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Abstract. This paper categorizes the parameterized complexity of the
algorithmic problems Perfect Phylogeny and Triangulating Col-

ored Graphs when parameterized by the number of genes and colors,
respectively. We show that they are complete for the parameterized com-
plexity class XALP using a reduction from Tree-chained Multicolor

Independent Set and a proof of membership. We introduce the prob-
lem Triangulating Multicolored Graphs as a stepping stone and
prove XALP-completeness for this problem as well. We also show that,
assuming the Exponential Time Hypothesis, there exists no algorithm
that solves any of these problems in time f(k)no(k), where n is the input
size, k the parameter, and f any computable function.
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1 Introduction

A phylogeny is a tree that describes the evolution history of a set S of species.
Every vertex corresponds to a species: leafs correspond to species from S, and
internal vertices correspond to hypothetical ancestral species. Species are char-
acterized by their gene-variants, and the quality of a phylogeny is determined
by how well it represents those variants. In particular, a phylogeny is perfect if
each gene-variant was introduced at exactly one point in the tree. That is, the
subset of vertices that contain the variant is connected. Perfect Phylogeny

is the algorithmic problem of determining the existence of a perfect evolutionary
tree. It has large implications on determining the evolutionary history of genetic
sequences and is therefore of major importance. This application is not limited
to biology: it can also be used to determine the history of languages or cultures.

The concept of phylogenies as an algorithmic problem has been well re-
searched since the 60s. The first formal definition of Perfect Phylogeny

was given by Estabrook [10]. In 1974, Buneman showed that the problem can
be reduced to the more combinatorial Triangulating Colored Graphs [6]
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which by itself has also become an important, well-studied problem. An inverse
reduction, and thus equivalence, was given by Kannan and Warnow [12]. In 1992,
Bodlaender et al showed that Perfect Phylogeny is NP-complete [3].

After Downey and Fellows introduced parameterized complexity [8], people
have tried to determine the complexity of Perfect Phylogeny when seen as a
parameterized problem. There are two main ways to parameterize the problem:
either by using the number of genes or by using the maximum number of variants
for each gene. In the second case, the problem becomes FPT [13]. In the first
case, the parameterized complexity was unknown. There are some partial results:
On one hand, it was shown that the problem is W [t]-hard for every t [2]. On
the other hand, there exists an algorithm that runs in O(nk+1) time and space
(where n is the input size and k the parameter) which implies that the problem
is contained in XP [14].

In this paper we will close this gap and show that Perfect Phylogeny

is complete for the complexity class XALP, which is a relatively new param-
eterized complexity class that was introduced by Bodlaender et al in [5]. We
will show XALP-completeness by giving a reduction from the XALP-complete
problem Tree-chained Multicolor Independent Set, using Triangulat-

ing Multicolored Graphs as a stepping stone. This makes Perfect Phy-

logeny the first example of a “natural” problem that is XALP-complete and
allows it to be used as a starting point for many other XALP-hardness proofs.
Finally, we use the same reduction to give some lower bounds dependent on the
Exponential Time Hypothesis.

2 Definitions and Preliminary Results

All problems in this paper are parameterized. This means that the input con-
tains a parameter separate from the rest of the input which allows us to analyze
the runtime as a function of both the input and the parameter. If a parame-
terized problem with input size n and parameter k can be solved in O(f(k)nc)
time (with f any computable function and c any constant), we say that it is
Fixed Parameter Tractable (FPT). A parameterized reduction is an algorithm
that transforms instances of one parameterized problem into instances of an-
other parameterized problem, runs in FPT time, and whose new parameter is
only dependent on the old parameter. A log-space reduction is a parameterized
reduction that additionally only uses O(f(k) log(n)) space. These reductions
form the base of all parameterized complexity classes: all classes are defined up
to equivalence under one of these reductions.

We use the following definition of Perfect Phylogeny, which is a param-
eterized version of the original definition from Estabrook [10].
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Perfect Phylogeny (PP)
Input: A set G of genes, for each gene g ∈ G a set Vg of variants, and a set
S of species, where each species is defined as a tuple of gene-variants (exactly
one per gene)
Parameter: The number of genes
Question: Does there exist a tree T of species (not necessarily from S) that
contains all species from S and where the subtree of species containing a specific
gene-variant is connected?

Triangulated and Colored Graphs. A graph is colored if every vertex is
assigned a color. The graph is properly colored if there are no edges between
vertices of the same color. For any cycle C in a graph, a chord is an edge between
two vertices of C that are not neighbors on C. A graph is triangulated if every
cycle of length at least four contains a chord. A triangulation of a graph is a
supergraph that is triangulated. We now define the problem Triangulating

Colored Graphs, which was first given by Buneman [6].

Triangulating Colored Graphs (TCG)
Input: A colored graph G

Parameter: The number of colors used
Question: Does there exist a properly colored triangulation of G?

We now introduce a multicolored variant of this problem. A graph is multi-
colored if every vertex is assigned a (possibly empty) set of colors. The graph is
properly multicolored if there are no edges between vertices which share a color.
This gives us the following problem:

Triangulating Multicolored Graphs (TMG)
Input: A multicolored graph G

Parameter: The number of colors used
Question: Does there exist a properly multicolored triangulation of G?

This problem is equivalent to Triangulating Colored Graphs under
parameterized reductions. The general idea is to replace every multicolored ver-
tex with a clique of normally colored vertices. A full proof is given in appendix
section A. We now define a tree decomposition and state some well-known prop-
erties of triangulated colored graphs.

