
Rethinking Answer Set Programming Templates

Mario Alviano[0000−0002−2052−2063], Giovambattista Ianni[0000−0003−0534−6425],
Francesco Pacenza[0000−0001−6632−3492], and Jessica Zangari[0000−0002−6418−7711]

DEMACS, University of Calabria, Via Bucci 30/B, 87036 Rende (CS), Italy
{name.surname}@unical.it

Abstract. In imperative programming, the Domain-Driven Design
methodology helps in coping with the complexity of software develop-
ment by materializing in code the invariants of a domain of interest.
Code is cleaner and more secure because any implicit assumption is re-
moved in favor of invariants, thus enabling a fail fast mindset and the
immediate reporting of unexpected conditions. This article introduces
a notion of template for Answer Set Programming that, in addition to
the don’t repeat yourself principle, enforces locality of some predicates by
means of a simple naming convention. Local predicates are mapped to
the usual global namespace adopted by mainstream engines, using uni-
versally unique identifiers to avoid name clashes. This way, local pred-
icates can be used to enforce invariants on the expected outcome of a
template in a possibly empty context of application, independently by
other rules that can be added to such a context. Template applications
transpiled this way can be processed by mainstream engines and safely
shared with other knowledge designers, even when they have zero knowl-
edge of templates.

Keywords: Answer Set Programming · secure coding · clean code ·
Domain-Driven Design · Test-Driven Development.

1 Introduction

Answer Set Programming (ASP) is a declarative specification language suited to
address combinatorial search and optimization [12,26]. In ASP, problem require-
ments are represented in terms of a program made of logic rules, and solutions
are obtained by computing stable models of the program, that is, classical models
satisfying an additional stability condition. Fast prototyping is very likely the
most appreciated strength of ASP, as it provides several linguistic constructs
to ease the representation of complex knowledge and allows for quickly testing
alternative solutions to the same problem of interest [2]. The linguistic capabil-
ities of ASP are accompanied by several efficient algorithms addressing a broad
variety of computational problems, therefore different solving strategies can be
attempted with minimal design effort [31]. Nonetheless, ASP has a few shortcom-
ings when used in broad development environments. First of all, ASP programs
are often seen as a whole, with rules interacting in any possible way. This is in
part due to the stable model semantics adopted by ASP, which is nonmonotonic

ar
X

iv
:2

30
7.

06
38

2v
1

 [
cs

.A
I]

 1
2

Ju
l 2

02
3

2 M. Alviano et al.

and therefore not friendly to the definition of invariants [13,27]. An invariant,
literally something that does not change or vary, is an assumption taken by a
block of code to guarantee correctness of computation. For example, consider a
function written in C to implement the factorial of a number n stored as uint32_t
by multiplying all positive integers less than or equal to n. Such a function is
correct under the assumptions that n ≤ 12, as 13! exceeds the limit of uint32_t
(and an integer overflow would occur). If the function starts by raising an er-
ror when n > 12, integer overflows are impossible and the computation of the
factorial is guaranteed to be correct. In ASP, guaranteeing that some properties
of the stable models of a program are preserved when the program is extended
with other rules is nontrivial [4,16,29]. On the other hand, invariants greatly help
programmers to reason about their code, for example when looking for bugs, and
therefore the difficulty to introduce invariants in ASP programs should not lead
to underestimating their potential benefits.

Ideally, a programming language should have linguistic constructs to ease the
reuse of code [1]. Macros, subroutines and templates are often used to address
such a concern, and some constructs in this direction were defined and imple-
mented also for ASP [3,7,9]. Much work suggests that some predicates should
be considered hidden, essentially auxiliary to the definition of other visible pred-
icates that actually define the semantics of programs or modules of a program
[4,5]. As such, auxiliary predicates should not be taken into account when check-
ing equivalence of programs, and should not be shared between different contexts.
The formalization of such an intuition is not necessarily trivial, and of course
the complexity of its implementation and successful adoption by practitioners
strongly depend on how easy is to specify that a predicate is auxiliary. This
work contributes to the reuse of ASP code by introducing and implementing a
simple notion of template. The notion of template is here intended in the broad
sense of a set of rules, not explicitly identifying input and output predicates,
with the capability of being applied multiple times by specifying possibly differ-
ent renaming mappings for visible predicates. Auxiliary predicates are kept local
to their template applications by an automatic renaming policy that appends
a universally unique identifier (UUID [24]), generated at application time, to
predicate names. This way, visible and auxiliary predicates of different template
applications can coexist in the usual global namespace adopted by ASP engines.
To ease the implementation of this idea and its adoption by practitioners, local
predicates are automatically identified by introducing a naming convention com-
monly used in Python objects to declare private attributes and methods, that
is, names starting by double underscore are associated with local predicates.

Templates of a complex system should be tested as a unit before looking
at their behavior in the integrated final program. Following the Test-Driven
Development (TDD) methodology, requirements emerging during the analysis
of a domain of interest are made explicit in code by means of tests, and business
code is then implemented with the goal of passing tests; usually, one requirement
at time is addressed, and tests are run every time the business code is modified,
either because of a new requirement is fulfilled, or because a code refactoring is

Rethinking Answer Set Programming Templates 3

needed. In order to enable the verification of some invariants that a template
imposes on any program it is applied to, we focus on here-and-there models, that
is, models of the monotonic, modal logic of here-and-there. Intuitively, here-and-
there models of a program Π are pairs of the form ⟨H,T ⟩ such that T is a stable
model candidate, and H is a model of the program reduct ΠI , so that stable
models are characterized as here-and-there models of the form ⟨T, T ⟩ such that
there is no here-and-there model ⟨H,T ⟩ with H ⊂ T [14,30]. Being a monotonic
logic, here-and-there models of a set of rules are necessarily an overestimate
of the here-and-there models of any broader set of rules. This is an invariant
that can power the definition of tests providing guarantees on the behavior of
a template; for example, it is possible to define tests to guarantee that some
atoms have a specific assignment in all stable models of any program extending
a template application, that some interpretations cannot be stable models even if
consistent with all rules of a broader program, or also to guarantee coherence of
some atoms w.r.t. some interpretations (intended as derivation in the associated
program reducts).

