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Abstract. Within the realm of deep learning, the interpretability of
Convolutional Neural Networks (CNNs), particularly in the context of
image classification tasks, remains a formidable challenge. To this end
we present a neurosymbolic framework, NeSyFOLD-G that generates
a symbolic rule-set using the last layer kernels of the CNN to make its
underlying knowledge interpretable. What makes NeSyFOLD-G different
from other similar frameworks is that we first find groups of similar
kernels in the CNN (kernel-grouping) using the cosine-similarity between
the feature maps generated by various kernels. Once such kernel groups
are found, we binarize each kernel group’s output in the CNN and use it
to generate a binarization table which serves as input data to FOLD-SE-
M which is a Rule Based Machine Learning (RBML) algorithm. FOLD-
SE-M then generates a rule-set that can be used to make predictions.
We present a novel kernel grouping algorithm and show that grouping
similar kernels leads to a significant reduction in the size of the rule-set
generated by FOLD-SE-M, consequently, improving the interpretability.
This rule-set symbolically encapsulates the connectionist knowledge of
the trained CNN. The rule-set can be viewed as a normal logic program
wherein each predicate’s truth value depends on a kernel group in the
CNN. Each predicate in the rule-set is mapped to a concept using a few
semantic segmentation masks of the images used for training, to make it
human-understandable. The last layers of the CNN can then be replaced
by this rule-set to obtain the NeSy-G model which can then be used for
the image classification task. The goal directed ASP system s(CASP) can
be used to obtain the justification of any prediction made using the NeSy-
G model. We also propose a novel algorithm for labeling each predicate
in the rule-set with the semantic concept(s) that its corresponding kernel
group represents.

Keywords: CNN · Neurosymbolic AI · Normal Logic Programs · Rule-
Based Machine Learning · Interpretable Image Classification.

1 Introduction

Interpretability of deep learning models is an important issue that has resur-
faced in recent years as these models have become larger and are being applied
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to an increasing number of tasks. Some applications such as autonomous ve-
hicles [9], disease diagnosis [25], and natural disaster prevention [11] are very
sensitive areas where a wrong prediction could be the difference between life and
death. The above tasks rely heavily on good image classification models such
as Convolutional Neural Networks (CNNs). A CNN is a deep learning model
used for a wide range of image classification and object detection tasks, first
introduced by Y. Lecun et al. [14]. Current CNNs are extremely powerful and
capable of outperforming humans in image classification tasks. A CNN is in-
herently a blackbox model, though attempts have been made to make it more
interpretable [34,33]. There is no way to tell whether the predictions made by
the model are based on concepts meaningful to humans, or are simply the out-
come of coincidental correlations. If the knowledge of the trained CNN becomes
interpretable then domain experts can scrutinize this knowledge and point out
any biases or spurious correlations that the CNN might have learnt which could
lead to wrong predictions. Thus retraining with better and more targeted data
can be suggested by the experts.

We propose a framework for interpretable image classification using CNNs
called NeSyFOLD-G. A CNN, like any deep neural network is composed of mul-
tiple layers. We focus on the convolution layer, more specifically the last con-
volution layer of a CNN in this work. The convolution layer is composed of
kernels.

A kernel, also known as a filter, is a 2D matrix. It acts like a small, specialized
magnifying glass that slides over an image to help recognize specific features or
patterns in the image, like edges, curves, or textures. It does this by multiplying
its values with the pixel values of the image in a small region, and then it adds
up those products. This process helps highlight important parts of the image.
As the kernel slides over the entire image, it creates a new, simplified version of
the image that emphasizes the patterns it’s looking for. This simplified version
is called a feature map. The CNN then uses these feature maps to understand
the image and make predictions.

The NeSyFOLD-G framework can be used to create a NeSy-G model which
is a composition of the CNN and a rule-set generated from kernels in its last
convolution layer. A Rule Based Machine Learning (RBML) algorithm called
FOLD-SE-M [28] is used for generating the rule-set by using binarized outputs
of the groups of similar kernels in a trained CNN. The rule-set is a default theory
represented as a normal logic program, [16] i.e., Prolog extended with negation-
as-failure. The binarized output (0/1) of the kernel groups influences the truth
value of the predicates appearing in the rule body. The rule-set can also be
viewed as a stratified Answer Set Program and the s(CASP) [1] ASP system can
be used to obtain justifications of the predictions made by the NeSy-G model.
The rule-set also serves as a global explanation for the predictions made by the
CNN.