Definition 1 (Tree Decomposition). Given a graph G = (V,E), a tree de-
composition is a tree T where each vertex (bag) is associated with a subset of
vertices from T . This tree must satisfy three conditions:

– For each vertex v ∈ V , there is at least one bag that contains v.
– For each edge e ∈ V , there is at least one bag that contains both endpoints

of e.
– For each vertex v ∈ V , the subgraph of bags that contain v is connected.

Proposition 1. Let G be a (multi)colored graph and C be a cycle.
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(i) Suppose there exist two colors such that every vertex from C is colored with
at least one of these colors. Then G admits no properly (multi)colored trian-
gulation.

(ii) Let v be any vertex from C. In every triangulation of G there is either an edge
between v’s neighbors (in C) or a chord between v and some non-neighbor
vertex from C.

(iii) G admits a properly colored triangulation if and only if G admits a tree
decomposition where each bag contains each color at most once.

Proof. Omitted from main text. See appendix section C. ⊓⊔

XALP. A new complexity class in parameterized complexity theory is XALP [5].
Intuitively, it is the natural home of parameterized problems that are W [t]-hard
for every t and contain some hidden tree-structure. For Perfect Phylogeny,
this tree-structure is the required phylogeny. For Triangulating Colored

Graphs, it is the tree decomposition arising from Proposition 1(iii).
Formally, XALP is the class of parameterized problems that are solvable

on an alternating Turing machine using O(f(k) log(n)) memory and at most
O(f(k) + log(n)) co-nondetermenistic computation steps, where n is the input
size and k is the parameter. It is closed under log-space reductions. On Downey
and Fellows’ W -hierarchy, it lies between W [t] and XP: XALP-hardness implies
W [t]-hardness for every t and XALP membership implies XP-membership.

An example of an XALP-complete problem is Tree-chained Multicolor

Independent Set [5]. It is defined as a tree-chained variant of the well-known
Multicolor Independent Set problem.

Multicolor Independent Set (MIS)
Input: A colored graph G

Parameter: The number of colors used
Question: Does G contain an independent set consisting of exactly one vertex
of each color?

Tree-Chained Multicolor Independent Set (TCMIS)
Input: A binary tree T , for each vertex (bag) B ∈ T a colored graph
GB = (VB , EB) which we view as an instance of Multicolor Independent

Set, and for each edge e ∈ T a set of extra edges Ee between the graphs cor-
responding to the endpoints of e.
Parameter: The maximum number of colors used in each instance of MIS
Question: Does there exist a solution to each instance of MIS such that for
each of the extra edges at most one of the endpoints is contained in the solu-
tion?

3 Main Results

In this section we will state the main result and explore some of its corollaries.
We postpone the proof to the next sections.
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Theorem 1. Triangulating Colored Graphs is contained in XALP.

Theorem 2. There exists a log-space reduction from Tree-chained Multi-

color Independent Set to Triangulating Multicolored Graphs. This
reduction has a linear change of parameter.

We will prove Theorem 1 in section 4. For Theorem 2, we describe the reduction
in section 6 and prove correctness of this reduction in appendix section B.

Theorem 3 (Main Result). The problems Perfect Phylogeny, Trian-

gulating Colored Graphs and Triangulating Multicolored Graphs

are all XALP-complete.

Proof. Combine Theorem 1, Theorem 2 and the equivalences between these three
problems. ⊓⊔

We now use these complexity results to show some lower bounds on the space
and time usage of Perfect Phylogeny. In the remainder of this section, let
n be the input size, k the parameter, f any computable function and c any
constant. We start with a bound on the runtime based on the Exponential Time
Hypothesis.

Proposition 2. Assuming ETH, the problems Perfect Phylogeny, Trian-

gulating Colored Graphs and Triangulating Multicolored Graphs

cannot be solved in f(k)no(k) time.

Proof. We use as a starting point that, assuming ETH, the problem Multi-

color Independent Set cannot be solved in f(k)no(k) time [7]. A trivial
reduction to Tree-chained Multicolor Independent Set using a single-
vertex tree then shows the same for that problem. Since the reduction given in
Theorem 2 has a linear change in parameter we obtain the same lower bound
for Triangulating Multicolored Graphs. Finally, using the equivalences
proven in section A and the known equivalences between TCG and PP (all with
no change in parameter), the result follows. ⊓⊔

We now bound the space usage based on the Slice-wise Polynomial Space
Conjecture (SPSC). This conjectures that Longest Common Subsequence

cannot be solved in both nf(k) time and f(k)nc space [15].

Corollary 1. Assuming SPSC, the problems Perfect Phylogeny, Trian-

gulating Colored Graphs or Triangulating Multicolored Graphs

cannot be solved in both nf(k) time and f(k)nc space.

Proof. This proof uses the parameterized complexity class XNLP, which is de-
fined as the class of parameterized problems that are solvable on a determenistic
Turing machine using O(f(k) log(n)) memory. Comparing this with the defini-
tion of XALP shows that XALP-hardness implies XNLP-hardness. Since Largest
Common Subsequence is XNLP-complete [9], SPSC applies to all XNLP-hard
problems and consequently also to all XALP-hard problems such as the three
problems from this corollary. ⊓⊔

Compared with the existing algorithm that runs inO(nk+1) time and space [14],
these are close but not tight gaps.
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4 XALP Membership of Triangulating Colored Graphs

In this section we will prove Theorem 1.
Recall thatTriangulating Colored Graphs asks us to determine whether

a colored graph can be triangulated. Because of Proposition 1(iii), this is equiv-
alent to finding a tree decomposition where each bag contains each color at most
once. We claim that it is equivalent to find a tree decomposition where each bag
contains each color exactly once.

Lemma 1. A colored graph admits a tree decomposition where each bag contains
each color at most once, if and only if it admits a tree decomposition where each
bag contains each color exactly once.