In summary, the contributions of this work are the following:

– We propose a notion of template made of a set of rules with global and local
predicates. Templates can be applied and mixed with other programs by
means of a versatile form of predicate renaming that overcomes the inflexible
practice of fixing input and output predicates, and therefore broadens the
reusability of code snippets. Global predicates are mapped according to the
preferences of knowledge designers, while the renaming of local predicates
is automatic and clash-free without the need for synchronizing template
applications.

– We enable the possibility to enforce some invariants of a template, some of
which can be verified by analyzing its here-and-there models with the help
of mainstream ASP engines. A context of application for the template is
possibly given by specifying other rules, and invariants are obtained thanks
to the impossibility to refer local predicates outside the template.

– We define a transpiler that expands programs with templates to ordinary
ASP programs. Transpiled programs can be evaluated by mainstream ASP
engines, and combined with other programs with a practical guarantee that
local predicate names do not clash. Our transpiler and its testing constructs
are powered by the clingo python api.

2 Background

A universally unique identifier (UUID) is a 128-bit label generated according
to standard methods that guarantee uniqueness for practical purposes [24] (i.e.,
even if the probability of generating duplicated UUIDs is not zero, it is generally
considered close enough to zero to be negligible).

A normal program is a set of rules of the form

p0(t0)← p1(t1), . . . , pm(tm), not pm+1(tm+1), . . . , not pn(tn) (1)

4 M. Alviano et al.

where n ≥ m ≥ 0, and each pi(ti) is an atom made of a predicate pi from a fixed
set P and a sequence ti of terms; terms are either variables (uppercase strings)
from a fixed set V or constants (integers and lowercase strings) from a fixed set
C. Sets P, V and C are countably infinite and pairwise disjoint. For a rule r of
the form (1), let H(r) denote the head atom p0(t0), and B+(r), B−(r) denote
the sets {pi(ti) | i = 1..m} and {pi(ti) | i = m + 1..n} of atoms occurring in
positive and negative literals of r. A rule of the form (1) is a fact if n = 0. We
adopt the usual shortcut p/n for referring to predicate p of arity n. Let pred(Π)
be the set of predicate names occurring in program Π.

The grounding grd(Π) of Π is
⋃

r∈Π grd(r), where grd(r) is obtained from r
by replacing variables from V with constants from C, in all possible ways. An
interpretation I is a set of ground atoms (i.e., atoms without variables): atoms
in I are true, other atoms are false. The relation |= (is model of) is defined
inductively: for a ground atom p(c), I |= p(c) if p(c) ∈ I, and I |= not p(c) if
p(c) /∈ I; for a ground rule r, I |= B(r) if I is a model of all literals in B(r), and
I |= r if I |= H(r) whenever I |= B(r); for a program Π, I |= Π if I |= r for
all r ∈ grd(Π). The reduct ΠI of Π w.r.t. I is {H(r) ← B+(r) | r ∈ grd(Π),
I |= B(r)}. I is a stable model of Π if I |= Π and there is no J ⊂ I such that
J |= ΠI . Let SM (Π) be the set of stable models of Π.

Example 1. Consider the following example in ASP-Core-2 syntax [6]:

a(X) :− e(X), not b(X). e(1). e(2).

b(X) :− e(X), not a(X). fail :− a(1), b(2), not fail.

The above program has three stable models, namely X = {e(1), e(2)}, X ∪
{a(1), a(2)}, X ∪{b(1), a(2)}, and X ∪{b(1), b(2)}. It is using the fact that fail
only occurs in the head of rules of the form fail ← body , not fail , a well-known
pattern to simulate constraints in ASP. ■

In the following, ⊥ ← body is used as syntactic sugar for fail ← body , not fail ,
where fail is not used elsewhere (note that this assumption will be turned into
an invariant by Example 6).

A program can be mapped to a theory of the logic of here-and-there (HT for
short; [19]) by replacing each rule of the form (1) with a formula

p1(t1) ∧ · · · ∧ pm(tm) ∧ (pm+1(tm+1)→ ⊥) · · · ∧ (pn(tn)→ ⊥)→ p0(t0) (2)

and by expanding variables with constants from C (as done for the grounding).
Let ΓΠ denote the theory associated with program Π. A HT-interpretation
is a pair ⟨IH , IT ⟩ of interpretations such that IH ⊆ IT ; intuitively, ⟨IH , IT ⟩
represents two worlds, namely H and T , with H ≤ T . Relation |= is extended to
⟨IH , IT ⟩ and world w ∈ {H,T} as follows: ⟨IH , IT , w⟩ ̸|= ⊥; for a ground atom
p(c), ⟨IH , IT , w⟩ |= p(c) if p(c) ∈ Iw; for formulas F,G, ⟨IH , IT , w⟩ |= F ∧ G if
⟨IH , IT , w⟩ |= F and ⟨IH , IT , w⟩ |= G; for formulas F,G, ⟨IH , IT , w⟩ |= F → G
if Iw′ |= F → G for all w ≤ w′; for a formula F , ⟨IH , IT ⟩ |= F if ⟨IH , IT , H⟩ |=
F ; for a set of formulas Γ , ⟨IH , IT ⟩ |= Γ if ⟨IH , IT ⟩ |= F for all F ∈ Γ . A
HT-interpretation ⟨IH , IT ⟩ is a HT-model of a program Π if ⟨IH , IT ⟩ |= ΓΠ .

