ι. Among the five steps, θ, ρ, and π are linear diffu-
sion steps and ι is a simple addition. As all these four steps are linear operations
over Boolean shares, in masked settings, we repeat all these operations on each
share separately. Only χ is a degree 2 non-linear mapping and thus requires ex-
tra attention to mask. Overall, Keccak-f[1600] is less expensive to mask by using
Booleanmasking.Here, we use the higher-ordermaskedKeccak proposed byGross
et al. [19]. Due to the compact parameter choices, Scabbard schemes require fewer
pseudo-random numbers than Saber. Eventually, this leads to fewer invocations
of the sponge function Keccak in Florete and Sable than in Espada. Moreover, the
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output length of SHAKE-128 is the same for Florete and Sable, which is even smaller
than Espada. To sum up, the performance cost of the masked XOF SHAKE-128 is
lower in Florete, Sable, and Espada compared to Saber.

3.5 Centered Binomial Sampler

The re-encryption part of the decapsulation algorithm contains a centered bi-
nomial sampler for sampling the vector s′. This sampler outputs HW(x)− HW(y),
where x and y are pseudo-random numbers and HW represents hamming weight.
The bit size of pseudo-random numbers x and y depends on the scheme. These
pseudo-random numbers are produced employing SHAKE-128. As mentioned in
the previous section, these function is efficient if we mask with the help of Boolean
masking.Hence, the shares generated fromSHAKE-128areBoolean.However, upon
constructing the s′, we need to performmodular multiplication with inputs s′ and
public-key b. This is efficient if we use arithmetic masking. Therefore, we need to
perform Boolean to arithmetic conversion in the masked-centered binomial sam-
pler. Schneider et al. [28] proposed two centered binomial samplers, Sampler1 and
Sampler2. Sampler1 first converts Boolean shares of x and y to arithmetic shares
then computes HW(x)− HW(y) by using arithmetic masking technique. Sampler2
first computes z=HW(x)−HW(y)+k, where k≥µ/2 using Boolean masking. After
that, it converts Boolean shares of z to arithmetic shares and then performs z−k
using the arithmeticmasking technique to remainwith arithmetic shares ofHW(x)−
HW(y). Sampler1 uses a bit-wise masking procedure, while sampler2 uses the bit-
slicing technique on some parts of the algorithm for receiving better throughput.
We have adopted these two samplers and optimized them to mask the CBD func-
tion of each KEM of the Scabbard suite. We could not directly use the optimized
CBD used in Saber [23], as that one is optimized for β8, and schemes of Scab-
bard use smaller CBD to sample the vector s′. Schemes like Kyber and NewHope
[2,28] use prime modulus. So, a few components there are different, for example,
the B2A conversion and extra modular addition. As Scabbard uses power-of-two
moduli, these components can be implemented in a much cheaper way for them.
We describe the optimized masked CBD samplers for these schemes below.

3.5.1 Florete and Sable: In these two schemes, we take advantage of the
centered binomial sampler with a small standard deviation, β2. For β2, x and
y are 1-bit pseudo-random numbers. We have adopted Sampler1 and Sampler2,
with these specification. As Sampler2 is designed to provide a better performance,
we started with the adaptation of Sampler2 for β2 named MaskCBDSamplerA as
shown in Algorithm 2. In this algorithm, first, we perform SecBitSub on Boolean
shares of x and y to calculate Boolean shares of HW(x)−HW(y). Second, we add con-
stant 1 with the output shares of SecBitSub to avoid negative numbers. Third, we
convert the output from Boolean shares to arithmetic shares with the help of the
B2A conversion algorithm proposed in [7]. In the last step, we subtract the added
constant in step-2, which converts secret shares from {0,1,2} to {−1,0,1}.
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Algorithm 2: MaskCBDSamplerA ([28], using sampler2)

Input : {xi}0≤i≤n,{yi}0≤i≤n

where xi,yi∈R2 such that
⊕n

i=0
xi=x,

⊕n

i=0
yi=y

Output : {Ai}0≤i≤n where Ai∈Rq and
∑n

i=0
Ai=(HW(x)−HW(y)) mod q

1 {zi}0≤i≤n← SecBitSub({xi}0≤i≤n,{yi}0≤i≤n)
2 z0[0]←z0[0]⊕1
3 {Ai}0≤i≤n← B2A({zi}0≤i≤n) [7]
4 A1← (A1−1) mod q

