
Outerplanar and Forest Storyplans

Jiří Fiala1 , Oksana Firman2 , Giuseppe Liotta3 , Alexander Wolff2 , and
Johannes Zink2

1 Charles University, Prague, Czech Republic
2 Universität Würzburg, Würzburg, Germany

3 Università degli Studi di Perugia, Perugia, Italy

Abstract. We study the problem of gradually representing a complex
graph as a sequence of drawings of small subgraphs whose union is the
complex graph. The sequence of drawings is called storyplan, and each
drawing in the sequence is called a frame. In an outerplanar storyplan,
every frame is outerplanar; in a forest storyplan, every frame is acyclic.
We identify graph families that admit such storyplans and families for
which such storyplans do not always exist. In the affirmative case, we
present efficient algorithms that produce straight-line storyplans.

1 Introduction

A possible approach to the visual exploration of large and complex networks is
to gradually display them by showing a sequence of frames, where each frame
contains the drawing of a portion of the graph. When going from one frame to
the next, some vertices and edges appear while others disappear. To preserve
the mental map, the geometric representation of vertices and edges that are
shared by two consecutive frames must remain the same. Informally speaking,
a storyplan for a graph consists of a sequence of frames such that every vertex and
edge of the graph appears in at least one frame. Moreover, there is a consistency
requirement (as for the labels in a zoomable digital map [2]): once a vertex
disappears, it may not re-appear. Hence, after a vertex appears, it remains visible
until all its incident edges are represented; then it disappears in the transition
to the next frame. See Fig. 1 for a storyplan.

Since edge crossings are a natural obstacle to the readability of a graph
layout [10], Binucci at al. [4] introduced and studied the planar storyplan problem
that asks whether a graph G admits a storyplan such that every frame is a
crossing-free drawing and in every frame a single new vertex appears. Binucci
et al. showed that the problem is NP-complete in general and fixed-parameter
tractable w.r.t. the vertex cover number. They also proved that every graph of
treewidth at most 3 admits a planar storyplan.

Motivated by the research of Binucci et al., we forward the idea of represent-
ing a graph with a storyplan such that each frame is a drawing whose visual
inspection is as simple as possible. Specifically, we study the outerplanar sto-
ryplan problem and the forest storyplan problem, which are defined analogously
to the planar storyplan problem (see Definition 1 below). We let the classes
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Fig. 1: A forest storyplan of the Petersen graph.

of graphs that admit planar, outerplanar and forest storyplans be denoted by
Gplanar, Gouterpl, and Gforest, respectively. Clearly, Gforest ⊆ Gouterpl ⊆ Gplanar ⊆ G,
where G is the class of all graphs. To further simplify visual inspection, our al-
gorithms draw all frames with straight-line edges. We call storyplans with this
property straight-line storyplans.

Beside the work of Binucci et al., our research relates to the graph drawing
literature that assumes either dynamic or streaming models (see, e.g., [1,3,6,7])
and to recent work about graph stories (see, e.g., [5, 9]). The key difference to
our work is that these papers (except [4]) assume that the order of the vertices
is given as part of the input. We now summarize our contribution, using △-free
as shorthand for triangle-free.

– We establish the chain of strict containment relations Gforest ⊊ Gouterpl ⊊
Gplanar ⊊ G (see Fig. 2) by showing that
• there is a △-free 6-regular graph that does not admit a planar storyplan;
• there is a K4-free 4-regular planar graph that (trivially) admits a planar

storyplan, but does not admit an outerplanar storyplan; and
• there is a △-free 4-regular (nonplanar) graph that admits an outerplanar

storyplan, but does not admit a forest storyplan.
Recall that a triangulation is a maximal planar graph; it admits a planar
drawing where every face is a triangle. We show that no triangulation (except
for K3) admits an outerplanar storyplan; see Section 3.

– We show that every partial 2-tree and every subcubic graph except K4 ad-
mits an outerplanar straight-line storyplan (in linear time); see Section 4. In
our construction for subcubic graphs, every frame contains at most five edges.

– A graph must be △-free in order to admit a forest storyplan. We show that
△-free subcubic graphs (as the Petersen graph in Fig. 1), and △-free planar
graphs admit straight-line forest storyplans (which we can compute in linear
and polynomial time, respectively); see Section 5.

We start with some preliminaries in Section 2 and close with open problems
in Section 6. We postpone the proofs of statements with a (clickable) “⋆” to the
appendix. Given a positive integer n, we use [n] as shorthand for {1, 2, . . . , n}.
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Gforest Gouterpl Gplanar• bipartite

• 4-free planar

• triangulations
except K3

• C2,2,2,2,2 (Fig. 3c):
4-regular and 4-free

• Kn for n ≥ 5 [4]

G

• C3,3,3,3,3 (Fig. 3a):
6-regular and 4-free

• 3-trees [4]

• 2-trees

• subcubic except K4

• 4-free subcubic

Fig. 2: Overview: existing [4] and new storyplan results, implying Gforest ⊊ Gouterpl ⊊
Gplanar ⊊ G. (For simplicity, we mention 2-/3-trees rather than partial 2-/3-trees.)