Proof. Omitted. See appendix section C. ⊓⊔

We can now prove XALP membership.

Proof (of Theorem 1). We construct an alternating Turing machine (ATM) that,
given an instance of Triangulating Colored Graphs, determines whether
there exists a tree decomposition that contains each color exactly once. As a
refresher, an ATM is a Turing machine that has access to both nondetermenistic
and co-nondeterministic branching steps. A nondetermenistic step leads to AC-
CEPT if at least one successor state leads to ACCEPT and a co-nondetermenistic
step leads to ACCEPT if all successor states lead to ACCEPT.

Our Turing machine is based on the XP-time algorithm we mentioned be-
fore [14]. We use the following claim without proof: given a graph G, a determin-
istic Turing machine can determine the whether two vertices belong to the same
connected component in logarithmic space and polynomial time [16]. Repeated
application of this result allows us to branch on all connected components of a
graph using several co-nondeterministic steps.

Let G be any colored graph. The Turing machine will use nondeterminis-
tic steps to determine how to modify each bag compared to its parent and
co-nondeterministic steps to simultaneously verify all subtrees. A precise formu-
lation is given below:

– Using k nondeterministic steps, determine an initial bag S which contains
one vertex of each color. During computations that lead to ACCEPT, each
S will be a bag from the tree decomposition.

– Keep track of some vertex i that is initially NULL. This will signify the
parent of the current bag S.

– Repeat the following until an ACCEPT or REJECT state is reached:
• Determine all components of G\S. Using a co-nondeterministic step, we
branch into every component except the one that contains i. If this results
in zero branches (e.g. when there are no other components), ACCEPT.

• Let C be the component our current branch is in. We determine a vertex
v ∈ C with a nondeterministic step.

• Determine the vertex w ∈ S that has the same color as v. Since S

contains one vertex of every color, w exists.
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• If w is adjacent to any vertex from C, REJECT. This means that the
current guess for how to modify S is incorrect.

• Modify S by adding v and removing w. Set i to w.

Overall, this alternating Turing machine constructively determines a rooted tree
decomposition if one exists and thus solvesTriangulating Colored Graphs.
It also satisfies the memory requirement: the only memory usage is the set S,
a constant number of extra vertices, and the memory needed to branch on con-
nected components. Since memory of a vertex uses O(log(n)) space and |S| = k,
we need O(k log(n)) space. We also use polynomial time: the time usage in the
computation of each bag is a constant plus the time needed to find the connected
components which results in polynomial time overall. Finally, we require at most
O(n) co-nondeterministic computation steps: each co-nondeterministic step cor-
responds to branching into a subtree of the eventual (rooted) tree decomposition.
Since each subtree introduces at least one vertex that is used nowhere else in
the tree, there are at most O(n) subtrees.

Overall, we conclude that Triangulating Colored Graphs is contained
in XALP. ⊓⊔

5 Zipper Chains and Gadgets

In this section we will introduce two multicolored graph components, the zipper
chain and the zipper gadget. Their most important property is Proposition 4
which says that a zipper gadget has a fixed number of triangulations. This will
be used in the XALP-hardness proof to represent a choice.

Definition 2. A zipper chain is a multicolored graph that consists of two paths
P and Q, not necessarily of the same length. The vertices of P and Q are re-
spectively labeled as p1, p2, . . . and q1, q2, . . ..

The vertices are colored in 7 colors, with 2 colors per vertex. For ease of
explanation, the colors are grouped in three groups with sizes 1, 2, and 4. The
first group contains one color a which is added to odd-labeled vertices from P and
even-labeled vertices from Q. The second group contains the color bP which is
added to even-labeled vertices of P and the color bQ which is added to odd-labeled
vertices of Q. The third group contains four colors c1, c2, c3 and c4 where ci is
added to vertices in P whose index is equivalent to i (mod 4) and vertices in Q

whose index is equivalent to i+ 2 (mod 4).

To summarize: the colors on path P are ac1, bP c2, ac3, bP c4, ac1, . . . and those
of Q are bQc3, ac4, bQc1, ac2, bQc3, . . .. This is visualized in Figure 1.

This color pattern repeats every four vertices. We call such a repetition a
tooth of the zipper chain. If a triangulation of the zipper chain contains an edge
between some tooth of P and some tooth of Q and at least one endpoint of this
edge contains the color a, we say that these two teeth are locked together.

Proposition 3. Let G be a graph containing a zipper chain (P,Q) and assume
that there is a cycle that fully contains both P and Q. Any triangulation of G
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satisfies the following properties. Because of symmetry, all properties also hold
with P and Q reversed.

(i) There is no edge between two non-adjacent vertices of P .

(ii) If there exist two edges between P and Q which share an endpoint in P , then
the common endpoint in P is connected to all vertices of Q that lie between
the other two endpoints.

(iii) If (pi, qj) is an edge, then either (pi+1, qj) or (pi, qj+1) is also an edge (as
long as either pi+1 or qj+1 exists).

(iv) If (pi, qj) is an edge and pi contains the color a, then (pi+1, qj+1) is also an
edge (as long as both pi+1 and qj+1 exist). Here, qj+1 contains the color a.

(v) If the i-th tooth of P and the j-th tooth of Q are locked together, then the
i+ 1-th tooth of P and the j + 1-th tooth of Q are also locked together.

(vi) Each tooth from P is locked together with at most one tooth from Q.

Proof. We prove the statements in order.

(i) If, to the contrary, such an edge does exist, then this edge together with the
rest of P forms a cycle whose vertices alternate between the colors a and bP .
Because of Proposition 1(i) such a cycle cannot be triangulated.