Our first novel contribution is the kernel grouping algorithm that finds groups
of similar kernels in the CNN based on the cosine similarity score of their corre-
sponding generated feature maps.
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We also introduce a semantic labelling algorithm that can be used to label the
predicates in the rule-set with the semantic concept(s) that their corresponding
kernel groups represent in the images. For example, the predicate 52(X) corre-
sponding to kernel group 52 in the last convolution layer of the CNN will be
replaced by bathtub(X) in the rule-set, if kernel group 52 has learnt to look for
“bathtubs” in the image. Fig. 1 illustrates the NeSyFOLD-G framework.

Padalkar et al. proposed the NeSyFOLD framework [17] which shares simi-
larities with the NeSyFOLD-G framework. The major difference that separates
NeSyFOLD-G from NeSyFOLD is that the truth values of predicates in the gen-
erated rule-set is influenced by the binarized output of groups of similar kernels.
In NeSyFOLD each predicate’s truth value is influenced by single kernels in the
CNN. However, it is known that groups of kernels in the last layer are responsible
for representing a single concept. Yang et al. [30] proposed an attention-based
masking mechanism for finding the concept learnt by a single kernel by account-
ing for the other kernels with similar attention weights. Their approach serves
as motivation behind our kernel grouping algorithm that uses the cosine simi-
larity score between feature maps of various kernels to find the groups of similar
kernels.

Fig. 1. The NeSyFOLD-G framework. Each kernel group is depicted with a unique
color in the rule-set.

The size of the rule-set generated can be used as a metric for interpretabil-
ity. Lage et al. [12] comprehensively showed through human evaluations that as
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the size of the rule-set increases the difficulty in interpreting the rule-set also
increases. Padalkar et al. show that NeSyFOLD framework generates a smaller
rule-set than the ERIC system [26] which was the previous SOTA. We show that
NeSyFOLD-G, achieves a significant reduction in the size of the rule-set gener-
ated while maintaining or improving on the accuracy and fidelity in comparison
to the NeSyFOLD framework.

To summarize, our contributions are as follows:

1. We present a novel kernel grouping algorithm that constitutes the heart of
the NeSyFOLD-G framework for improving interpretability of the generated
rule-set.

2. We also introduce a semantic labeling algorithm for labeling the predicates
of the rule-set generated by the NeSyFOLD-G framework.

2 Background

FOLD-SE-M: The FOLD-SE-M algorithm [28] that we employ in our frame-
work, learns a rule-set from data as a default theory. Default logic is a non-
monotonic logic used to formalize commonsense reasoning. A default D is ex-
pressed as:

D = A : MB

Γ
(1)

Equation 1 states that the conclusion Γ can be inferred if pre-requisite A holds
and B is justified. MB stands for “it is consistent to believe B”. Normal logic
programs can encode a default theory quite elegantly [8]. A default of the form:

α1 ∧ α2 ∧ · · · ∧ αn : M¬β1,M¬β2 . . .M¬βm

γ

can be formalized as the normal logic programming rule:

γ :- α1, α2, . . . , αn, not β1, not β2, . . . , not βm.

where α’s and β’s are positive predicates and not represents negation-as-failure.
We call such rules default rules. Thus, the default

bird(X) : M¬penguin(X)

flies(X)

will be represented as the following default rule in normal logic programming:
flies(X) :- bird(X), not penguin(X).

We call bird(X), the condition that allows us to jump to the default conclusion
that X flies, the default part of the rule, and not penguin(X) the exception part
of the rule.

FOLD-SE-M [28] is a Rule Based Machine Learning (RBML) algorithm. It
generates a rule-set from tabular data, comprising rules in the form described
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above. The complete rule-set can be viewed as a stratified answer set program.
It uses special abx predicates to represent the exception part of a rule where x

is unique numerical identifier. FOLD-SE-M incrementally generates literals for
default rules that cover positive examples while avoiding covering negative exam-
ples. It then swaps the positive and negative examples and calls itself recursively
to learn exceptions to the default when there are still negative examples falsely
covered.