2 Preliminaries

Our definitions of a planar, an outerplanar, and a forest storyplan are based on
the definition of a planar storyplan of Binucci et al. [4].

Definition 1. A planar storyplan S = ⟨τ, (Di)i∈[n]⟩ of G is a pair defined as
follows. The first element is a bijection τ : V → [n] that represents a total order of
the vertices of G. For a vertex v ∈ V , let iv = τ(v) and let jv = maxu∈N [v] τ(u),
where N [v] is the set containing v and its neighbors. The interval [iv, jv] is the
lifespan of v. We say that v appears at step iv, is visible at step i for each
i ∈ [iv, jv], and disappears at step jv + 1. Note that a vertex disappears only
when all its neighbors have appeared. The second element of S is a sequence of
drawings (Di)i∈[n], called frames of S, such that, for i ∈ [n]: (i) Di is a drawing
of the graph Gi induced by the vertices visible at step i, (ii) Di is planar, (iii) the
point representing a vertex v is the same over all drawings that contain v, and
(iv) the curve representing an edge e is the same over all drawings that contain e.

We emphasize that though for the definition of a storyplan we allow that edges
could be represented by curves, our constructions use only straight-line seg-
ments. For an outerplanar storyplan and a forest storyplan, we strengthen re-
quirement (ii) to Di being outerplanar and Di being a crossing-free drawing of
a forest, respectively. In what follows, we will sometimes use a slight variant of
Definition 1, in which we enrich the sequence (Di)i∈[n] of frames by explicitly
representing the portions of the drawings that consecutive frames have in com-
mon. More precisely, for i ∈ [n− 1], let D′

i = Di ∩Di+1. Then, a storyplan is a
sequence of drawings ⟨D1, D

′
1, . . . , Dn−1, D

′
n−1, Dn⟩, where in each step i < n,

we first introduce a vertex (in Di) and then remove all completed vertices (in D′
i),
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that is, the vertices that disappear in the next step. Similar to D′
i, we define G′

i

for i ∈ [n− 1] as the graph induced by the vertices of V (Gi)∩V (Gi+1). We now
list some useful observations.

Property 1. If a graph G admits a planar, an outerplanar, or a forest storyplan,
then the same holds for any subgraph of G. Conversely, if a graph G does not
admit a planar, an outerplanar, or a forest storyplan, then the same holds for
all supergraphs of G.

Lemma 1 ( [4]). Let Ka,b = (A ∪ B,E) be a complete bipartite graph with
a = |A|, b = |B|, and 3 ≤ a ≤ b. Let S = ⟨τ, {Di}i∈[a+b]⟩ be a planar storyplan
of Ka,b. Exactly one of A and B is such that all its vertices are visible at some
i ∈ [a+ b].

Example 1. Every bipartite graph admits a forest storyplan: first add all vertices
of one set of the bipartition and then, one by one, the vertices of the other set.
Note that each vertex of the second set is visible in only one frame.

3 Separation of Graph Classes

Trivially, triangulations admit planar storyplans, but as we show now, no trian-
gulation (except for K3) admits an outerplanar storyplan.

Theorem 1. No triangulation (except for K3) admits an outerplanar storyplan.

Proof. For a triangulation, the closed neighborhood of each vertex induces a
wheel, which is not outerplanar. For the first vertex that disappears accord-
ing to a given storyplan, however, its whole closed neighborhood, which is not
outerplanar, must be visible. ⊓⊔

Example 2 (Platonic graphs). According to Theorem 1, the tetrahedron, the
octahedron, and the icosahedron do not admit outerplanar storyplans because
they are triangulations. The cube is bipartite; hence, it admits a forest storyplan
due to Example 1. The dodecahedron is △-free and cubic; hence, it admits
a forest storyplan due to Theorem 5. For an ordering of the vertices of the
dodecahedron that corresponds to a forest storyplan, see Fig. 13 in the appendix.

We now separate the graph classes Gforest, Gouterpl, Gplanar, and G; see Fig. 2.