(ii) Because of part (i), the cycle formed by these two edges and the path between
the two endpoints on Q can only be triangulated by adding edges with an
endpoint in P .

(iii) If (pi+1, qj) is not an edge then Proposition 1(ii) shows that pi must be
connected to another vertex in the cycle. Because of part (i) this neighbor
is a vertex from Q. Because of part (ii) pi must then also be connected to
qj+1.

(iv) Without loss of generality, say that pi also contains the color c1. Then, qj
must have the colors bQ and c3: all other color combinations share a color
with pi. Since qj+1 and pi both contain the color a there is no edge between
them so part (iii) implies that there is one between pi+1 and qj . Since pi+2

and qj share the color c3, the same argument implies that there is an edge
between pi+1 and qj+1.

ac1 bP c2 ac3 bP c4 ac1 bP c2 ac3 bP c4

bQc3 ac4 bQc1 ac2 bQc3 ac4 bQc1 ac2

P :

Q:

a tooth from P another tooth from P

a tooth from Q another tooth from Q

Fig. 1. A zipper chain.
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ac1 bP c2 ac3 bP c4 ac1 bP c2 ac3 bP c4

bQc3 ac4 bQc1 ac2 bQc3 ac4 bQc1 ac2

P :

Q:

Fig. 2. A possible triangulation of a zipper chain.

bP bP
ac1 bP c2 ac3 bP c4 ac1 bP c2 ac3

bQc3 ac4 bQc1 ac2 bQc3 ac4 bQc1 ac2 bQc3 ac4 bQc1 ac2

P :

Q:

Fig. 3. A zipper gadget of size 2 and skew 1.

(v) Apply part (iv) four times to the edge connecting the i-th and j-th teeth of
P and Q (respectively) to obtain an edge connecting the i+1-th and j+1-th
teeth of P and Q (respectively).

(vi) Suppose to the contrary that a tooth from P is locked together with two
teeth from Q. After some applications of parts (iii) and (iv) we find that the
last vertex from the tooth from P (which has colors bP and c3) is connected
to the last vertex from both teeth from Q. Because of part (ii), it is connected
to all four vertices of the tooth from Q with the higher index. At least one
of these also contains the color c3 so this is a contradiction.

⊓⊔

Zipper Gadgets. We now introduce the zipper gadget. It is a zipper chain with
a specific length and a head and tail. An example is given in Figure 3.

Definition 3. A zipper gadget of size n and skew s (satisfying n > 0, s ≥ 0) is
a zipper chain with the following modifications:

– The path P contains 4n− 1 vertices, and thus n teeth. The last tooth misses
one vertex.

– The path Q contains 4(n+ s) vertices, and thus n+ s teeth.
– There are two additional vertices with just the color bP : a head h and a tail

t. The head is connected to the first vertices of P and Q and the tail to the
last vertices of P and Q.

Proposition 4. There are exactly s+1 ways to triangulate a zipper gadget with
skew s. These ways are identified by the offset at which the teeth lock together.

Proof. Observe that the entire gadget forms a cycle, so Proposition 3 applies.
Consider a vertex from P that contains the color a. Its neighbors share the color



10 J.M. de Vlas

bP bP
ac1 bP c2 ac3 bP c4 ac1 bP c2 ac3

bQc3 ac4 bQc1 ac2 bQc3 ac4 bQc1 ac2 bQc3 ac4 bQc1 ac2

P :

Q:

Fig. 4. One of the two triangulations of the zipper gadget from Figure 3. This one has
offset 0.

bP , so Proposition 1(ii) shows that this vertex must be connected to some other
vertex from the cycle. This cannot be h, t or another vertex from P since that
would introduce a cycle containing only the colors a and bP . Hence, the other
endpoint must be a vertex from Q. This shows that each tooth from P is locked
together with at least one tooth from Q.

Proposition 3(vi) now shows that each tooth from P is locked together with
exactly one tooth from Q. Let ∆ be the index of the tooth locked together with
the first tooth of P . Proposition 3(v) now shows that any tooth with index i

must be connected to tooth i+∆. Since Q has s more teeth than P , the offset
∆ must be between 0 and s. We conclude that there are at most s + 1 ways to
triangulate a zipper gadget with offset s and that these ways are identified by
the offset.

To complete the proof, we now show that each case can actually be extended
into a triangulation of the zipper gadget. Let ∆ be the target offset. We add the
following edges:

– An edge between the head h and every vertex from the first ∆ teeth from
Q.

– Edges between the i-th tooth from path P and the i +∆-th tooth from Q

according to the pattern described in parts (iii) and (iv) of Proposition 3.
This includes one overlap edge between the last vertex of each tooth from P

and the first vertex from the next tooth from Q.
– An edge between the tail t and every vertex from the last s−∆ teeth from

Q.

An example of such a triangulation is given in Figure 4. One can observe that
this construction indeed triangulates the zipper gadget. ⊓⊔

6 XALP-hardness of Triangulating Multicolored Graphs

In this section we describe the reduction from Theorem 2. The intuition is as
follows. We want to reduce from Tree-chained Multicolor Independent

Set, which comes down to selecting a vertex from each color for each instance of
Multicolor Independent Set. These choices must be compatible: we may
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not choose two vertices which share an edge. The selection of a vertex will be
done by creating zipper gadgets and interpreting each possible triangulation as a
choice of a vertex. The compatibility checks will be done by combining two zipper
gadgets in a way that makes it impossible to simultaneously triangulate both
zipper gadgets in the respective choices. This construction borrows a technique,
namely on how to create and combine gadgets from the TCMIS tree, from the
XALP-completeness proof for Tree Partition Width from [4]. The actual
gadgets and their combination procedure are new.