Rethinking Answer Set Programming Templates 5

Let HT (Π) be the set of HT-models of Π. A HT-interpretation ⟨T, T ⟩ is an
equilibrium model of Π if ⟨T, T ⟩ ∈ HT (Π) and there is no ⟨H,T ⟩ ∈ HT (Π)
with H ⊂ T [30]. Let EQ(Π) be the set of equilibrium models of Π.

Example 2. For Π being the program in Example 1, the theory ΓΠ includes
e(1) ∧ (b(1) → ⊥) → a(1) and other formulas. For X = {e(1), e(2), a(1), b(2)},
HT (ΓΠ) includes ⟨X,X ∪ {fail}⟩, and no pair of the form ⟨IH , X⟩. ■

Proposition 1. I ∈ SM (Π) if and only if ⟨I, I⟩ ∈ EQ(Π).

3 Templates

A template π is a set of rules (like a program). Let PL ⊆ P be the set of local
predicates, i.e., predicates whose name starts by double underscore. Predicates
in P \PL are global and play the role of (renamable) parameters in templates.
A renaming ρ is a function with signature ρ : P −→ P. A local renaming ρ is
a renaming being the identity on predicates from P \ PL. In contrast, a global
renaming ρ is a renaming being the identity on predicates from PL. In the
following, the term universally unique predicate refers to a predicate name that
is guaranteed to be unique, and the notation ρ(π) is abused to refer to the set
of rules in π with all predicates renamed according to ρ; similarly, ρ(I) is the
interpretation obtained from I by renaming predicates according to ρ.

Example 3. The renaming [fail 7→ fail] is global; it maps fail to
fail , and is the identity for other predicates. The renaming [fail 7→
fail 7b905af5 de82 49b3 9db7 415d4d048c76] is local; with a very good proba-

bilistic confidence the predicate fail 7b905af5 de82 49b3 9db7 415d4d048c76
is unique if obtained appending a newly generated UUID to fail . ■

The application πρ of a template π w.r.t. a global renaming ρ is the set of
rules ρ(ρL(π)), where ρL is a local renaming mapping each local predicate in
pred(π) to a universally unique predicate in PL. Note that, by the way they
are defined, a template π (being a set of rules) can include the application of
another template π′ρ (i.e., a set of rules): in this case, π ⊇ π′ρ, and the sets of
local predicates occurring in π′ρ and π \ π′ρ are disjoint because those in π′ρ
are universally unique by construction; moreover, any application πρ′ of π, by
construction, is guaranteed to map local predicates of π′ρ to new universally
unique predicates, hence preserving the invariant that different applications of
π are associated with different local predicates.

Example 4. Let πtc (for transitive closure) be the template comprising of

c(X,Y)← r(X,Y) c(X,Z)← c(X,Y), r(Y,Z) (3)

that is, πtc is expected to define the transitive closure of the binary relation
encoded by predicate r. The application πtc [r 7→ link , c 7→ reach] is expected to
produce (at least) the transitive closure of link/2 in predicate reach/2 . Similarly,

6 M. Alviano et al.

the application πtc [r 7→ link , c 7→ link] is expected to enforce that relation link/2
is closed under transitivity. Let πtcc (for transitive closure check) comprise of the
rule ⊥ ← c(X,X) and the application πtc [c 7→ c], i.e., the rules

c(X,Y)← r(X,Y) c(X,Z)← c(X,Y), r(Y,Z) (4)

The template πtcc is expected to discard interpretations in which the relation
encoded by r/2 has cycles. Predicate c of template πtc is mapped to a lo-
cal predicate of πtcc so to inhibit external reference. The template application
πtcc [r 7→ link] could map c to c 6bd3728a 36b4 4fb9 8019 61af6363420b.
Let πtcg (for transitive closure guaranteed) comprise πtc [] ∪ πtc [c 7→ c] and
⊥ ← c(X,Y), not c(X,Y), that is, the latter rule and (3)–(4). Template πtcg

computes the transitive closure of r/2 in c/2 , and enforces failure if c is extended
externally with possible rule additions mentioning c. ■

4 Properties

Some properties of templates based on their HT-models can be used to establish
invariants on the stable models of broader programs. We first consider a pair
Π,Π ′ of programs, their HT-models, and possibly the fact that some predicates
occur only in Π. Later on, we recast the results for templates. Let us start with
simple conditions guaranteeing that some atoms have fixed truth values in all
stable models of programs extending Π. Intuitively, as the possible interpreta-
tions of world T provide an overestimate on stable models, their intersection and
union can be analyzed to identify atoms that are necessarily true or false in all
(stable) models; see (5)–(6) below. On the other hand, for a fixed interpretation
of world T , the possible interpretations of world H provide an overestimate on
the models of a program reduct, and therefore their intersection can be analyzed
to identify atoms that are necessarily true in the reduct; see (7) below.