Theorem 2. The following statements hold:

1. There is a △-free 6-regular graph that does not admit a planar storyplan;
hence Gplanar ⊊ G.

2. There is a K4-free 4-regular planar graph that does not admit an outerplanar
storyplan; hence Gouterpl ⊊ Gplanar.

3. There is a △-free 4-regular (nonplanar) graph that admits an outerplanar
storyplan, but does not admit a forest storyplan; hence Gforest ⊊ Gouterpl.
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(a) C3,3,3,3,3 (b) the octahedron graph
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(c) C2,2,2,2,2

Fig. 3: Three graphs from the proof of Theorem 2. The graph in (a) is △-free and
does not admit any planar storyplan. The octahedron graph in (b) does not admit
any outerplanar storyplan. The graph in (c) is △-free and does not admit any forest
storyplan (but the vertex numbering corresponds to an outerplanar storyplan – if
vertex 8 is placed at the position of vertex 6, which will have disappeared by then).

Proof. 1. The graph C3,3,3,3,3 (see Fig. 3a) is △-free and 6-regular, but does
not admit a planar storyplan as we will now show. Let V (G) = V1 ∪ · · · ∪ V5

be the partition of the vertex set into independent sets of size 3. Note that,
for i ∈ {1, 2, 3, 4, 5}, G[Vi ∪ V(i mod 5)+1] is isomorphic to K3,3. For K3,3 =
G[V1 ∪ V2], we know by Lemma 1 that, in any planar storyplan, either all
vertices of V1 or all vertices of V2 are shown simultaneously, say, those of V1.
Hence, for a frame to be planar, the vertices of V2 and V5 cannot be shown
simultaneously. This, in turn, means that the vertices of V3 and V4 must be
shown simultaneously. But then there must be a frame with a drawing of
the non-planar graph G[V3 ∪ V4] = K3,3.

2. Observe that the octahedron (see Fig. 3b) is planar, 4-regular, and K4-free,
but does not admit an outerplanar storyplan due to Example 2.

3. The graph C2,2,2,2,2 (see Fig. 3c) is △-free and 4-regular, but does not admit
a forest storyplan. The proof is analogous to the one above. There needs to
be a frame with a drawing of K2,2, which is not a tree. On the other hand,
the order of the vertices shown in Fig. 3c yields an outerplanar storyplan.
Note that we cannot use the vertex positions exactly as in the figure, but if
we place vertex 8 at the position of vertex 6 (which will have disappeared
by then), every frame is crossing-free.

⊓⊔

4 Outerplanar Storyplans

In this section we present families of graphs that admit outerplanar storyplans.

Theorem 3. Every partial 2-tree admits a straight-line outerplanar storyplan,
and such a storyplan can be computed in linear time.
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Fig. 4: A 2-tree G with a stacking order (a); its tree decomposition yields a vertex order
σ = ⟨1, 2, 3, 4, 8, 5, 6, 7, 9⟩ (b); and an embedding of G that together with σ defines an
outerplanar storyplan (c).

Proof. Due to Property 1, it suffices to prove the statement for 2-trees.
Let G be a 2-tree. Hence, there exists a stacking order σ = ⟨v1, . . . , vn⟩ of

the vertex set V (G). In other words, G can be constructed as follows: we start
with v1, v2, v3 forming a K3 and then, for i ≥ 4, vi is stacked on an edge vkvℓ
with k, ℓ < i, that is, vi is connected to vk and vℓ by edges. We claim that we
can choose a vertex order σ′ and an embedding E of G such that σ′ (together
with E) defines an outerplanar storyplan. Moreover, we can obtain a straight-line
drawing of G with embedding E in linear time [8,13]. Let Γ be such a drawing.
For the outerplanar storyplan that we construct we use the positions of vertices
and edges as in Γ . This yields a straight-line storyplan. Fig. 4(a) shows a 2-tree
with a stacking order (that is not an outerplanar storyplan).

To show that an outerplanar storyplan always exists, we create a tree decom-
position TG,σ of G. The root of TG,σ represents the triangle ∆v1v2v3 given by
the first three vertices of σ. For i = 4, 5, . . . , let vi of σ be stacked onto the edge
vkvℓ with k < ℓ < i. We add a node to TG,σ that represents vi and is a child of
the node representing vℓ. Note that if ℓ ≤ 3, then this new node is a child of the
root. Fig. 4(b) shows a tree decomposition of the 2-tree in Fig. 4(a).