Let an instance of TCMIS be given. Let T and k be the (binary) tree and
parameter from this instance. For any node n ∈ T , we have an associated instance
of Multicolor Independent Set consisting of a set of vertices Sc for each
color c. Without loss of generality, we can assume that all sets Sc have the same
size, say r + 1: if not, then we can add extra vertices to Sc that are connected
to all other vertices and thus never occur in an independent set. We also assume
that Sc is ordered in some way. This allows us to refer to vertices as vn,c,i where
n is the node from T , c is the color, and i is the index in Sc (which, for ease
of explanation, is zero-based). We also have a set of edges E, which we again
assume to be ordered in some way. Each edge connects two vertices vn1,c1,i1 and
vn2,c2,i2 where n1 and n2 are either the same node or neighbors in T and where
c1 and c2 are distinct if n1 = n2. Let m := |E| be the total number of edges.

First, we transform T into a rooted tree T ′ by choosing any node u ∈ T ,
adding two new nodes v and w and two edges (u, v) and (v, w), and setting w

as the root. This way, each node from the original tree T has a parent and a
grandparent in T ′. We now construct a graph G which will be an instance of
TMG. It will consist of several zipper gadgets in which some vertices have been
identified with each other: that is, where some vertices with distinct colors are
merged into one vertex with the combined set of colors. For each node n in T

and each color c in its associated instance of Multicolor Independent Set,
we add a zipper gadget zn,c of size 2mr + 1 and skew r. The middle tooth of
path P (with index mr + 1) is special: we call it the middle. We now say that
this zipper gadget starts in n, passes through the parent of n and ends in the
grandparent of n. This is supported with some vertex identifications: for each
node n in T ′, we identify the heads of all zipper gadgets starting at n, the tails
of all zipper gadgets ending at n, and the last vertex of the middles (with colors
c4 and bP ) of all zipper gadgets that pass through n. Observe that the path P

of each zipper gadget now consists of m sets of r teeth between its head and
middle, and also m sets of r teeth between its middle and tail.

Each zipper gadget is assigned its own set of 7 colors such that no two zipper
gadgets which start, pass through, or end in a common node share a color. We
claim that this can be done using at most 7k sets of 7 colors. Assign colors to
nodes in order of distance to the root of T ′ (closest to the root first). Let n be
the current node. All zipper gadgets that have already been assigned colors and
intersect with zipper gadgets starting from n are those that start at either: n’s
parent, the other child of n’s parent (n’s sibling), n’s grandparent, the other
child of n’s grandparent (n’s uncle), or any of the two children from that vertex
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(n’s cousins). In total, this is at most 6k other zipper gadgets. To color the k

zipper gadgets starting at n, we can thus use the remaining 7k − 6k = k sets of
7 colors.

In a triangulation of G, each zipper gadget will represent a choice of a vertex
from Sc: if the zipper gadget is triangulated with offset ∆, then we choose the
vertex with index ∆ from Sc. Each of the m sets of r teeth between head and
middle or between middle and tail will represent a restriction regarding one of
the edges. For each edge ei (with index i) with endpoints vn1,c1,i1 and vn2,c2,i2

we want to exclude the possibility of simultaneously triangulating the zipper
gadget zn1,c1 with offset i1 and the zipper gadget zn2,c2 with offset i2. This is
done as follows.

Let (P1, Q1) and (P2, Q2) be the paths which form the zipper gadgets. We
now identify two vertices from P1 and P2 and add a new color d to some vertices
from Q1 and Q2. This is visualized in Figure 5. The idea is that if we would
triangulate both zipper gadgets in a way that adds edges between the vertices
with color d and the merged vertex, then any triangulation of both zipper gadgets
together forces an edge between the vertices with the color d which is impossible.
We now describe exactly which vertices should be modified.

We consider two cases: either n1 and n2 are the same node or they are
neighbors in T . In the first case, we consider the tooth with index ir from both
P1 and P2 and identify the first vertex from these teeth with each other. We also
consider tooth ir + i1 from Q1 and tooth ir + i2 from Q2 and add a new color
d to the first vertex of these teeth. In the second case, we assume without loss
of generality that n1 is the parent of n2. We do almost the same as in the first
case, except that we use the second half of the zipper gadget zn2,c2 : we identify
the first vertex of tooth ir from P1 and tooth mr + 1 + ir from P2, and we add
color d to the first vertex of tooth ir + i1 from Q1 and tooth mr + 1 + ir + i2
from Q2.

This completes the construction. Observe that this construction uses 49k+1
colors (7k sets of 7 colors for the zipper gadgets and one for the extra color d) and
thus that the change in parameter is linear. Also observe that the construction
can be performed in logarithmic working space since the creation and merging
of the zipper gadgets only require local information from the original TCMIS
instance. This shows that we indeed have a logspace reduction.

The proof that this TMG instance admits a triangulation if and only if the
original TCMIS instance admits a solution is a direct result of the intuitive
insights mentioned during the construction and thus omitted from the main
text. A full proof is given in appendix section B.

7 Future Research

Let n be the input size, k the parameter, f any computable function, c any con-
stant, and ǫ any small positive constant. We have shown that Perfect Phy-

logeny and Triangulating Colored Graphs are XALP-complete and that
(assuming ETH) there exist no algorithms that solve any of them in f(k)no(k)
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d

d

P1:

Q1:

P2:

Q2:

Fig. 5. How two zipper gadgets are combined: two vertices from P1 and P2 are merged
into one vertex and two vertices from Q1 and Q2 are given the extra color d.

time. This increases the number of “natural” problems in the complexity class
XALP and gives more reason to determine properties of this complexity class.
Additionally, these problems can be used as a starting point for XALP-hardness
reductions for other parameterized problems.