Proposition 2. Let Π,Π ′ be programs. It holds that⋂
⟨IH ,IT ⟩∈HT(ΓΠ)

IT ⊆
⋂

⟨IH ,IT ⟩∈HT(ΓΠ∪ΓΠ′)

IT (5)

⋃
⟨IH ,IT ⟩∈HT(ΓΠ)

IT ⊇
⋃

⟨IH ,IT ⟩∈HT(ΓΠ∪ΓΠ′)

IT . (6)

Moreover, for any interpretation IT , it holds that⋂
⟨IH ,IT ⟩∈HT(ΓΠ)

IH ⊆
⋂

⟨IH ,IT ⟩∈HT(ΓΠ∪ΓΠ′)

IH . (7)

From (5)–(6) we obtain (8) below, and from (7) we obtain (9) below.

Rethinking Answer Set Programming Templates 7

Corollary 1. Let Π,Π ′ be programs, and I, J be interpretations with J ⊆ I.

I |= Π ∪Π ′ =⇒
⋂

⟨IH ,IT ⟩∈HT(ΓΠ)

IT ⊆ I ⊆
⋃

⟨IH ,IT ⟩∈HT(ΓΠ)

IT . (8)

I |= Π ∪Π ′ ∧ J |= (Π ∪Π ′)I =⇒
⋂

⟨IH ,IT ⟩∈HT(ΓΠ)

IH ⊆ J. (9)

Example 5. Let Π be the following set of rules:

:− a(X). b(1). g :− b(X), not a(X). :− not d. e :− not f. f :− not e.

For any Π ′, atom a(c) is false in all models of Π ∪Π ′, for all c ∈ C; indeed, one
can see that a(c) is false in all IT such that ⟨IH , IT ⟩ ∈ HT (ΓΠ), and therefore (8)
applies. Similarly, b(1) is true in all models of Π ∪Π ′ and their reducts; indeed,
b(1) is true in all IH and IT such that ⟨IH , IT ⟩ ∈ HT (ΓΠ), and therefore (8)–(9)
apply. We can go on and conclude that g is true in all models of Π ∪ Π ′ and
their reducts, and that d is true in all models of Π ∪Π ′ (but not necessarily in
their reducts). Finally, it can be checked that e is true in all models of (Π ∪Π ′)I

such that I |= Π ∪Π ′ and e belongs to I (similar for f); (9) applies. ■

As shown in the next proposition, further interpretations can be guaranteed
to not be stable models of Π ∪ Π ′: the truth value of atoms whose predicates
are guaranteed to occur in Π only, cannot compromise the satisfiability of Π ′.
Hence, if the instability of a model of Π only depends on such predicates, the
instability extends to Π ∪Π ′.

Proposition 3. Let Π,Π ′ be programs, and X be a nonempty set of atoms
of the form p(c), with p ∈ pred(Π) \ pred(Π ′). If ⟨I, I ∪X⟩ ∈ HT (ΓΠ), then
I ∪X /∈ SM (Π ∪Π ′).

Example 6. Let Π be __fail :− foo, not __fail. Note that HT (Π) includes
⟨{foo} ∪X, {foo, __fail} ∪X⟩ and ⟨X, {__fail ∪X}⟩, for every set X of atoms
not including foo or __fail. For every Π ′ not mentioning __fail, SM (Π ∪Π ′)
cannot contain {__fail} ∪X and {foo, __fail} ∪X; Proposition 3 applies. ■

Elaborating on the above claim, it is possible to conclude that a specific set
I of atoms cannot be extended to a stable model without including at least one
atom in another given set I ′. As a special case, when I = {α} and I ′ = ∅, falsity
of α is guaranteed in all stable models; this is the case for __fail in Example 6.

Corollary 2. Let Π,Π ′ be programs, and be I, I ′ disjoint sets of atoms. If every
IT with I ⊆ IT and I ′ ∩ IT = ∅ is such that there is ⟨IH , IT ⟩ ∈ HT (ΓΠ) with
IH ⊂ IT and p ∈ pred(Π) \ pred(Π ′) for all p(c) ∈ IT \ IH , then there is no
IT ∈ SM (Π ∪Π ′) with I ⊆ IT and I ′ ∩ IT = ∅.

All in all, given a program Π whose local predicate names are guaranteed to
be universally unique, we are interested in the following test types on Π:

8 M. Alviano et al.

T1. Given sets I, J of atoms, apply Corollary 1 to verify that atoms in I are true
in all (classical) models of Π ∪Π ′, and atoms in J are false in all models of
Π ∪Π ′, where Π ′ is any program.

T2. Given a model I of Π, and a set J ⊆ I, apply Corollary 1 to verify that
atoms in J are true in all models of (Π ∪Π ′)I , where Π ′ is any program.

T3. Given disjoint sets I, I ′ of atoms, apply Corollary 2 to verify that there is
no I ∪X ∈ SM (Π ∪Π ′) such that X ∩ I ′ ̸= ∅, for any set X of atoms and
program Π ′ (i.e., some atom in I ′ must be true when atoms in I are true).

Note that the above tests are sound, and not intended to be complete. For in-
stance, it is possible that there is no I ∪X ∈ SM (Π ∪Π ′) such that X ∩ I ′ ̸= ∅,
for any set X of atoms and program Π ′, but this is not captured by Corol-
lary 2. Finally, template instantiation guarantees that local predicate names are
universally unique.

Theorem 1. Let π be a template, ρ be a global renaming ρ, and Π = πρ.
The requirement p ∈ pred(Π) \ pred(Π ′) in Proposition 3 and Corollary 2 is
guaranteed for predicates in pred(πρ)∩PL, under the assumption that generated
UUIDs are unique and Π ′ has zero knowledge of the local renaming used by πρ.