5 return {Ai}0≤i≤n

Algorithm 3: MaskCBDSamplerB ([28], using sampler1)

Input : {xi}0≤i≤n,{yi}0≤i≤n

where xi,yi∈R2 such that
⊕n

i=0
xi=x,

⊕n

i=0
yi=y

Output : {Ai}0≤i≤n where Ai∈Rq and
∑n

i=0
Ai=(HW(x)−HW(y)) mod q

1 {T1i}0≤i≤n← B2A({xi}0≤i≤n) [7]; {T2i}0≤i≤n← B2A({yi}0≤i≤n) [7]
2 for i=0 to n do
3 Ai← (T1i−T2i)

4 return {Ai}0≤i≤n

Algorithm 4: MaskCBDSamplerC ([28], using sampler2)

Input : {xi}0≤i≤n,{yi}0≤i≤n

where xi,yi∈R
3

2 such that
⊕n

i=0
xi=x,

⊕n

i=0
yi=y

Output : {Ai}0≤i≤n where Ai∈Rq and
∑n

i=0
Ai=(HW(x)−HW(y)) mod q

1 {zi}0≤i≤n← SecBitAdd({xi}0≤i≤n) [4]
2 {zi}0≤i≤n← SecBitSub({zi}0≤i≤n,{yi}0≤i≤n) [28]
3 for i=0 to n do
4 zi[2]← (zi[2]⊕zi[1])

5 z0[2]←z0[2]⊕1
6 {Ai}0≤i≤n← B2A({zi}0≤i≤n) [7]
7 A1← (A1−4) mod q

8 return {Ai}0≤i≤n

As the bit size of x and y is small for β2, the bitslice technique for addition and
subtraction does not improve the throughput much. So, for comparison purposes,
we have adopted the technique of the sampler1 for β2. We name this algorithm
MaskCBDSamplerA, and present in Algorithm 3. In this algorithm, we conduct
B2A conversions over x and y and then perform share-wise subtraction between
arithmetic shares of x and y.

3.5.2 Espada: We use the centered binomial sampler, β6, in this scheme. For
β6, x and y are 3-bit pseudo-random numbers. We have adopted a bitsliced imple-
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mentation of Sampler2 from [28] for β6 to achieve better efficiency as the standard
deviation of the CBD is large.We name thismasked sampler as MaskCBDSamplerC ,
and it is shown in Algorithm 4. Similar to MaskCBDSamplerB, MaskCBDSamplerC
begins with the SecBitAdd operation, which is performed on Boolean shares of
x and generates Boolean shares of HW(x). Then SecBitSub is conducted over the
Boolean output shares and Boolean shares of y and outputs Boolean shares of
HW(x) − HW(y). After that, the constant 4 is added with the output shares of
SecBitSub to avoid negative numbers. In the next step, we convert the output
from Boolean shares to arithmetic shares with the help of B2A conversion al-
gorithm proposed in [7]. Finally, we subtract the added constant in step-7 and
transform secret shares from {1,2,3,4,5,6,7} to {−3,−2,−1,0,1,2,3}.

The masked CBD sampler (β8) used in Saber is faster than the masked CBD
ofKyber because of the power-of-twomoduli.MaskCBDSamplerA andMaskCBDSamplerB
are optimized implementation of β2, which has been used in Florete and Sable.
MaskCBDSamplerC is designed for Espada, which is optimized implementation of
β6. For β2 and β6, the B2A conversion is much faster than β8 thanks to the smaller
coefficients size in the input polynomial. Therefore, the performance cost of the
masked CBD is less for all the schemes in Scabbard compared to Saber or Kyber.
A more detailed performance cost analysis of masked CBD implementations for
Scabbard is presented in Section 4.1.