Another future research direction might be to close or reduce the gaps be-
tween the current upper and lower bounds on space and time usage. For the
time gap, there is a lower bound of f(k)no(k) (assuming ETH) and an upper
bound of O(nk+1) [14]. For the space gap on algorithms that run in nf(k) time,
there is a lower bound of f(k)nc (assuming SPSC) and an upper bound of again
O(nk+1) [14]. One way to close the time gap could be by assuming the Strong
Exponential Time Hypothesis (SETH). We expect that, assuming SETH, a lower
bound like f(k)nk−ǫ should be possible.

We also rule out a research direction. Triangulating a colored graph comes
down to finding a tree decomposition where each bag contains each color at most
once. A similar problem would be to instead look for a path decomposition where
each bag contains each color at most one. This problem, known as Intervaliz-
ing Colored Graphs, is already NP-complete for the case k = 4 [1].
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Lemma 2. Let G be a graph and T a tree decomposition of G. Then for each
clique C there is a bag in T which fully contains C.

Proof. We use induction on the size of C. For |C| = 1 and |C| = 2, the result
follows directly from the definition of tree decomposition. Now suppose that
|C| > 2 and let v be a vertex from C. By induction hypothesis, there must be
a bag Br that contains C \ {v}. Consider T as a rooted tree with Br as root.
Let Tv be the subtree of bags that contain v, and let Bv be the lowest common
ancestor of all bags in Tv. Because Tv is connected, v ∈ Bv.

For any w ∈ C \ {v}, (v, w) is an edge so there must be a bag Bw ∈ Tv

that contains both v and w. Now, w is contained in both a descendant (Bw)
and ancestor (Br) of Bv, so w ∈ Bv. Since this holds for any w ∈ C \ {v}, we
conclude that C ⊂ Bv which completes the induction. ⊓⊔

Some notation: for a graph G = (V,E), tree decomposition T , and vertex set
C ⊂ V , we define TC as the subset of bags in T that contain C.

Lemma 3. Let T be a tree where each vertex (bag) is associated with a subset
of vertices from G. Then T is a tree decomposition of G if and only if: for each
clique C in G, TC is nonempty and connected.

Proof. (⇒): Let T be a tree satisfying this condition. All three conditions to
being a tree decomposition follow directly from the fact that single vertices and
edges are cliques.

(⇐): Let T be a tree decomposition. Let C be any clique. Lemma 2 shows
that TC is nonempty. We now show that it is connected. Let B1, B2 be two bags
that fully contain C. For any vertex v ∈ C, we know that T{v} is connected, so
every bag on the path between B1 and B2 contains v. Since this holds for any
v ∈ C, the bags between B1 and B2 fully contain C. It follows that TC contains
every bag between B1 and B2. Since this holds for any B1 and B2, we conclude
that TC is connected. ⊓⊔

We now prove the equivalence.

Theorem 4. The problems Triangulating Colored Graphs and Trian-

gulating Multicolored Graphs are equivalent under parameterized reduc-
tions. The parameter does not change under these reductions.

Proof. The right implication is trivial: each instance of TCG is also an instance
of TMG and each corresponding solution to TMG is also a solution to the TCG
instance. We focus on the left implication. Let G = (V,E) be an instance of
TMG (with k colors). Construct a graph G′ as follows. For each vertex v ∈ V

(with kv colors) we create a clique Cv containing kv vertices, each colored in one
of the colors of v. For each edge (v, w) ∈ E we add an edge between each pair
of vertices from Cv and Cw to turn Cv + Cw into a large clique. The resulting
graph G′ = (V ′, E′) is now an instance of TCG. We claim that it has a solution
if and only if the original TMG instance has a solution.
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First Direction. Let T be a tree decomposition of G that respects the multicol-
oring. For each vertex v, we replace each occurrence of v in bags of T with all the
vertices from Cv. Call the result T

′. We first show that T ′ is a tree decomposition
of G′ using Lemma 3.

Let a clique C′ ⊂ V ′ be given. For any vertex v ∈ V , we know that a bag of
T ′ contains either all vertices from Cv or none. This implies the following: if C′

contains some (but not all) vertices from Cv, then the set of bags that contain
C′ is the same as the set of bags that contain C′ ∪ Cv. Hence, without loss of
generality we may assume that C′ contains either all vertices from Cv or none.

Now, let C be the set of vertices v ∈ V such that Cv ⊂ C′. By construction
of T ′, we have that any bag in T contains C if and only if the corresponding bag
in T ′ contains C′. Since TC is a nonempty subtree, we find that T ′

C′ must also
be a nonempty subtree. As this holds for any C′, we conclude that T ′ is a tree
decomposition.

Additionally, T ′ respects the coloring: each vertex from V splits into a clique
Cv ⊂ V ′ which contains the same colors. Hence, each bag in T contains precisely
the same colors as the corresponding bag in T ′ which implies that T ′ cannot
contain a color more than once. This completes the first direction.

Second Direction. Let T ′ be a tree decomposition of G′ that respects the
coloring. We now construct the tree T as follows: T has the same shape as T ′,
and a bag in T will contain a vertex v if and only if the corresponding bag in T ′

contains every vertex from Cv. We first show that T is a tree decomposition.

Let a clique C ⊂ V be given. A bag in T now contains C if and only if
the corresponding bag in T ′ contains Cv for each vertex v ∈ C. This set C′ :=⋃

v∈C Cv is a clique: each Cv is a clique itself and for each two cliques Cv, Cw we
have that v and w are connected in G (since C is a clique) and consequently that
every vertex from Cv is connected to every vertex from Cw. Now, the alternate
definition of tree decomposition shows that T ′

C′ is a nonempty subtree. This
implies that TC is one as well. Since this holds for any clique C, we conclude
that T is a tree decomposition.