There are 2 tunable hyperparameters, ratio, and tail. The ratio controls the
upper bound on the number of false positives to the number of true positives
implied by the default part of a rule. The tail controls the limit of the minimum
number of training examples a rule can cover. FOLD-SE-M generates a much
smaller number of rules than a decision-tree classifier and gives higher accuracy
in general.

3 Learning

In this section we describe the process of generating a rule-set from the CNN
and obtaining the NeSy-G model. We start by training the CNN on the input
images for the given image classification dataset. Any optimization technique
can be used for updating the weights. Fig. 1 illustrates the learning pipeline.

Binarization: Once the CNN has been fully trained to convergence, we pass
the full training set consisting of n images to the CNN. For each image i in
the training set, let Ai,k denote the feature map generated by kernel k in the
last convolutional layer. The feature map Ai,k is a 2D matrix of dimension
determined by the CNN architecture. For each image i there are K feature
maps generated where K is the total number of kernels in the last convolutional
layer of the CNN. To convert each of the feature maps to a single value we take
the norm of the feature maps as demonstrated by eq. (2) to obtain ai,k.

Kernel grouping algorithm: We then find the groups of similar kernels in the
CNN. Consider a kernel k̂ for which we need to identify the most similar kernels.
We do this by first finding the top-10 images î1, î2, ..., î10 that activate k̂ the
most, according to the norm values of the feature maps generated by k̂ for these
images. Now, we compute the cosine similarity score between Aîg,k̂

and Aîg,k′ ,

where g ∈ [1, 10] and k′ is some kernel in the last layer the last layer of the

CNN. The similarity score of kernel k′ w.r.t k̂ is calculated by taking the mean
of the cosine similarity scores for all the top-10 images î1, î2, ..., î10 as simk̂,k′ .
The similarity score is a value between 0 and 1. Thus, we calculate the similarity
score of all kernels in the last layer of the CNN w.r.t to k̂. The group of kernel k̂
would then constitute of all kernels that have a similarity score w.r.t k̂ greater
than a user-defined similarity threshold θs.

Hence, we find a group of similar kernels Gk for all the kernels k in the last
layer of the CNN. Note that the total number of kernel groups Gk is the same
as the total number of kernels in the last layer of the CNN.
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Next, for each kernel group Gk we obtain the group norm ai,Gk
for each

image i in the training set. This is achieved by taking the mean of the norms
corresponding to each kernel in Gk for each image i. This leads to the creation
of a table TG with each row representing an image and each column representing
the group norm for each of the kernel groups Gk.

Finally, for each kernel group we convert the group norm values to either
0 or 1 which symbolizes the kernel group “activating” or “deactivating” for
each image. This is called binarization of the kernel groups. This is done by
determining an appropriate threshold θGk

for each kernel group Gk to binarize
its output. The threshold θGk

is calculated as a weighted sum of the mean and
the standard deviation of the group norms ai,Gk

for all images i in the training
set, denoted by eq. (3) where α and γ are user-defined hyperparameters.

Thus a binarization table BG is created. Each row in the table represents an
image and each column is the binarized kernel group value represented by either
a 0 if ai,Gk

≤ θGk
or 1 if ai,Gk

> θGk
(cf. Fig. 1 (right)).

ai,k =||Ai,k||2 (2)

θGk
=α · aGk

+ γ

√
1

n

∑
(ai,Gk

− aGk
)2 (3)

Rule-set Generation: The binarization table BG is given as an input to the
FOLD-SE-M algorithm to obtain a rule-set in the form of a normal logic program.
The FOLD-SE-M algorithm finds the most influential features in the BG and
generates a rule-set that has these features as predicates. Since BG has features
as kernel group ids, the raw rule-set has predicates with names in the form of
their corresponding kernel group’s id. An example rule could be:

target(X,‘2’) :- not 3(X), 54(X), not ab1(X).

This rule can be interpreted as “Image X belongs to class ‘2’ if kernel group
3 is not activated and kernel group 54 is activated and the abnormal condition
(exception) ab1 does not apply”. There will be another rule with the head as
ab1(X) in the rule-set. The binarized output of a kernel group would determine
the truth value of its predicate in the rule-set. The rule-set generated is in the
form of a decision list, i.e., the next rule is checked only if the current rule and
all the rules above it were not satisfied.