3.6 Ciphertext Comparison

It is one of the costliest components for masked implementations of lattice-based
KEMs, which is a part of the FO transformation. Previously, many methods have
been proposed to perform this component efficiently [23,14,9]. For the masked ci-
phertext comparison part of eachKEMofScabbard, wehave adopted the improved
simple masked comparison method used in the higher-order masked implementa-
tion of Saber [23]. To the best of our knowledge, this is currently the most efficient
masked ciphertext comparison implementation available. Through this process,
we compare the arithmetically masked output of the re-encryption component
before the right shift operation (ũ, ṽ) with the unmasked public ciphertext, (u, v).
Additionally, note that u′= ũ≫(ǫq−ǫp) and v

′= ṽ≫(ǫp−ǫt−B). At first, we per-
form A2B conversion step over the arithmetically masked shares of the output and
transform these to Boolean shares, and then we follow the right shift operation.
After that, we subtract the unmasked public ciphertext (u, v) from a share of the
Boolean masked output of the A2B operation with the help of the XOR operation.
Finally, we proceed with checking that all the returned bits of the subtract opera-
tion are zerowith the BooleanAllBitsOneTestalgorithm.This algorithm returns
1 only if it receives all the bits encoded in each coefficient of the polynomials is 1;
else it returns 0. All these aforementioned steps are presented in Algorithm 5. For
further details, we refer to the higher-order masked Saber paper [23].

The parameter settings are different for each KEM of the Scabbard suite. Due
to this, byte sizes of themasked inputs of the functions A2B andBooleanAllBitsOneTest
are different for each KEM of the suite, and we show these numbers in Table 2.
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Algorithm 5: Simple masked comparison algorithm [23]

Input : Arithmetic masked re-encrypted ciphertext ({ũi}0≤i≤n, {ṽi}0≤i≤n)
and public ciphertext (u and v) where each ũi∈R

l
2
ǫq and ṽi∈R2

ǫp

and
∑n

i=0
ũi mod q= ũ

∑n

i=0
ṽi mod q= ṽ.

Output : {bit}0≤i≤n, where with each biti∈Z2 and
⊕n

i=0
biti=1 iff

u=u′≫ (ǫq−ǫp) and v=v′≫ (ǫp−ǫt−B), otherwise 0.

1 {yi}0≤i≤n← A2B({ũi}0≤i≤n); {xi}0≤i≤n← A2B({ṽi}0≤i≤n)
2 {yi}0≤i≤n← ({yi}0≤i≤n≫ (ǫq−ǫp)); {xi}0≤i≤n← ({xi}0≤i≤n≫ (ǫp−ǫt−B))
3 y1←y1⊕u; x1←x1⊕v

/* Boolean circuit to test all bits of (y,x) are 0 */

4 y0←¬y0; x0←¬x0

5 {biti}0≤i≤n← BooleanAllBitsOneTest ({yi}0≤i≤n,{xi}0≤i≤n,ǫp,ǫt)

6 return {biti}0≤i≤n

Table 2: Size of inputs of the A2B and BooleanAllBitsOneTest functions situated
in Algorithm 5 for Scabbard’s schemes and Saber

Function Input Bytes
Florete Sable Espada Saber

A2B 1824 1344 1544 1568

BooleanAllBitsOneTest 1248 1024 1304 1088

For reference, we also provide the byte sizes of the masked inputs of A2B and
BooleanAllBitsOneTest for Saber in this table. These differences in the input
bytes also affect the performances of correspondingmasked implementations. The
masked input sizes of both the functions A2B and BooleanAllBitsOneTest for
Sable are less than Saber. On account of this, the performance cost of masked
ciphertext comparison is cheaper for Sable than Saber. The masked input sizes
of both functions A2B and BooleanAllBitsOneTest for Florete are greater than
Saber. So, the masked ciphertext comparison component of Florete needs more
cycles than Saber. The masked input size of the function A2B of Espada is less than
Saber, but the input size of BooleanAllBitsOneTest for Espada is bigger than
Saber. So, the first-ordermasked comparison component is faster for Espada com-
pared to Saber, but the second and third-order masked comparison component
is slower in Espada than in Saber. However, the performance of each scheme’s
masked ciphertext comparison component in the suite Scabbard is better than
Kyber because of the prepossessing steps needed in Kyber [14].