Additionally, T respects the coloring: each bag in T corresponds to a bag in
T ′ that contains the same colors (and possibly some more). Since T ′ respects
the coloring, T must do so as well. This completes the second direction.

We have now shown that the constructed instance of TCG is equivalent to
the original instance of TMG. Each vertex in G splits into at most k vertices in
G′, and each edge splits into at most k2 edges in G′. Hence, G′ contains at most
nk vertices, mk2 edges and k colors. Since this is polynomially many more than
the original instance and since the parameter k did not change, the reduction is
polynomial. This completes the proof. ⊓⊔
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B Full Proof of XALP-hardness

In this section we will show that the construction given in section 6 admits a
triangulation if and only if the original TCMIS instance admits a solution. This
completes the proof of Theorem 2.

First Direction. We will first show that if the TMG instance can be triangu-
lated, then there is a solution to the TCMIS instance. Suppose that the TMG
instance admits a triangulation. Because of Proposition 1(iii) this triangulation
corresponds with a tree decomposition.

We first introduce some lemmas on tree decompositions.

Lemma 4 ([3, Proposition 4]). Let G be a graph and P a path between two
vertices v, w. In any tree decomposition T of G, let B1 and B2 be two bags such
that v ∈ B1 and w ∈ B2. Now, each bag on the path from B1 from B2 in T

contains at least one vertex from P .

Lemma 5. Let G be a multicolored graph and P a path between two vertices
v, w whose vertices alternate between two colors. In any tree decomposition T of
G, let B1 and B2 be two bags such that v ∈ B1 and w ∈ B2. Now, each vertex
from P is contained in at least one bag on the path from B1 from B2 in T .

Proof. Omitted. See section C. ⊓⊔

Because of Proposition 4, each zipper gadget zn,c is triangulated with some
offset in,c between 0 and r. We now claim that, for each node n and color c,
choosing the in,c-th vertex of Sc forms a solution to the TCMIS instance. To
show this, we only need to show that we have chosen at most one endpoint for
each edge from the TCMIS instance. Let ej be an edge with endpoints vn1,c1,i1

and vn2,c2,i2 , let (P1, Q1) and (P2, Q2) be the paths of the corresponding zipper
gadgets zn1,c1 and zn2,c2 , and suppose to the contrary that zn1,c1 and zn1,c1 are
triangulated with offsets i1 and i2 (respectively). We consider two cases, either
n1 = n2 or they are neighbors in T .

In the first case, the head, the middle and the first vertex of tooth jr of the
paths P1 and P2 are pairwise identified with each other. We label these vertices
as h, m, and u respectively. Let Bh and Bm be (any) bags that contain h and
m (respectively). Note that there are four paths on G between h and m: each
zipper gadget introduces two paths. Also, each of these paths alternates in color.
Because of Lemma 5, there must be a bag B′ on the path between Bh and Bm

that contains u. Because of Lemma 4, B′ must contain a vertex from both Q1

and Q2, say v1 and v2.
We now claim that v1 and v2 both contain the color d. First consider v1, the

other case is analogous. Since P1 was triangulated with offset i1, the vertex u

must be connected to some vertex from tooth ir+ i1 from Q1. Since u has colors
a and c1, the vertex from Q1 can not have those colors. That leaves only one
option: the first vertex (with colors bQ and c3). This is precisely the vertex that
was given the color d in the construction, which completes the claim.
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We now have a contradiction: B′ contains two vertices with color d (one from
each zipper gadget). This shows that we cannot have chosen both endpoints of
ej and completes the first case.

The second case is almost analogous. We assume without loss of generality
that n1 is a parent of n2. We now have that the head, middle, and first vertex
of tooth ir + i1 from zn1,c1 are (respectively) identified with the middle, tail,
and first vertex of tooth mr + 1 + ir + i2 from zn2,c2 . We now apply the same
reasoning as in the first case on these vertices. Overall, this completes the first
direction.

Second Direction. We will now show that if the TCMIS instance has a so-
lution, then the TMG instance can be triangulated. For each node n and color
c, the TCMIS solution consists of a choice of some vertex in,c. In the TMG
instance, this will correspond to a triangulation of the zipper gadget zn,c with
offset in,c. This alone is not enough to obtain a triangulation; we need to add
more edges. We will do this by creating a colored tree decomposition, which
corresponds to a triangulation because of Proposition 1(iii).

We describe the tree decomposition in three steps. In the first step, we add
a bag Bn for each node n of T ′. This bag contains the shared vertex from all
zipper gadgets that start, pass through, or end in n. It also contains a vertex of
the path Q from each of those zipper gadgets: the first vertex for each zipper
gadget that starts in n, the last vertex for each zipper gadget that ends in n,
and the first vertex of tooth rm + 1 + ∆ (where ∆ is the offset of this zipper
gadget) for each zipper gadget that passes through n.

In the second step we will add m − 1 bags between each pair of bags from
the previous step. Let n1 and n2 be two adjacent nodes from T ′ and let B1 and
B2 be the corresponding bags from the previous step. Without loss of general-
ity, we assume that n2 is the parent of n1. We now create a sequence of bags
B′

0, B
′
1, . . . , B

′
m with B′

0 := B1 and B′
m := B2. The path between B′

i−1 and B′
i

will correspond to the edge i.