From TG,σ, we obtain a vertex order σ′ = ⟨v′1, v′2, . . . , v′n⟩ being an outerplanar
storyplan as follows; see Fig. 4(c). Let v′1 = v1, v′2 = v2, and v′3 = v3. Now, we
traverse the nodes of TG,σ in (depth-first) pre-order and add the represented
vertices of G to σ′. We claim that for σ′, we can choose an embedding E (defined
implicitly next) of G such that all frames are outerplanar. Note that the first
three vertices form a triangle, which always admits an outerplanar drawing. Now
consider v′i for i = 4, 5, . . . . Our invariant is that, before the i-th frame starts, the
parent p of v′i in TG,σ has degree 2 in the current outerplanar drawing and lies on
the outer face. This implies that v′i can be added to the outer face because it is
stacked onto an edge of the outer face resulting again in an outerplanar drawing.
Of course, for i = 4, our invariant is satisfied. If p = v′i−1, then our invariant is
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trivially satisfied. Otherwise, let p = v′j for some j < i − 1. Observe that, for
k ∈ {j +1, . . . , i− 1}, each v′k will have disappeared by the end of the (i− 1)-th
frame. This is due to the fact that v′k is not an ancestor of vi, which means
that all of the neighbors of v′k have already been introduced to the storyplan
due to the depth-first pre-order traversal. Essentially, every frame given by σ′

shows a subpath of TG,σ, which is a sequence of stacked triangles admitting an
outerplanar drawing. ⊓⊔

Theorem 4 (⋆). Every subcubic graph except K4 admits a straight-line out-
erplanar storyplan with at most five edges in each frame, and such a storyplan
can be computed in linear time.

Proof. Due to Property 1, it suffices to prove the statement for cubic graphs.
We can assume that the given cubic graph G (which is not K4) is connected;

otherwise we consider each connected component separately. For an outerpla-
nar storyplan, we will order the vertices v1, . . . , vn of G such that the result-
ing sequence of graphs ⟨G1, G

′
1 . . . , Gn−1, G

′
n−1, Gn⟩ has the following property:

for 4 ≤ i ≤ n−1, G′
i has at most two edges. Only for i = 3, G′

i may be a triangle
and would thus contain three edges. Then we show how to obtain outerplanar
drawings D1, D

′
1 . . . , Dn−1, D

′
n−1, Dn of the graphs G1, G

′
1 . . . , Gn−1, G

′
n−1, Gn,

respectively. For i ∈ [n], let Hi = G[{v1, . . . , vi}].
We pick the first vertex v1 arbitrarily. For 1 < i ≤ n, let v denote a vertex of

G′
i−1 with maximum degree in Hi−1. If there are more choices, let v additionally

have maximum degree in G′
i−1. We then select vi ∈ V (G) \ {v1, . . . , vi−1} as a

neighbor of v in G. Note that v always has such a neighbor, otherwise v would
already be completed and, hence, would not be in G′

i−1. The intuition behind
this choice is that we want to remove v from the drawing as soon as possible.

We claim that, for 4 ≤ i ≤ n− 1, the graph G′
i contains at most two edges.

In addition, if G′
i contains two edges, then these edges are both incident with vi.

This would mean that, for i ∈ [n], Gi contains at most five edges. Indeed, even
if G′

3 has three edges (that is, G′
3 is a triangle; see Fig. 10), then G4 still has at

most five edges since G is not K4. Clearly, D1 and D2 have at most two edges.
We consider three cases depending on the degree of v in G′

i−1; see Fig. 5.

(C1) Vertex v does not have any neighbors in G′
i−1. By the choice of v, this

implies that there are no edges in G′
i−1 because Hi−1 is connected and, for

an edge in G′
i−1, Hi−1 contains an incident degree-2 vertex. Note that all

edges in Gi are new and incident with vi. If vi has three neighbors in Gi,
then vi will disappear, and there are no more edges in G′

i. Hence, G′
i has

at most two edges. Note that both edges are incident with vi.
(C2) Vertex v has one neighbor in G′

i−1. If v has degree 2 in Hi−1, then v
disappears in the next step and G′

i does not contain it. Since vi has at
most one edge that stays in G′

i, the number of edges in G′
i is not larger

than in G′
i−1. If v has degree 1 in Hi−1, then, by construction, all other

vertices in Gi−1 have also degree at most 1 in Hi−1. Hence, i = 3, that is,
v and its neighbor are the first two vertices that we introduced.
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v v

vi

D′i−1 D′i

(a) case (C1)

v v

vi

D′i−1 D′i

(b) case (C2)

v v

vi

D′i−1 D′i

(c) case (C3)

Fig. 5: Cases considered in the proof of Theorem 4. In all of them, the number of edges
in G′

i is maximized. Gray vertices and edges were visible in some previous steps.

(C3) Vertex v has two neighbors in G′
i−1. In this case, the two edges incident

with v are the only edges in G′
i−1. Then v disappears as vi is its last neigh-

bor. Therefore, G′
i contains at most one edge that vi may have introduced.

We have shown that, in each case, the number of visible edges in G′
i, for

4 ≤ i ≤ n− 1, is at most two. Note that, if there are two edges, then they share
an endpoint. In the appendix, we show that we can always find a position of the
vertices such that each frame is outerplanar and straight-line.