Semantic labeling: Groups of kernels activate in synergy to identify concepts
in the CNN. Since we capture the outputs of the kernel groups as truth values
of predicates in the rule-set, we can label the predicates with the semantic con-
cept(s) that the corresponding kernel group has learnt. Thus, the same example
rule from above may now look like:

target(X,‘bathroom’) :- not bed(X), bathtub(X), not ab1(X).

We introduce a novel semantic labelling algorithm to automate the semantic
labelling of the predicates in the rule-set generated. The details of the algorithm
are discussed later.
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The NeSy-G model is conceptualized as the model obtained after replacing
all the layers following the last convolutional layer with the rule-set generated
by applying the FOLD-SE-M algorithm on the binarization table BG.

4 Inference

For using the NeSy-G model to obtain predictions on the test set, we first obtain
the kernel feature maps for each kernel in the last convolutional layer. Then, we
compute the group norms for all kernel groups that were found in the learning
process to obtain the table T test

Gk
. From T test

Gk
we obtain the binarization table

Btest
G by binarizing the output of each kernel group in T test

Gk
by using the threshold

θGk
calculated in the learning phase. Next, for each binarized vector b in Btest

G ,
we use the labeled/unlabelled rule-set obtained in the learning phase to make
predictions. The truth value of the predicates in the rule-set is determined by the
corresponding binarized kernel group values in b. FOLD-SE-M toolkit’s built-in
rule-interpreter can be used to obtain the predicted class of b given the rule-
set. The binarized kernel group values in b can also be listed as facts and the
rule-set which can be viewed as a stratified answer set program, can be queried
with the s(CASP) interpreter [1] to obtain the justification as well as the target
class. Note that s(CASP) searches for the answer set in a goal directed manner,
which implies that the rules are checked from the top to the bottom one by one.
Hence, the first answer set that is found to satisfy the rule-set with the given
facts entails the intended prediction made by the NeSy-G model.

5 Semantic Labelling of Predicates

The raw rule-set generated by FOLD-SE-M initially has kernel group ids as
predicate names. Also, since the FOLD-SE-M algorithm finds only the most in-
fluential kernel groups, the number of kernel groups that actually appear in the
rule-set is usually very low in comparison to the total number of kernel groups.
We present a novel algorithm for automatically labelling the corresponding pred-
icates of the kernel groups with the semantic concept(s) that the kernel groups
represent.

Xie et al. [29] showed that each kernel in the CNN may learn to represent
multiple concepts in the images. Hence each kernel group may also represent mul-
tiple concepts. As a result, we assign semantic labels to each predicate, denoting
the names of the semantic concepts learnt by the corresponding kernel group.
To regulate the extent of approximation, i.e., to dictate the number of concept
names to be included in the predicate label, we introduce a hyperparameter
margin. This hyperparameter exercises control over the precision of the approxi-
mation achieved. Figure 2 illustrates the semantic labelling of a given predicate.
The algorithm requires a dataset that has semantic segmentation masks of the
training images. This essentially means that for every image i in the dataset I,
there is an image iM where every pixel is annotated with the label of the object
(concept) that it belongs to (Fig. 2 middle). We denote these by IM .
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The CNN that is trained on the training set is used to obtain the norms ai,k
of the feature maps Ai,k generated by each kernel k in the last convolution layer.

Next, as the respective kernel groups for each kernel are known, the table T Im
Gk

is created where each row represents the images whose corresponding semantic
segmentation masks are available and the columns are the kernel group norms.

Now, consider some kernel group Gk̂ that has l kernels in the group namely,

k̂1, k̂2, ..., k̂l . The top-m images i′1, i
′
2, ..., i

′
m ∈ I ′m, according to the group norm

values are selected. We need to calculate the group’s Intersection over Union
(IoUc) score for each concept c visible in the top-m images that most activate
the group. Then according to this score for each concept c, the label of the kernel
group’s predicate should comprise of the top concepts that the kernel group is
detecting.