4 Performance Evaluation

We implemented all our algorithms on a 32-bit ARM Cortex-M4 microcontroller,
STM32F407-DISCOVERYdevelopment board.Weused the popular post-quantum
cryptographic library and benchmarking framework PQM4 [21] for all measure-
ments. The system we used to measure the performance of the masked imple-
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mentations includes the compiler arm-none-eabi-gccversion 9.2.1. The PQM4
library uses the system clock to measure the clock cycle, and the frequency of this
clock is 24MHz. We employ random numbers to ensure the independence of the
shares of the masked variable in masking algorithms. For this purpose, we use the
on-chip TRNG (true random number generator) of the ARM Cortex-M4 device.
This TRNG has a different clock frequency than the main system clock, which is
48MHz. It generates a 32-bit random number in 40 clock cycles, equivalent to
20 clock cycles for the main system clock. Our implementations can be used for
any order of masking. In this section, we provide the performance details of first-,
second-, and third-order masking.

Table 3: Performance of MaskCBDSamplerA and MaskCBDSamplerB
x1000 clock cycles

Order 1st 2nd 3rd

MaskCBDSamplerA 178,591 504,101 1,226,224
MaskCBDSamplerB 182,714 499,732 909,452

4.1 Analyzing the Performance of Masked CBD Samplers

As discussed in Section 3.5, MaskCBDSamplerA and MaskCBDSamplerB can be used
for both Florete and Sable. Performance comparisons between MaskCBDSamplerA
and MaskCBDSamplerB for different shares are provided in Table 3. Overall, we
observe from the table thatMaskCBDSamplerB performs better thanMaskCBDSamplerA
for higher-ordermasking. As a result, we use MaskCBDSamplerB in the masked im-
plementations of Florete and Sable.

4.2 Performance Measurement of Masked Scabbard Suite

Table 4, 5, and 6 provide the clock cycles required to execute the masked decapsu-
lation algorithm of Florete, Espada, and Sable, respectively. The overhead factors
for the first-, second-, and third-order masked decapsulation operation of Florete
are 2.74x, 5.07x, and 7.75x compared to the unmasked version. For Espada, the
overhead factors for the first-, second-, and third-order decapsulation algorithm
compared to the unmasked decapsulation are 1.78x, 2.82x, and 4.07, respectively.
Similarly, for Sable, the overhead factors for the first-, second-, and third-order
decapsulation algorithm are 2.38x, 4.26x, and 6.35x than the unmasked one. As
mentioned earlier, the masked algorithm needs fresh random numbers to main-
tain security. Generating random numbers is a costly procedure. So, for a better
understanding of the improvements, we also present the requirement of random
bytes for Florete, Espada, and Sable in Table 7.
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Table 4: Performance of Florete
x1000 clock cycles

Order Unmask 1st 2nd 3rd

Florete CCA-KEM-Decapsulation 954 2,621 (2.74x) 4,844 (5.07x) 7,395 (7.75x)
CPA-PKE-Decryption 248 615 (2.47x) 1,107 (4.46x) 1,651 (6.65x)
Polynomial arithmetic 241 461 (1.91x) 690 (2.86x) 917 (3.80x)
Compression
original msg

6 153 (25.50x) 416 (69.33x) 734 (122.33x)

Hash G (SHA3-512) 13 123 (9.46x) 242 (18.61x) 379 (29.15x)
CPA-PKE-Encryption 554 1,744 (3.14x) 3,354 (6.05x) 5,225 (9.43x)
Secret generation 29 427 (14.72x) 982 (33.86x) 1,663 (57.34x)
XOF (SHAKE-128) 25 245 (9.80x) 484 (19.36x) 756 (30.24x)
CBD (β2) 4 182 (45.50x) 497 (124.25x) 907 (226.75x)

Polynomial arithmetic
arrange msg

943 1,357 1,783

Polynomial Comparison
524

373
(2.51x)

1,014
(4.52x)

1,778
(6.79x)

Other operations 138 139 (1.00x) 140 (1.01x) 140 (1.01x)

Table 5: Performance of Espada
x1000 clock cycles

Order Unmask 1st 2nd 3rd

Espada CCA-KEM-Decapsulation 2,422 4,335 (1.78x) 6,838 (2.82x) 9,861 (4.07x)
CPA-PKE-Decryption 70 137 (1.95x) 230 (3.28x) 324 (4.62x)
Polynomial arithmetic 69 116 (1.68x) 170 (2.46x) 225 (3.26x)
Compression
original msg

0.4 20 (50.00x) 60 (150.00x) 99 (247.50x)