To see the linear runtime, note that we can choose vi and update Hi in
amortized constant time by using a suitable data structure [12]. The other steps
of our construction require constant time for each vertex vi. ⊓⊔

5 Forest Storyplans

Clearly, any triangle is an obstruction for a graph to admit a forest storyplan.
Interestingly, for planar and subcubic graphs this is the only obstruction for the
existence of a forest storyplan as we show now.

Theorem 5 (⋆). Every △-free subcubic graph admits a straight-line forest
storyplan. Such a storyplan can be computed in linear time and has at most five
edges per frame.

Proof sketch. We use the storyplan from the proof of Theorem 4. By construc-
tion, we never get a cycle since we consider triangle-free graphs. ⊓⊔

As a warm-up for our main result, we briefly show the following weaker result.

Observation 1 Every △-free outerplanar graph admits a straight-line forest
storyplan, and such a storyplan can be computed in linear time.

Proof. Let G be a △-free outerplanar graph, and let Γ be an outerplanar straight-
line drawing of G. Let σ = ⟨v1, v2, . . . , vn⟩ be the circular order of the vertices
along the outer face of Γ (which can easily be determined in linear time [11]).
We claim that σ yields a forest storyplan of G. (Note that the positions of the
vertices in Γ will make this storyplan straight-line.)
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To this end, we show that there is no frame where a complete face of Γ is
visible. If this is true, then no frame contains a complete cycle. This is due to
the fact that, in outerplanar graphs, the vertex set of every cycle contains the
vertex set of at least one face. Let F = ⟨vi1 , vi2 , . . . , vik⟩ with i1 < i2 < · · · < ik
be a face of G. Since G is △-free, we have k ≥ 4. Note that vi1 and vi3 as well
as vi2 and vi4 are not adjacent. Since G is outerplanar, vi2 may be adjacent only
to vertices that appear in σ between (and including) vi1 and vi3 . Therefore, vi2
disappears before vi4 appears. Hence it is indeed not possible that all vertices of
the same face appear in a frame. ⊓⊔

Now we improve upon the simple result above. Note, however, that we do
not guarantee a linear running time any more.

Theorem 6. Every △-free planar graph admits a straight-line forest storyplan,
and such a storyplan can be computed in polynomial time.

Proof. Let G be a △-free planar graph, and let Γ be a planar straight-line
drawing of G. In the desired forest storyplan for G, we use the position of the
vertices in Γ .

We first give a rough outline of our iterative algorithm and then describe the
details. In each iteration (which spans one or more steps of the storyplan that
we construct), we pick a vertex on the current outer face, which means that we
add it and its neighbors (if they are not visible yet) to the storyplan one by one.
In this way, after each iteration, at least one vertex disappears, namely the one
we picked.

Let G1 = G and, for i ∈ {1, 2, . . . }, let vi be the vertex that we pick in
iteration i, and let Gi+1 be the subgraph of Gi that we obtain after removing the
vertices (and the edges incident to them) that disappear in iteration i; see Fig. 7b.
The algorithm terminates as soon as Gi is a forest and adds the remaining
vertices in arbitrary order to the storyplan under construction. We call vertices
and edges incident with the (current) outer face outer. The others are inner.

We always pick outer vertices. For this reason, only two types of vertices
are problematic for avoiding cycles: the endpoints of chords (i.e., inner edges
incident with two outer vertices) and the endpoints of half-chords (i.e., length-2
paths that connect two outer vertices via an inner vertex).

Let G′
i be the (embedded) subgraph of Gi (embedded according to Γ ) that

consists of all vertices and edges that lie on a simple cycle that bounds the outer
face of Gi, plus every edge that connects two cycles, plus all chords and half-
chords (and, thus, plus the inner vertices that lie on the half-chords) of Gi; see
Figs. 6 and 7c. For example, the edges e and e′ of G2 in Fig. 7b are not part
of G′

2. We say that a vertex of G′
i is free if it lies on the outer face and is not

part of a chord or a half-chord.
Let Hi be the weak dual of G′

i (see Fig. 7c), i.e., the (embedded) multigraph
that has a vertex for each inner face of G′

i and an edge for each pair of inner
faces that are incident with a common edge of G′

i. Note that Hi is outerplane
(since the inner vertices of G′

i form an independent set) and that Hi has no loops
(since G′

i does not have leaves). We maintain the following invariants:
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Fig. 6: From an embedded △-free planar graph Gi (black & gray), we obtain G′
i (black).

Note that G′
i decomposes into seven simple cycles and two connected components. The

outer edges and vertices of these connected components form cactus graphs.