IoUc(i
Mask, i) =

no. of non-zero pixels in c ∩ i

no. of non-zero pixels in i
(4)

Fig. 2. The calculation of mean IoUc scores for a kernel.

For a given image ij ∈ I ′m, the resized feature map generated by every kernel

in the kernel group is used to mask the image to obtain ik̂1
j , ik̂2

j , ..., ik̂l
j . Fig. 2 (top)

shows a few images masked with the resized feature maps generated by a kernel.
For each of these masked images, the IoUc score is calculated using eq. (4) for
each concept c, that appears in the corresponding semantic segmentation mask
iMask
j of the image ij . Fig. 2 (middle) shows the semantic segmentation masks
of the images at the top. Next, each kernel’s IoUc score for all the top-m images,
for all concepts c is calculated. Each kernel’s mean IoUc score is calculated by
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taking the mean score over all images. Finally, the kernel group’s IoUc score is
calculated by taking the mean of the mean IoUc score of each kernel for each
concept c.

The algorithm can be summarized as follows:

1. For a given kernel group, find the top-m images according to its group kernel
norm value.

2. For each kernel in the kernel group find the IoUc score for each of the top-m
images.

3. Calculate the mean IoUc score for each kernel over all images.
4. Calculate the mean of the mean IoUc score for each kernel to obtain the

kernel Group’s IoUc score.

Fig 2 illustrates the IoUc scores calculation for a single kernel.
The label of the corresponding predicate of a kernel group is chosen as the set

of concepts that have their normalized IoUc score in a certain “margin” from the
top concept. This is controlled using the user-defined margin hyperparameter.

For example, if the IoUc score for kernel group 12 is {cabinets : 0.5, door
: 0.4, drawer : 0.1} then with a margin of 0.1 the label for the corresponding
predicate will be “cabinets1 door1” since the concept door is in the 0.1 margin
from the top concept cabinets. Note, each concept name in the label is appended
with a unique numerical identifier (in this case 1), to distinguish it from the the
other kernel groups that might learn the same concept. Say, if kernel group 25 is
also detecting cabinets then its predicate’s label would be “cabinets2 ...” where
... denotes the other concepts that the kernel group 25 might be detecting.

6 Experiments and Results

Exp 1 (Setup): We compare the performance of NeSyFOLD-G framework with
that of the NeSyFOLD framework on various datasets. We report the accuracy,
fidelity, number of unique predicates in the rule-set, number of rules generated
and the size of the rule-set. Size is calculated as the total number of predicates in
the bodies of the rules that constitute the logic program generated by NeSyFOLD
and NeSyFOLD-G.

We used a VGG16 CNN with pre-trained weights on the Imagenet dataset
[4]. We trained for 100 epochs with a batch size of 32. We used the Adam
[10] optimizer and applied class weights for imbalanced data. We also used L2
regularization of 0.005 on all layers and a learning rate of 5 × 10−7. We used
a decay factor of 0.5 and patience of 10 epochs. Also, we resized all images to
224×224. We used α = 0.6 and γ = 0.7 for all the datasets. For this experiment,
we used the German Traffic Sign Recognition Benchmark (GTSRB) [24],MNIST
[15] and the Places [36] dataset.

The GTSRB dataset has 43 classes. Each class contains multiple instances of
a physical signpost and multiple images of the signpost are provided. We used a
80 : 20 training-validation split per class and used the provided test set to report
the performance metrics of the models.
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The MNIST dataset has 10 classes. Each class contains images of a handwrit-
ten digit from 0 to 9. We split the standard training set into train and validation
set by using the last 10k images for the validation set. We used the provided
test set to report the results.

The Places dataset has images of various scenes. To see the effect of varying
the number of classes ∈ {2, 3, 5, 10} we train on the bathroom and bedroom
class (PLACES2) first. Then we add the kitchen class (PLACES3.1), then dining
room, living room (PLACES5) and finally home office, office, waiting room,
conference room and hotel room (PLACES10). We also selected 2 additional
subsets of 3 classes each namely, {desert road, forest road, street} (PLACES3.2)
and {desert road, driveway, highway} (PLACES3.3). We obtained the train and
the test set by selecting 1k images from each class for the test set and the other 4k
for the training set. We use the given validation set to tune our hyperparameters.