5 Implementation

Templates are implemented in dumbo-asp (https://github.com/alviano/
dumbo-asp), a prototype python library powered by the clingo python api
[23]; dumbo-asp is mainly intended to be used as an API, particularly regarding
the definition of automated tests that are expected to be written in acknowledged
frameworks like pytest. Nonetheless, in order to smooth out the learning curve
for developers more acquainted with ASP than other programming languages,
the tool supports also a serialization format based on ASP rules to declare and
apply templates.

Predicates __apply_template__, __template__ and __end__ are reserved. A
program with templates is a sequence [π1, . . . , πn] (n ≥ 0), where each πi is one
of the followings: (i) a rule of the form (1); (ii) a template application, that is,

__apply_template__("name", mapping).

where name identifies a template occurring at some previous index j < i, and
mapping is given by a comma-separated list of pairs of the form (old ,new); (iii)
a template declaration, that is, a block

__template__("name"). content __end__.

where name identifies the template, and content is a sequence of rules and ap-
plications of previous templates. Note that recursive template applications are
disallowed by design, but arbitrary dependencies among predicates defined by
different template applications are permitted, including recursion.

A program with templates can be expanded by Algorithm 1. Elements of the
program are processed in order (line 2). Ordinary rules are added to the output

https://github.com/alviano/dumbo-asp
https://github.com/alviano/dumbo-asp

Rethinking Answer Set Programming Templates 9

Algorithm 1: Expand([π1, . . . , πn]: a program with templates;
templates: a map from names to templates): a program Π

1 Π := ∅;
2 foreach i ∈ 1..n do
3 if πi is __template__("name"). content __end__. then
4 templates[name] := Expand(content , templates);
5 else if πi is __apply_template__("name",ρ). then
6 π := templates[name]; Π := Π ∪ πρ;
7 else
8 Π := Π ∪ {πi};

9 return Π;

program (line 8), which is initially empty (line 1). If a template declaration
is found (lines 3–4), the templates map (initially containing built-in templates
from our core library) is extended with a template comprising rules obtained by
calling Algorithm 1; note that the nested call to the algorithm is not reiterated
thanks to the serialization format given above (templates’ content cannot declare
other templates). Whenever the application of a template is found, the content
of the template is retrieved from the templates map, and the global renaming
ρ is used to produce rules ρ(ρL(π)) for the output program (lines 3–4); in our
implementation, ρL(p) = p u, where u is a UUID generated when π is applied.

Example 7 (Continuing Example 4). Let us consider the following program:

1 __template__("@d/tc").

2 c(X,Y) :− r(X,Y). c(X,Z) :− c(X,Y), r(Y,Z).

3 __end__.

4 __template__("@d/tcg").

5 __apply_template__("@d/tc", (c, __c)).

6 c(X,Y) :− __c(X,Y). :− c(X,Y), not __c(X,Y).

7 __end__.

8 link(a,b). link(a,c). __apply_template__("@d/tcg", (r, link), (c,reach)).

9 reach(foo,bar). % this is going to cause an inconsistency

Template @d/tcg materializes the transitive closure in the local predicate __c by
applying @d/tc (line 5); __c is then “copied” to the global predicate c, subject to
a constraint guaranteeing that it cannot be further extended elsewhere (line 6).
In fact, line 9 causes an inconsistency with such an invariant of the program.
Also note that these templates are part of the core templates of dumbo-asp,
which however use longer, more understandable names (relation instead of r,
@dumbo/transitive closure instead of @d/tc, and so on). ■

Regarding test types defined in Section 4, we expect Π to be the application
of a template possibly extended with other rules providing a context for specific
behaviors of the template. Our implementation is powered by meta encodings
coupled with the reification of Π [23], as well as other rules to check for specific

10 M. Alviano et al.

Fig. 1. Example of input and output for the running problem of Section 6

1 link(X,Y) :− link(Y,X).

2 {tree(X,Y) : link(X,Y), X < Y} = C-1
:− C = #count {X : node(X)}.

3 tree(X,Y) :− tree(Y,X).
4 reach(X) :− X = #min {Y : node(Y)}.
5 reach(Y) :− reach(X), tree(X,Y).
6 :− node(X), not reach(X).

1 {out(X,Y) : tree(X,Y)} = 1.
2 in(X,Y) :− tree(X,Y), not out(X,Y).
3 in(X,Y) :− in(Y,X).
4 reach(X) :− X = #min {Y : node(Y)}.
5 reach(Y) :− reach(X), in(X,Y).
6 impact(X,Y,|C|) :− out(X,Y), C = #sum{1,Z :

reach(Z); -1,Z : node(Z), not reach(Z)}.

Fig. 2. Programs written by Team Alpha (left) and Team Bravo (right)

conditions. Tests of type T1 are implemented by computing the intersection and
union of all models of Π by means of cautious and brave reasoning. Type T2
is implemented by computing the intersection of all models of ΠI by means of
cautious reasoning. T3 tests are implemented by enumerating the models of Π
including I and disjoint from I ′, and for each of them checking that there is a
model for their reduct satisfying the requirements of Corollary 2; both computa-
tional tasks are addressed by stable model search. We provide functions raising
exceptions if some of T1–T3 fail:

validate_in_all_models(program, true_atoms, false_atoms)

validate_in_all_models_of_the_reduct(program, model, true_atoms)

validate_cannot_be_extended_to_stable_model(prg, true_atoms, false_atoms)

6 Application Scenario

Let us consider a hypothetical (partial) problem specification to be addressed
by two teams of developers, say Alpha and Bravo. Given a graph representing
road segments, we are interested in finding a spanning tree to build a highway
network. For each such network proposal, we want to understand the impact of
closing every single road segment in terms of the resulting tree-size-difference
between connected points. An example input graph, one of its spanning trees
and the impact of closing one of its segments are shown in Figure 1.