1124

32
4

5

6

7385

96

11

1213 10

(a) △-free planar graph G
with a forest storyplan

112

3
4e

e′

(b) iteration 2: subgraph G2

(black) of G1 = G

112

3
4

(c) subgraph G′
2 of G2

with weak dual H2 (green)

Fig. 7: A △-free planar graph G where (a) shows a forest storyplan computed by our
algorithm, (b) shows the result of the first iteration of the algorithm, and (c) shows
the auxiliary graph for the second iteration. Subscripts refer to the iteration in which
a vertex is picked. Red crosses mark vertices that may not be picked.

(I1) At no point in time, the set of visible edges on the outer face forms a cycle.
(I2) During iteration i, the only inner vertices that may be visible are those that

are adjacent to vi and to no other visible vertex on the outer face.
(I3) During iteration i, the only inner edges that may be visible are those that

are incident with vi and to no other vertex on the outer face.
(I4) At the end of each iteration (after removing the vertices that are not visible

any more and before picking a new one), only vertices and edges incident
with the outer face are visible.

Obviously, if the invariants hold, the set of visible edges in each frame forms
a forest. In order to guarantee that the invariants hold, we use the following
rules that determine which vertices we may not pick; see Fig. 8. We call a vertex
observing these rules good. Note that we always pick a good vertex on the outer
face of G′

i – we will later argue that there always is one.

(R1) Do not pick a vertex v whose extended neighborhood N [v] = {v}∪{u : uv ∈
E(Gi)} contains all invisible vertices of the outer face of G′

i.
(R2) Do not pick an endpoint of a chord.
(R3) Do not pick a neighbor of an endpoint of a chord if the other endpoint of

that chord is visible.
(R4) Do not pick an endpoint of a half-chord if the other endpoint is visible.
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(a) rule (R1) (b) rule (R2) (c) rule (R3) (d) rule (R4)

Fig. 8: Rules that determine which vertices may not be picked (marked by red crosses).
Black squares represent visible vertices, white squares represent invisible vertices, and
gray disks represent vertices that may be visible or invisible.

Rule (R1) ensures that we do not close a cycle on the outer face, thus,
invariant (I1) holds. Rule (R4) ensures that none of the visible inner vertices is
adjacent to two visible vertices on the outer face (including the picked vertex),
thus, invariant (I2) holds. Rules (R2) and (R3) ensure that no chords are visible.
Together with rule (R4) and the fact that G is △-free, they ensure that the inner
edges that are visible are incident with the picked vertex and no other vertex
on the outer face. Thus, invariant (I3) holds. Invariant (I4) holds because we
always pick a vertex on the outer face and remove it. As a result, the faces
incident with the picked vertex become part of the outer face and the previously
inner neighbors (if any) of the picked vertex become incident with the outer face.

It remains to prove that, as long as Gi is not a forest (and the algorithm
terminates), there exists a vertex that can be picked without violating any of
our rules. Our proof is constructive; we show how to find a vertex to pick.

We first show that Hi is a (collection of) cactus graph(s), that is, every edge
of Hi lies on at most one cycle. Suppose that Hi contains an edge e1 that lies
on at least two simple cycles. If the interiors of the two cycles are disjoint, then
e1 is not incident to the outer face of Hi (contradicting Hi being outerplane).
Otherwise, one of the cycles has at least one edge e2 ̸= e1 in the interior of the
other cycle, again contradicting Hi being outerplane.

We show in two steps that Gi (actually even G′
i) always contains a good

vertex, which we pick. First, we show how to find a good vertex in the base
case, that is, if the outer face of G′

i is a simple cycle. Then, we consider the
general case where the outer face of G′

i is a (collection of) cactus graph(s). Here,
we repeatedly apply the argument of the base case to find a good vertex. So,
assume that the outer face of G′

i is a simple cycle and, hence, Hi is connected.
In the trivial case that the weak dual Hi is a single vertex, G′

i is a cycle of at
least four free vertices. Due to invariant (I1), there is an invisible vertex v ∈ G′

i.
Any non-neighbor of v in G′

i is a good vertex, which we can pick.
If Hi has a vertex of degree 1, which corresponds to a face f of G′

i, it means
that f is incident with exactly one chord and to no half-chords. Since G is △-
free, there are at least two free vertices in f . Note that at most one endpoint of
the chord is visible (due to invariant (I3)). If one endpoint is indeed visible, then
its unique neighbor on the boundary of f that is not incident with the chord
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v f f ′ v′

u

w

(a) case (C1)

v f

u

w

(b) case (C2)

v f

u

w

(c) case (C3)

Fig. 9: Cases when there is no chord in G′
i. We always find a good vertex.

observes all rules and can be picked. If none of the endpoints of the chord is
visible, then any free vertex of f can be picked.