Hash G (SHA3-512) 13 123 (9.46x) 243 (18.69x) 379 (29.15x)
CPA-PKE-Encryption 2,215 3,950 (1.78x) 6,240 (2.81x) 9,031 (4.07x)
Secret generation 57 748 (13.12x) 1,650 (28.94x) 3,009 (52.78x)
XOF (SHAKE-128) 51 489 (9.58x) 968 (18.98x) 1,510 (29.60x)
CBD (β6) 6 259 (43.16x) 681 (113.50x) 1,498 (249.66x)

Polynomial arithmetic
arrange msg

2,865 3,593 4,354

Polynomial Comparison
2,157

259
(1.44x)

996
(2.12x)

1,667
(2.79x)

Other operations 124 124 (1.00x) 124 (1.00x) 126 (1.01x)

Table 6: Performance of Sable
x1000 clock cycles

Order Unmask 1st 2nd 3rd

Sable CCA-KEM-Decapsulation 1,020 2,431 (2.38x) 4,348 (4.26x) 6,480 (6.35x)
CPA-PKE-Decryption 130 291 (2.23x) 510 (3.92x) 745 (5.73x)
Polynomial arithmetic 128 238 (1.85x) 350 (2.73x) 465 (3.63x)
Compression
original msg

2 52 (26.00x) 160 (80.00x) 280 (140.00x)

Hash G (SHA3-512) 13 123 (9.46x) 242 (18.61x) 379 (29.15x)
CPA-PKE-Encryption 764 1,903 (2.49x) 3,482 (4.55x) 5,241 (6.85x)
Secret generation 29 427 (14.72x) 984 (33.93x) 1,666 (57.44x)
XOF (SHAKE-128) 25 245 (9.80x) 484 (19.36x) 756 (30.24x)
CBD (β2) 4 182 (45.50x) 499 (124.75x) 909 (227.25x)

Polynomial arithmetic
arrange msg

1,187 1,640 2,086

Polynomial Comparison
734

287
(2.00x)

856
(3.40x)

1,488
(4.86x)

Other operations 112 113 (1.00x) 113 (1.00x) 113 (1.00x)
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Table 7: Random number requirement for all the masked schemes of Scabbard
# Random bytes

Florete Espada Sable
Order 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

CCA-KEM-Decapsulation 15,824 52,176 101,280 11,496 39,320 85,296 12,496 39,152 75,232
CPA-PKE-Decryption 2,560 10,176 20,352 304 1,216 2,432 832 3,328 6,656
Polynomial arithmetic 0 0 0 0 0 0 0 0 0
Compression 2,496 9,984 19,968 304 1,216 2,432 832 3,328 1,152
original msg 64 192 384 0 0 0 0 0 0

Hash G (SHA3-512) 192 576 1,152 192 576 1,152 192 576 67,424
CPA-PKE-Encryption 13,072 41,424 79,776 11,000 37,528 81,712 11,472 35,248 6,656
Secret generation 6,528 16,512 29,952 4,896 14,688 35,520 6,528 16,512 29,952
XOF (SHAKE-128) 384 1,152 2,304 768 2,304 4,608 384 1,152 2,304
CBD (Binomial Sampler) 6,144 15,360 27,648 4,128 12,384 30,912 6,144 15,360 27,648

Polynomial arithmetic 0 0 0 0 0 0 0 0 0
arrange msg 0 0 0 256 768 2,048 0 0 0
Polynomial Comparison 6,544 24,912 49,824 5,848 22,072 44,144 4,944 18,736 37,472

Other operations 0 0 0 0 0 0 0 0 0

4.3 Performance Comparison of Masked Scabbard Suite with the

State-of-the-Art

We analyze the performance and random number requirements for masked decap-
sulation algorithms of Scabbard’s schemes in comparison to the state-of-the-art
masked implementations of LBC. We compare our masked Scabbard implemen-
tation with Bronchain et al.’s [10] and Bos et al.’s [9] masked implementations of
Kyber and Kundu et al.’s [23] masked implementations of Saber in Table 8.