Each bag B′
i will contain the first vertex from the ir-th tooth of the path P

for every zipper gadget that starts at B1 and passes through B2. Additionally,
it will contain the first vertex of the ir + ∆-th tooth of the path Q for those
zipper gadgets. Similarly, for zipper gadgets that pass through B1 and end at
B2, it will contain the first vertex from the mr + 1 + ir-th tooth of P and the
first vertex from the mr + 1 + ir +∆-th tooth of Q. This completes the second
step.

Note that all the bags we have added so far do not contain any color more
than once: each two zipper gadgets that share a common start, end, or middle
vertex have distinct colors. Furthermore, each bag contains the extra color d at
most once: each bag B′

i only contains the color d if n1 contains an endpoint of
edge i and if the zipper gadget corresponding to the color of that endpoint was
triangulated with the proper offset. That is, if we chose the endpoint. Since the
TCMIS instance chooses at most one endpoint for each edge, B′

i contains the
extra color d at most once.
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Recall that in the construction of the TMG instance, each edge i resulted in
merging a vertex from two paths P for the zipper gadgets that correspond to its
endpoints. In the bags we have added so far, this merged vertex does not cause
a problem: it ends up in the same bag when viewed from both zipper gadgets.

In the third step, we add more bags between two adjacent bags from the
previous step. Let B′

i and B′
i+1 be two adjacent bags that correspond to the

edge i. Recall that these bags each contain the first vertex of some tooth for
some set of zipper gadgets. Also, the vertices between them do not contain any
merged vertices; those where all handled in the previous steps.

For each zipper gadget on its own, we could easily complete the tree decom-
position between these bags using the tree decompositions that correspond to
the triangulations of the zipper gadgets (note that these are paths). For the set
of zipper gadgets as a whole, we need some care to avoid adding the color d to
the same bag twice. We do this by “sliding along” the zipper gadgets one by
one: we start with some bags where we partially follow the triangulation of one
zipper gadget, then add some bags where follow the triangulation of a second
zipper gadget, and so on. We may also slide a bit further along the same zipper
gadget multiple times. The exact order is described below.

– First, if B′
i contains the color d because of some zipper gadget, slide along

that zipper gadget for 1 tooth. This way, the current bag no longer contains
the extra color d.

– Now, loop over every zipper gadget one by one except possibly the one that
causes B′

i+1 to contain the color d. For each such zipper gadget, slide along
it until we arrive at the tooth contained in bag B′

i+1. During this, there may
have been some bags which contain the color d but it will not be in the
current bag when we continue to the next zipper gadget.

– Finally, handle the zipper gadget that causes B′
i+1 to contain the color d (if

it exists). We slide over it until we reach the vertex contained in B′
i+1. Here,

the final bag will contain the color d.

This completes the third step and thus also the construction of the tree de-
composition. Because of the arguments given during the construction, each bag
contains each color at most once. Since all bags consist of an interlocking of
sliding along the zipper gadgets, we have that each vertex is contained in a con-
nected subtree and that the endpoints of each edge are contained in some bag.
This proves that the above construction is indeed a tree decomposition. We con-
clude that a tree decomposition exists, and consequently that the TMG instance
has a solution. This completes the second direction.

Overall, we have now shown that the original TCMIS instance admits a
solution if and only if the constructed TMG instance does. This completes the
proof of Theorem 2. ⊓⊔

C Remaining Proofs

This section includes some proofs that were omitted from the main text.
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Proof (of Proposition 1). We prove the parts in order.

(i) Consider a triangulation of G. We use induction on the size of C. If |C| = 3,
then one of the two colors must occur at least twice, hence one of the edges
from C connects two vertices sharing a color. If |C| ≥ 4, then C contains a
chord. This chord splits C into two smaller cycles which share the chord as
a common edge. Applying the induction hypothesis on one of these cycles
shows that G cannot be triangulated into a properly colored graph.

(ii) Consider a triangulation of G and suppose to the contrary that both the edge
and the chord do not exist. We use induction on the size of C. If |C| = 3,
then v’s neighbors are connected. If |C| ≥ 4, then C contains a chord. This
chord cannot connect v’s neighbors or have v as an endpoint. Hence, it splits
C into two smaller cycles (which share the chord as a common edge) such
that both v and its neighbors are contained in one of them. Applying the
induction hypothesis on this cycle completes the proof.

(iii) For colored graphs, the left implication was shown in [6] and the right im-
plication in [11]. The proof for multicolored graphs is very similar to the
colored version and thus omitted.

⊓⊔

Proof (of Lemma 1). The right implication is trivial. We focus on the left im-
plication. Let T be a tree decomposition. If there is a color that is contained
in some but not all bags, then there must exist two adjacent bags B1, B2 such
that B1 does not contain a vertex with this color and B2 does. We can then
add this vertex from B2 to B1 and observe that the result is still a valid tree
decomposition where each bag contains each color at most once. By repeating
this argument, we must eventually reach a state where every bag contains all
colors. ⊓⊔

Proof (of Lemma 5). Let u be a vertex from P and suppose to the contrary
that no bag on the path from B1 and B2 contains u. We split P into two parts:
P1 from v to u and P2 from u to w. Let B3 be (any) bag that does contain
u. Because of Lemma 4, each bag on the path from B1 to B3 contains some
vertex from P1. Analogously, each bag on the path from B3 to B2 contains
some vertex from P2. Since T is acyclic, the paths between B1, B2 and B3

must intersect in some point, so there is a bag B which lies on all three paths.
This bag then contains a vertex from P1, a vertex from P2, and it does not
contain u. In particular, it contains two non-adjacent vertices from P . That
means that, in the corresponding triangulation of G, there is an edge between
two non-adjacent vertices of P . This edge combined with p induces a cycle which
alternates between two colors and that is impossible because of Proposition 1(i).
Hence, we arrive at a contradiction. ⊓⊔
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