Otherwise, all vertices of Hi have degree at least 2. Let F be the set of faces
of G′

i that are incident with exactly one half-chord and to an arbitrary number
of outer edges (but to no other inner edge). Note that in Hi, F corresponds to
a set of vertices of degree 2. We now use the following two helpful claims, which
we prove in the appendix.

Claim 1 (⋆). The set F has cardinality at least 2.
Claim 2 (⋆). Let the edge e (or the edge pair {e1, e2}) be any chord (half-
chord) of G′

i, let F1 be the set of inner faces on the one side, and let F2 be the
set of inner faces on the other side of e (or {e1, e2}, resp.). Then, F1 ∩ F ̸= ∅
and F2 ∩ F ̸= ∅.

We continue to show that there is a good vertex on the outer face of G′
i,

which we can pick. Assume first that G′
i does not have chords. Thus, all vertices

of G′
i trivially observe rules (R2) and (R3). Let f ∈ F , and let u and w be the

endpoints of the unique half-chord incident with f . If there is a free vertex v
in f such that N [v] does not contain the last invisible vertices of the outer face
of G′

i, then we pick v. Rules (R1) and (R4) are observed by the definition of v.
If, for every free vertex v in f , N [v] contains all invisible vertices of the outer
face of G′

i, consider the following three cases; see Fig. 9. The cases are ordered
by priority; if we fulfill the conditions of multiple cases, the first case applies.

(C1) Both u and w are visible. Then, consider a face f ′ ∈ F different from f ,
which exists by Claim 1. Clearly, all of its vertices are visible, and we can
pick any free vertex v′ of f ′ without violating the rules.

(C2) Exactly one of {u,w} is visible. W.l.o.g., assume that u is visible and w is
invisible. We claim that u observes all rules. Since w remains invisible after
picking u, u observes rule (R1). If there was another half-chord incident
with u, either it would again be incident with w, which does not violate
rule (R4), or it would be incident with another vertex of G′

i, which is
visible. By Claim 2, however, there is another face f ′ ∈ F on the other
side of that half-chord. As all of the vertices of f ′ on the outer face are
visible, we would be in case (C1) instead.
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(C3) Both u and w are invisible. We claim that u observes the rules. Similar
to case (C2), u observes rule (R1) (since w stays invisible) and rule (R4)
(if there was another half-chord incident with u whose other endpoint is
visible, we would be in case (C1) or in case (C2)).

Now assume that G′
i has one or more chords. Of course, each of these chords

has at most one visible endpoint. The chords with exactly one visible endpoint
divide G′

i into several subgraphs. Observe that at least one of these subgraphs
contains no such chord in its interior and is bounded by only one of them (or
no chord has a visible endpoint, then there is only one subgraph, namely G′

i).
We call this subgraph Ĝ′

i and we let u and w denote the visible and invisible
endpoints of the bounding chord e, respectively (or if there is only one subgraph,
then u and w are just neighbors). By a case distinction on the facets incident to
u and w, we can show that there is always a good vertex on the outer face of Ĝ′

i,
and hence on the outer face of G′

i. We provide the details in the appendix.

Claim 3 (⋆). There is a good vertex on the outer face of Ĝ′
i.

We have shown that there is always a good vertex on the outer face of G′
i

if the outer face of G′
i is a simple cycle. Now assume that the outer face of G′

i

is not just a simple cycle, but consists of one or multiple cactus graphs. If we
have multiple cactus graphs, we can consider them individually. So, it suffices
to consider the case where the outer face of G′

i is one (connected) cactus graph.
Still, Hi may be disconnected. Let C1, C2, . . . be the connected components
of Hi, and let G̃1, G̃2, . . . be the corresponding subgraphs of G′

i. Two subgraphs
G̃j and G̃k may be connected by at most one common vertex or via a single edge.
Otherwise, we consider them as non-connected (if they are connected by a path
of length ≥ 2 in Gi, they are independent because the neighborhood of G̃j does
not overlap G̃k and vice versa; these parts remain as a forest in the end). Let T
be a graph with a vertex for each G̃1, G̃2, . . . where two vertices are adjacent
if and only if the corresponding subgraphs are connected. Since the outer face
of G′

i is a cactus graph, T is a forest. Consider the subgraph G̃1 and use the
algorithm above to find a good vertex v. If v is a cut vertex, then check if it is
also a good vertex in all subgraphs from {G̃1, G̃2, . . . } where it is contained as
well. Further, check for each neighbor w of v that is contained in a subgraph G̃j

distinct from G̃1 whether making w visible violates one of the invariants (note
that this is a weaker criterion than checking if w is a good vertex and it implies
that w and its neighbors in G̃j are not good vertices). If there is a subgraph G̃j

where picking v breaks at least one rules (or making a neighbor of v visible
breaks an invariant), then find a good vertex in G̃j (recall that there exists at
least one good vertex) and proceed in the same way. Since T does not contain
cycles, this procedure always terminates with a (globally) good vertex.