The NeSy-G model was created using the learning procedure described pre-
viously using the NeSyFOLD-G framework and the NeSy model was created
using the NeSyFOLD framework as described in [17]. The comparison between
NeSyFOLD-G and NeSyFOLD is drawn in Table 1. The accuracy and fidelity are
reported on the test set. The results are reported after 5 runs on each dataset.
Note, fidelity determines how closely a model follows the predictions of another
model. Since the NeSy-G and NeSy models are created from the trained model
they should show high fidelity w.r.t the CNN.

Data Algo Fid. Acc. Pred. Rules Size

PLACES2
NF 0.93± 0.01 0.92± 0.01 16± 2 12± 2 28± 5
NF-G 0.93± 0.0 0.93± 0.0 8± 1 7± 1 11± 2

PLACES3.1
NF 0.85± 0.03 0.84± 0.03 28± 6 21± 4 49± 9
NF-G 0.87± 0.01 0.86± 0.01 20± 7 15± 3 31± 9

PLACES3.2
NF 0.94± 0.0 0.92± 0.0 16± 4 13± 3 26± 7
NF-G 0.94± 0.01 0.92± 0.01 12± 3 10± 1 18± 3

PLACES3.3
NF 0.83± 0.01 0.79± 0.01 32± 5 23± 3 60± 11
NF-G 0.83± 0.01 0.80± 0.01 30± 2 21± 3 53± 6

PLACES5
NF 0.67± 0.03 0.64± 0.03 56± 3 52± 4 131± 10
NF-G 0.68± 0.02 0.65± 0.02 41± 4 34± 6 83± 13

PLACES10
NF 0.23± 0.19 0.20± 0.17 33± 28 32± 27 78± 66
NF-G 0.33± 0.17 0.30± 0.15 74± 39 73± 39 184± 97

GTSRB
NF 0.75± 0.04 0.75± 0.04 206± 28 134± 26 418± 79
NF-G 0.76± 0.02 0.76± 0.02 176± 13 98± 11 320± 30

MNIST
NF 0.91± 0.01 0.91± 0.01 132± 9 90± 7 271± 25
NF-G 0.90± 0.01 0.90± 0.01 103± 12 79± 10 216± 28

Table 1. Comparison NeSyFOLD (NF) vs NeSyFOLD-G (NF-G).
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Exp 1 (Result): Table 1 clearly shows that the NeSy-G model outperforms
NeSy model w.r.t accuracy and fidelity in most cases and is comparable other-
wise. More importantly, the advantage of using the NeSyFOLD-G framework is
apparent from the reduction in the number of predicates, number of rules and
the overall size of the rule-set that is generated.

The reduction in size of the rule-set is a direct indication of the improved
interpretability as pointed out by Lage et al. [12]. The main difference between
the NeSyFOLD and the NeSyFOLD-G framework is the grouping of similar
kernels in the latter. The grouped kernel forms better features in the binarization
table that is generated after binarizing the group norms. The grouping helps in
creating more informative features for the FOLD-SE-M algorithm to generate
the rules from. Hence, in a fewer number of predicates and rules, (as compared
to NeSyFOLD) the same information can be captured.

Note that as the number of classes increases as in the case of PLACES2,
PLACES3.1, PLACES3.2, PLACES3.3, PLACES5 and PLACES10 both the
models show a decrease in the accuracy and fidelity. This is because as the
number of classes increases, more number of kernels are needed to represent
the knowledge and consequently more kernels have to be binarized. Thus the
loss incurred due to binarization of the kernels increases as the number of
classes increases. Notice that for PLACES10 the size of the rule-set generated by
NeSyFOLD-G is larger than that generated by NeSyFOLD. This is because for 2
out of the 5 runs, NeSyFOLD could not generate any rule-set as the FOLD-SE-
M algorithm could not find good enough features in the binarization table. Due
to the size of the training set being relatively large (40k examples) and the large
number of classes (10 classes), the loss due to binarization rapidly increases.
This is also the reason why the accuracy and fidelity is very low. However, since
NeSyFOLD-G uses kernel grouping, the FOLD-SE-M algorithm gets to work
with better features in the binarization table and thus the accuracy and fidelity
is much higher compared to NeSyFOLD and thus the rule-set size is also high
on average. Although in 1 run NeSyFOLD-G also manages to find no rule-set
that explains the predictions of the CNN.