Team Alpha develops a declarative model for spanning trees, and Team Bravo
develops the impact measurement. The two teams agree on using predicates
node/1 and link/2 for the input graph, tree/2 for the spanning tree, and impact

/3 for measuring the impact of closing one segment. The two teams produce

Rethinking Answer Set Programming Templates 11

1 __template__("@d/symmetric closure").
2 c(X,Y) :− r(Y,X). c(X,Y) :− r(Y,X).
3 __end__.

4 __template__("@d/reachable nodes").
5 reach(X) :− start(X). reach(Y) :− reach(X), link(X,Y).
6 __end__.

7 __template__("@d/connected graph").
8 __start(X) :− X = #min{Y : node(Y)}.
9 __apply_template__("@d/reachable nodes", (start, __start), (reach, __reach)).

10 :− node(X), not __reach(X).
11 __end__.

12 __apply_template__("@d/symmetric closure", (r, link), (c, link)).

13 __template__("spanning tree").
14 {tree(X,Y) : link(X,Y), X < Y} = C-1 :− C = #count{X : node(X)}.
15 __apply_template__("@d/symmetric closure", (r, tree), (c, __tree)).
16 __apply_template__("connected graph", (node, node), (link, __tree)).
17 __end__.

18 __apply_template__("spanning tree").

Fig. 3. Program written by Team Alpha (lines 13–19) using core templates (lines 1–12)

1 __apply_template__("@d/symmetric closure", (r, tree), (c, tree)).

2 {__out(X,Y) : tree(X,Y)} = 1.
3 __in(X,Y) :− tree(X,Y), not __out(X,Y).
4 __apply_template__("@d/symmetric closure", (r, __in), (c, __in)).

5 __start(X) :− X = #min{Y : node(Y)}.
6 __apply_template__("@d/reachable nodes", (start,__start), (link, __in), (reach,__reach)).
7 impact(X,Y,|C|) :− __out(X,Y), C = #sum{1,Z : __reach(Z); -1,Z : node(Z), not __reach(Z)}.

Fig. 4. Program written by Team Bravo using core templates

respectively the ASP-Core-2 programs in Figure 2. Taken individually, the two
programs are correct, which is not the case for their union because reach/1 is used
with different meanings; after some synchronization between the two teams, the
bug is fixed by changing reach/1 to reach'/1 in one of the two programs. Besides
this, there is another bug due to the fact that Alpha enforces the symmetric
closure of tree/2, while Bravo works under the assumption that tree/2 is anti-
symmetric; the bug can be fixed by adding X < Y in lines 1–2 of Bravo. Moving
the code to a new project may lead to similar issues, especially for very common
predicate names like in/2 and out/2. In addition, observe that some rules are
essentially repeating (e.g., lines 4–5 of Alpha and lines 4–5 of Bravo).

Let us consider a different development timeline. Alpha is aware of templates
and the program in Figure 3 is produced (where relevant core templates from
our library are also shown for convenience). Bravo is not aware of templates
and follows the traditional ASP development lifecycle, using a plain solver of
choice. Alpha is ready to share their code with Bravo, actually in the form of
an expanded, transpiled program obtained by Algorithm 1, so that a clash of
names is essentially impossible. In this timeline Bravo can use the transpiled code
of Alpha without installing any additional software. This timeline may evolve
with Bravo liking the idea of templates, and reusing some of the templates

12 M. Alviano et al.

written by Alpha. The result is shown in Figure 4. The two teams may also add
closure constraints to guarantee that the extension of tree/2 and impact/3 is
not accidentally extended by other external rules; for this purpose, we provide
templates @d/exact copy (arity n) for n ≥ 0, which have the following form:

__template__("@d/exact copy (arity n)").
output(X1,...,Xn) :- input(X1,...,Xn).
:- output(X1,...,Xn), not input(X1,...,Xn).

__end__.

Even better, as reachable nodes, connected graph and spanning tree are very
likely reusable in other programs, Alpha may propose their addition to the core
library, or publish them elsewhere.

7 Related Work

Our work has clear points of connection with three, not necessarily disjoint,
lines of research: a) studies on modular ASP, b) practical approaches at veri-
fying, debugging and unit testing ASP programs, and c) studies on relativized
equivalence of logic programs under stable models semantics.

Regarding a), modular extensions to ASP are historically classified in
programming-in-the-large approaches, where the focus is on the composition of
arbitrary sets of rules [22], with no explicit notion of scope, and programming-in-
the-small approaches, where some form of scoping and notions of input/output
predicates are proposed. The proposal of generalized quantifiers in [10], macros
in [3], templates in [7] and module atoms in [8] fall in this latter category, while
multi-context systems [9] feature aspects of both approaches. It must be noted
that we propose a mixed approach which is mainly based on macro expansion, yet
bringing aspects of programming-in-the-large. In particular, within a template
we do not require an explicit distinction between input and output predicates,
and definitions of predicates are not confined to the template. This is in contrast
with macros and the previous proposal of templates, where input and output
relations need to be specified ahead; moreover, in previous works name clashes
were not explicitly addressed, although it was hinted at weaker handling of this
issue without providing an actual invariant in this respect, especially in case
transpiled code is moved in other projects. Note also that we aim to reuse tem-
plates in combination with future, unknown, logic specifications: in a way, we
aim to compose programs from smaller bricks, in a bottom-up fashion. Among
the modular approaches, a somewhat orthogonal, top-down methodology has
been proposed by Cabalar et al. [5], where it is suggested that single logic pro-
grams, built by individual knowledge designers, can be devised in a modular
structure. The correctness of such program parts, expressed in terms of a form
of strong equivalence, helps in verifying the entire module structure (i.e. the
original program).