Table 8: Performance comparison of masked Scabbard implementations with the
state-of-the-art

Performance # Randm numbers
(x1000 clock cycles) (bytes)Scheme
1st 2nd 3rd 1st 2nd 3rd

Florete (this work) 2,621 4,844 7,395 15,824 52,176 101,280
Espada (this work) 4,335 6,838 9,861 11,496 39,320 85,296
Sable (this work) 2,431 4,348 6,480 12,496 39,152 75,232
Saber [23] 3,022 5,567 8,649 12,752 43,760 93,664
uSaber [23] 2,473 4,452 6,947 10,544 36,848 79,840
Kyber [10] 10,018 16,747 24,709 - - -
Kyber [9] 3,116∗ 44,347 115,481 12,072∗ 902,126 2,434,170

*: optimized specially for the first-order masking

First-, second- and third-order masked decapsulation implementations of Florete
are respectively 73%, 71%, and 70% faster than Bronchain et al.’s [10] masked
implementation of Kyber. Bos et al. optimized their algorithm specifically for the
first-order masking of Kyber. Even though it is 15% slower than the first-order
masked decapsulation of Florete. Bos et al.’s [9] second- and third-order masked
implementations of Kyber are respectively 89% and 93% slower than Florete. The

18



random byte requirements in the masked version of Florete compared to Kyber
are 94% less for the second order and 95% less for the third order. Florete also
performs better than Saber. Florete needs 13%, 12%, and 14% fewer clock cycles
than Saber for first-, second-, and third-order masking.

Masked decapsulation implementation of Espada performs 56%, 59%, and 60%
better than Bronchain et al.’s [10] masked implementation of Kyber for first-,
second-, and third-order, respectively. Second-, and third-order masked imple-
mentations of Espada are faster than Bos et al.’s [9] masked Kyber by 84% and
91%, respectively. The random bytes requirements in Espada compared to Kyber
are 95% less for the second-order and 96% less for the third-ordermasking. Espada
also uses fewer random numbers than Saber. Espada requires 9% fewer random
bytes in first-order masking, 10% fewer random bytes in second-order masking,
and 8% fewer random bytes in third-order masking than Saber.

We show that the masked implementation of Sable performs better than masked
Kyber and Saber for first-, second-, and third-order (like Florete). Sable performs
75%, 74%, and 73% better than Bronchain et al.’s [10] masked implementation of
Kyber and 21%, 90%, and 94% better than Bos et al.’s [9] masked implementation
of Kyber first-, second-, and third-order, respectively. Compared to Kyber, Sable
requires 95% and 96% less random bytes for second- and third-order masking.
The performance of masked Sable is better than masked Saber by 19% for first-
order, 21% for second-order, and 25% for third-order masking. Masked Sable uses
2%, 10%, and 19% less number of random bytes for first-, second-, and third-order
thanmaskedSaber, respectively. uSaber is amasking-friendlyvariant of Saber pro-
posed during the third round of NIST submission. We notice that masked Sable
is also faster than masked uSaber for arbitrary order. Masked Sable is 1% faster
for first-order, 2% for second-order, and 6% for third-order than masked uSaber.
Although first- and second-order masked Sable needs more random bytes than
uSaber, third-order masked Sable requires 5% less random bytes than uSaber.

Implementations of masked Scabbard schemes achieve better performance and
use fewer random bytes than masked Kyber because the schemes of Scabbard use
the RLWR/ MLWR problem as an underlying hard problem and Kyber uses the
MLWE problem as the hard problem. The decapsulation operation of RLWR/
MLWR-based KEM has fewer components compared to the decapsulation oper-
ation of RLWE/ MLWE-based KEM due to the requirement of sampling error
vectors and polynomials generations in the re-encryption step of RLWE/ MLWE-
basedKEMs.RLWR/MLWR-basedKEMs also benefit due to the use of power-of-
two moduli. Computationally expensive components, such as A2B or B2A conver-
sions, are cheaper when using power-of-twomoduli. The schemes of Scabbard also
use slightly smaller parameters than Kyber, which also contributes to achieving
better performance and requirements of fewer random bytes for masked imple-
mentation of Scabbard’s KEMs compared to Kyber.
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5 Conclusions

In this work, we presented the impact of different design decisions of LBC onmask-
ing. We analyzed each component where masking is needed and discussed each
design decision’s positive and negative impact on performance. As we mentioned
at the beginning of the paper, it is possible to improve different practical aspects,
such as masking overheads, by modifying the existing designs of PQC. This high-
lights the necessity of further research efforts to improve existing PQC designs.
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