Exp 2 (setup): We use the procedure described previously, for semantic la-
belling of the predicates in the rule-set generated. We use the ADE20k dataset
[37] in our experiments. It provides manually annotated semantic segmentation
masks for a few images of all the classes of the Places dataset. The GTSRB
and MNIST datasets do not have any semantic segmentation masks available.
Hence, for all the subsets of classes of the Places dataset reported in Table 1, we
show the effect of using the semantic labelling algorithm described in Section 5.
In Fig. 3 we have shown labelled rule-sets for the PLACES2, PLACES3.1 and
PLACES3.2, PLACES3.3 and PLACES5 datasets. We used a ratio of 0.8 for all
datasets, tail : 5e−3 for PLACES2, PLACES3.1 and PLACES3.2, tail : 1e−2 for
PLACES3.3 and PLACES5 dataset. A similarity threshold θs of 0.8 was used
for generating the rule-sets. We used a margin of 0.05 to label the raw rule-sets.
We do not show the labelled rule-set for PLACES10 since the accuracy of the
NeSy-G model is very low on the dataset.
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Fig. 3. The labelled rule-sets generated by NeSyFOLD-G for PLACES2 (RULE-SET
1) , PLACES3.2 (RULE-SET 2), PLACES3.3 (RULE-SET 3) and PLACES5 (RULE-
SET 4)

Fig. 4. The justification (right) obtained from s(CASP) for an image “img” when
running the query ?- target(img, X). against RULE-SET 5 (left).

Exp 2 (result): The labelled rule-sets make intuitive sense to humans. This
representation of knowledge in default theory in our opinion makes the rule-set
easy to understand. The rule-set captures the knowledge of the trained CNN.
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For example in RULE-SET 2, the first rule states that “an image X is a ‘street’
if there is evidence of the concept ‘building’ in the image”. Similarly the second
rule states that “an image X is a ‘forest road’ if there is evidence of the concept
‘tree’ in the image and there is no evidence of some abnormal conditions ‘ab1’
and ‘ab2’.

Notice how in rules 2,3 of RULE-SET 1 in Fig. 3 the group of kernels, now
labelled as ‘wall1’ and ‘wall3’ are (most probably) detecting a certain type of
patterns on the walls that are indicative of bathrooms, possibly tiles. The kernels
are labelled as wall only because the semantic segmentation masks available to
us have the label ‘wall’ for the pixels that denote wall in the image. Hence we
are restricted to the expressiveness of the annotations available to us. This can
be alleviated by labelling the predicates via manual observation.

Note that in the first rule of RULE-SET 5 (Fig. 4) there is a predicate
cabinet4 wall5/1. This predicate corresponds to the kernel group in the CNN
that is detecting either both cabinets and walls separately or a specific region in
the images that contains a portion of cabinets and wall. It is hard to distinguish
between the two cases.

Fig 4 shows a sample justification obtained from s(CASP) for some image
“img”. The binarized vector associated with “img” is used to write the facts
and the query target(img, X) is executed against RULE-SET 5. The first rule
(shown in red) was satisfied. The first model found by s(CASP) that satisfies
the rule-set binds the value of X to ‘kitchen’. Hence, the predicted class of the
image “img” is kitchen.

7 Related Work

A similar approach of generating rules from the CNN was adopted by Townsend
et al. [26], [27] where they used a decision tree algorithm to generate the rule-set.
However, Padalkar et al. [17] have shown that using FOLD-SE-M generates a
much smaller rule-set and higher accuracy and fidelity.

There is a lot of past work which focuses on visualizing the outputs of the
layers of the CNN. These methods try to map the relationship between the input
pixels and the output of the neurons. Zeiler et al. [32] and Zhou et al. [35] use
the output activation while others [20],[5],[23] use gradients to find the mapping.
Unlike NeSyFOLD-G, these visualization methods do not generate any rule-set.
Zeiler et al. [32] use similar ideas to analyze what specific kernels in the CNN are
invoked. There are fewer existing publications on methods for modeling relations
between the various important features and generating explanations from them.
Ferreira et al. [7] use multiple mapping networks that are trained to map the
activation values of the main network’s output to the human-defined concepts
represented in an induced logic-based theory. Their method needs multiple neural
networks besides the main network that the user has to provide.