Concerning b), practical approaches to debugging and testing in the context
of ASP, such as unit tests and TDD, have been considered mainly at the level

Rethinking Answer Set Programming Templates 13

of easing the embedding of test cases within a program. In this respect, linguis-
tic extensions have been proposed to specify that some rules extended with a
provided set of facts are expected to produce a stable model, or on the contrary
that some stable models are not expected [2,15,18,20,21,28,32]. While it is clear
that such linguistic extensions provide valuable tools for developers, they are not
meant to guarantee that a set of rules can be used in another program still be-
having in a controlled way. In part, this is due to the nonmonotonicity of stable
model semantics, but there are also assumptions that cannot be enforced, among
them the fact that a predicate is not used elsewhere. Another way of checking
properties of a program is by defining achievements [25], that is, statements on
the behavior of the first n rules of a program (said prefixes), for some n ≥ 1.
While achievements can be given in terms of first-order logic assertions, and can
be automatically verified for linguistic fragments of ASP, by design they cannot
be used to check properties of any portion of a program not being a prefix. Ac-
tually, the properties of a prefix of the program may be lost when other rules
of the program are added, possibly due to the very last considered rules. Active
research in this context led to the release of the anthem tool [13], enabling
the possibility of verifying that io-programs conform to first-order specifications,
where an io-program is essentially a program with distinguished input and out-
put predicates; input predicates only occur in rule bodies, and predicates not
being input or output are called private. Since our templates provide a simple
mechanism to guarantee that local predicates are essentially private, anthem
can be employed to verify some of their properties. The idea is to not use input
predicates in rule heads, define all relations using local predicates, and finally
define output predicates by applying the @d/exact copy (arity n) templates.

Example 8. Recall the spanning tree template shown in Figure 3. Let Π be

__apply_template__("spanning tree", (tree, __t)).

__apply_template__("@d/exact copy (arity 2)",(input,__t),(output,tree)).

The application of Π w.r.t. the identity renaming, Π[], is

{__t(X,Y) : link(X,Y), X < Y} = C-1 :- C = #count{X : node(X)}.

__t_ef9...(X,Y) :- __t(X,Y). % symmetric closure

__t_ef9...(X,Y) :- __t(Y,X). % symmetric closure

% connectedness

__start_a48..._ef9...(X) :- X = #min{Y : node(Y)}.

__reach_a48..._ef9...(X) :- __start_a48..._ef9...(X).

__reach_a48..._ef9...(Y) :- __reach_a48..._ef9...(X), __t_ef9...(X,Y).

:- node(X), not __reach_a48473e1..._ef9...(X).

tree(X0,X1) :- __t(X0,X1). :- tree(X0,X1); not __t(X0,X1). % output

It can be noted thatΠ[] is essentially an io-program with input predicates node/1
and link/2, and output predicate tree/2. Other predicates are private. ■

Finally, regarding c), the notions of relativised strong equivalence with pro-
jection [11,17] and visible strong equivalence [4] address the issue of excluding

14 M. Alviano et al.

hidden predicates when verifying the invariant properties of (parts of) logic pro-
grams. These notions might provide material for extending the testing function-
alities of our library beyond invariants based on plain here-and-there models.

8 Conclusion

Templates introduce a naming convention to separate local and global names,
and transpilation to ordinary ASP so to map local names to universally unique
predicates. This way transpiled programs can be simply combined by concatena-
tion with the invariant that local names of different template applications do not
clash. Such an invariant can enforce other invariants, as for example ensuring
that a global predicate is not further extended by other rules, including those
that have not been written yet. Some testing functionalities in this direction are
given in Section 4, and more are expected in our future work. Finally, we expect
to enrich the core template library with other common patterns of ASP.

References

1. AlOmar, E.A., Wang, T., Raut, V., Mkaouer, M.W., Newman, C.D., Ouni, A.:
Refactoring for reuse: an empirical study. Innov. Syst. Softw. Eng. 18(1), 105–135
(2022)

2. Amendola, G., Berei, T., Ricca, F.: Testing in ASP: revisited language and pro-
gramming environment. In: JELIA. Lecture Notes in Computer Science, vol. 12678,
pp. 362–376. Springer (2021)

3. Baral, C., Dzifcak, J., Takahashi, H.: Macros, macro calls and use of ensembles in
modular answer set programming. In: ICLP. Lecture Notes in Computer Science,
vol. 4079, pp. 376–390. Springer (2006)

4. Bomanson, J., Janhunen, T., Niemelä, I.: Applying visible strong equivalence in
answer-set program transformations. ACM Trans. Comput. Log. 21(4), 33:1–33:41
(2020)

5. Cabalar, P., Fandinno, J., Lierler, Y.: Modular answer set programming as a formal
specification language. Theory Pract. Log. Program. 20(5), 767–782 (2020)

6. Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T.,
Leone, N., Maratea, M., Ricca, F., Schaub, T.: Asp-core-2 input language format.
Theory Pract. Log. Program. 20(2), 294–309 (2020)

7. Calimeri, F., Ianni, G.: Template programs for disjunctive logic programming: An
operational semantics. AI Commun. 19(3), 193–206 (2006)

8. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Modular nonmonotonic logic
programming revisited. In: ICLP. Lecture Notes in Computer Science, vol. 5649,
pp. 145–159. Springer (2009)

9. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Distributed nonmonotonic
multi-context systems. In: KR. AAAI Press (2010)

10. Eiter, T., Gottlob, G., Veith, H.: Modular logic programming and generalized quan-
tifiers. In: LPNMR. Lecture Notes in Computer Science, vol. 1265, pp. 290–309.
Springer (1997)

11. Eiter, T., Tompits, H., Woltran, S.: On solution correspondences in answer-set
programming. In: IJCAI. pp. 97–102. Professional Book Center (2005)

Rethinking Answer Set Programming Templates 15

12. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI
Mag. 37(3), 53–68 (2016)

13. Fandinno, J., Lifschitz, V., Lühne, P., Schaub, T.: Verifying tight logic programs
with anthem and vampire. Theory Pract. Log. Program. 20(5), 735–750 (2020)

14. Fandinno, J., Pearce, D., Vidal, C., Woltran, S.: Comparing the reasoning capa-
bilities of equilibrium theories and answer set programs. Algorithms 15(6), 201
(2022)

15. Febbraro, O., Reale, K., Ricca, F.: Testing ASP programs in ASPIDE. In: CILC.
CEUR Workshop Proceedings, vol. 810, pp. 115–129. CEUR-WS.org (2011)

16. Fink, M.: A general framework for equivalences in answer-set programming by
countermodels in the logic of here-and-there. Theory Pract. Log. Program. 11(2-
3), 171–202 (2011)

17. Geibinger, T., Tompits, H.: Characterising relativised strong equivalence with pro-
jection for non-ground answer-set programs. In: JELIA. Lecture Notes in Computer
Science, vol. 11468, pp. 542–558. Springer (2019)

18. Greßler, A., Oetsch, J., Tompits, H.: Harvey: A system for random testing in ASP.
In: LPNMR. Lecture Notes in Computer Science, vol. 10377, pp. 229–235. Springer
(2017)

19. Heyting, A.: Die formalen regeln der intuitionistischen logik. pp. 42–56. Deütsche
Akademie der Wissenschaften zu Berlin, Mathematisch-Naturwissenschaftliche
Klasse (1930)

20. Janhunen, T., Niemelä, I., Oetsch, J., Pührer, J., Tompits, H.: On testing answer-
set programs. In: ECAI. Frontiers in Artificial Intelligence and Applications,
vol. 215, pp. 951–956. IOS Press (2010)

21. Janhunen, T., Niemelä, I., Oetsch, J., Pührer, J., Tompits, H.: Random vs.
structure-based testing of answer-set programs: An experimental comparison. In:
LPNMR. Lecture Notes in Computer Science, vol. 6645, pp. 242–247. Springer
(2011)

22. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of dis-
junctive stable models. J. Artif. Intell. Res. 35, 813–857 (2009)

23. Kaminski, R., Romero, J., Schaub, T., Wanko, P.: How to build your own asp-based
system?! Theory Pract. Log. Program. 23(1), 299–361 (2023)

24. Leach, P., Mealling, M., Salz, R.: A universally unique identifier (uuid) urn names-
pace. Internet Requests for Comments (July 2005), https://tools.ietf.org/

html/rfc4122

25. Lifschitz, V.: Achievements in answer set programming. Theory Pract. Log. Pro-
gram. 17(5-6), 961–973 (2017)

26. Lifschitz, V.: Answer Set Programming. Springer (2019)
27. Lühne, P.: Discovering and proving invariants in answer set programming and

planning. CoRR abs/1905.03196 (2019)
28. Oetsch, J., Prischink, M., Pührer, J., Schwengerer, M., Tompits, H.: On the small-

scope hypothesis for testing answer-set programs. In: KR. AAAI Press (2012)
29. Oetsch, J., Seidl, M., Tompits, H., Woltran, S.: Beyond uniform equivalence be-

tween answer-set programs. ACM Trans. Comput. Log. 22(1), 2:1–2:46 (2021)
30. Pearce, D.: Equilibrium logic. Ann. Math. Artif. Intell. 47(1-2), 3–41 (2006)
31. Son, T.C., Pontelli, E., Balduccini, M., Schaub, T.: Answer set planning: A survey.

Theory Pract. Log. Program. 23(1), 226–298 (2023)
32. Vos, M.D., Kisa, D.G., Oetsch, J., Pührer, J., Tompits, H.: Annotating answer-set

programs in lana. Theory Pract. Log. Program. 12(4-5), 619–637 (2012)

https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4122

16 M. Alviano et al.

A Proofs

Proof (Proposition 2). HT (ΓΠ) ⊇ HT (ΓΠ ∪ΓΠ′) follows from the monotonicity
of here-and-there, and in turn implies (5)–(7). ⊓⊔

Proof (Proposition 3). The only interesting case is I ∪ X |=
Π ∪ Π ′, for which we shall show that I |= (Π ∪ Π ′)I∪X .
Since ⟨I, I ∪X⟩ ∈ HT (ΓΠ) by assumption, we thus have
I |= ΠI∪X , and therefore it remains to show I |= (Π ′)I∪X . From the as-
sumption I ∪X |= Π ∪Π ′, we have I ∪X |= Π ′; combining with the assumption
that atoms in X have predicates in pred(Π) \ pred(Π ′), we can conclude that
I |= Π ′ and (Π ′)I∪X = (Π ′)I . Hence, I |= (Π ′)I∪X and we are done. ⊓⊔

Proof (Theorem 1). By construction, pred(πρ)∩PL are universally unique, and
therefore they cannot occur in Π ′. ⊓⊔

	Rethinking Answer Set Programming Templates