Qi et al. [18] propose an Explanation Neural Network (XNN) which learns
an embedding in high-dimension space and maps it to a low-dimension explana-
tion space to explain the predictions of the network. A sentence-like explanation
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including the features is then generated manually. No rules are generated and
manual effort is needed. Chen et al. [3] introduce a prototype layer in the net-
work that learns to classify images in terms of various parts of the image. They
assume that there is a one to one mapping between the concepts and the kernels.
We do not make such an assumption. Zhang et al. [34],[33] learn disentangled
concepts from the CNN and represent them in a hierarchical graph so that there
is no assumption of a one to one kernel-concept mapping. However, no logical ex-
planation is generated. Bologna et al. [2] extract propositional rules from CNNs.
Their system operates at the neuron level, while NeSyFold-G works with groups
of neurons.

Our NeSyFOLD-G framework uses FOLD-SE-M to extract a logic program
from the binarization table. There are other works that focus on extracting
logic programs such as the ILASP system [13] by Law et al. and the XHAIL
[19] system by Ray et al. which induce an answer set program from the data
however these systems do not learn rules from images. Some other works [21], [6],
[22] use a neurosymbolic system to induce logic rules from data. These systems
belongs to the Neuro:Symbolic → Neuro category whereas ours belongs to the
Neuro;Symbolic category.

8 Conclusion and Future Work

In this paper we have shown how the NeSyFOLD-G framework can be used
to make a CNN more interpretable. We used the framework with a trained
CNN to derive a NeSy-G model that constitutes the CNN with all layers after
the last convolutional layer replaced by the rule-set generated by FOLD-SE-M
algorithm. We compared the performance of the NeSyFOLD-G framework with
that of the NeSyFOLD framework on various datasets. The major difference
between the NeSyFOLD-G and the NeSyFOLD framework is that in the former,
groups of similar kernels are found and the output of these groups kernels is then
binarized to produce the binarization table, that is used as input to the FOLD-
SE-M algorithm which generates a rule-set. The kernel grouping algorithm is a
novel contribution of this work. In the NeSyFOLD framework each individual
kernel’s output is binarized and the rules are generated based on the binarization
table thus constructed.

We show in the experiments that grouping similar kernels leads to the cre-
ation of better features in the binarization table which consequently leads to a
more succinct rule-set. The NeSyFOLD-G framework always generates a smaller
rule-set than that generated by the NeSyFOLD framework while either outper-
forming or showing comparable accuracy and fidelity.

We also introduced a novel semantic labelling algorithm that can be used for
labelling each predicate that appears in the rule-set with the concepts(s) that
its corresponding kernel group represents. We showed two labelled rule-sets and
an example justification of a prediction that can be obtained using the s(CASP)
ASP system.
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Note that both NeSyFOLD-G and NeSyFOLD are aimed at representing
the connectionist knowledge of the CNN in terms of a symbolic rule-set. The
symbolic rule-set can then be scrutinized by experts to figure out the biases that
the CNN might have learnt from the data and these help in avoiding spurious
predictions in sensitive domains such as medical imaging. The advantage that
NeSyFOLD-G provides is that the interpretability of the rule-set increases as
the size of the generated rule-set is significantly smaller.

We acknowledge that the semantic segmentation masks of images may not be
readily available depending on the domain, in which case the semantic labelling
of the predicates has to be done manually. Our NeSyFOLD-G framework helps
in this regard as well, as it decreases the number of predicates that need to be
labelled.

As the number of classes increases, the loss in accuracy also increases due to
the binarization of more kernels. We plan to explore end-to-end training of the
CNN with the rules generated so that this loss in binarization can be reduced
during training itself.

In future, we plan to use NeSyFOLD-G for real-world tasks such as
interpretable breast cancer prediction. We also intend to explore combining the
knowledge of two or more CNNs by producing a single rule-set that contains the
kernels of the corresponding CNNs as predicates. We also plan to investigate
how the knowledge from the generated rules can be backpropagated to improve
the performance of a CNN [31].
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