Concerning the running time, note that, if we maintain the outer face, we can
find, for each vertex, its incident chords and half-chords in linear time. Further,
our constructive proof can be turned into a polynomial-time algorithm as it
includes only graph traversal and graph construction operations that can be
executed in polynomial time. ⊓⊔
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6 Open Problems

1. What is the complexity of deciding whether a given graph admits an outer-
planar or a forest storyplan? We conjecture that recognition is NP-hard.

2. While we extended the existing planar storyplan problem into the direction
of less powerful but easier-to-understand storyplans, one could also go into
the opposite direction and investigate more powerful storyplans in order to
be able to construct such storyplans for larger classes of graphs. For example,
1-planar storyplans would be a natural direction for future research.
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Appendix

Theorem 4 (⋆). Every subcubic graph except K4 admits a straight-line outer-
planar storyplan with at most five edges in each frame, and such a storyplan can
be computed in linear time.

Proof. The first part of the proof is in the main part of the paper. Now we
show that we can always find a position of the vertices such that the draw-
ings D1, D

′
1, . . . , D

′
n−1, Dn of the graphs G1, G

′
1, . . . , G

′
n−1, Gn, respectively, are

outerplanar and straight-line.
It is obvious that the drawings D1, D

′
1, D2, D

′
2, D3, D

′
3 are outerplanar even

if they are straight-line. Now we want to show, for i ∈ {4, . . . , n}, how to place vi
such that Di is outerplanar and straight-line. Let vi be connected to three visible
vertices u, v, w ∈ V (G′

i−1). The other cases are easier and are covered by this
case.

We know that there are at most two edges in G′
i−1. If there are edges, we

may assume that they are connected to v. We consider the case where there are
exactly two edges vv′ and vv′′ in G′

i−1; the other cases are covered by this one.
Note that possibly u is v′ and/or w is v′′. In this case, the triangle △uvvi and/or
the triangle △vwvi would appear in Di. In any case, we place vi in the vicinity
of v such that none of the new edges intersects the visible ones and no visible
vertex lies in one of the triangles △uvvi and △vwvi that we have potentially
created. It is easy to see that such a placement exists.

Now assume that u, w, v′, and v′′ are pairwise different vertices. In this case
Gi is a tree, and we need to avoid only edge intersections. Let ℓv′ and ℓv′′ be
rays from v that contain v′ and v′′, respectively. There are three cases: △vuw
intersects neither ℓv′ nor ℓv′′ , it intersects both, or it intersects exactly one of
them.

In the first two cases, we place vi in the union (in the first case) or in the
intersection (in the second case) of the open halfplanes bounded by the lines
through vu and vw that contain neither v′ nor v′′, see Fig. 11a and Fig. 11b.
Now assume that △vuw intersects one of the rays, say, ℓv′ . Let ℓu be the line
that goes through u and v′, and let ℓw be the line that goes through w and v′.

v1

v2

v3

v4

v1

v2

v3

v4

v1

v2

v3

v4

v1

v2

v3

v4

D4 D′
4 D4

D′
4

Fig. 10: Illustration of the special case that G′
3 contains three edges. Then v4 has one

(left) or two (right) neighbors in H3, but G′
4 has at most one edge. Grey vertices and

edges are not part of the graphs, but were visible in the previous step.



16 J. Fiala, O. Firman, G. Liotta, A. Wolff, and J. Zink

u

w

vi

v′′

`v′′

`v′v′

v

(a) vuw intersects neither ℓv′ nor ℓv′′ .

u

w

vi

v′′

`v′′

`v′v′

v

(b) vuw intersects both ℓv′ and ℓv′′ .

v′′

`v′

`v′′

w
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v

Hv′′

u
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Hw

v′

(c) vuw intersects only ℓv′ , uw does not
intersect vv′.

v′′

`v′

`v′′

w vi
v

u

Hu

Hw
Hv′′

v′

(d) vuw intersects only ℓv′ , uw inter-
sects vv′.

Fig. 11: Various cases of placing vi to get a straight-line outerplanar drawing Di.

Let Hu and Hw be the halfplanes bounded by ℓu and ℓw, respectively, that do
not contain v. Let Hv′′ be the halfplane bounded by ℓv′′ that contains v′. If uw
does not intersect vv′, we can place vi in ((Hu∪Hw)∩Hv′′)\ ℓv′ , see Fig. 11c. If
uw intersects vv′, we place vi in (Hu ∩Hw ∩Hv′′) \ ℓv′ , see Fig. 11d. Note that
we always can find a position for vi such that none of the new edges contains a
vertex visible in Di. Hence, we have shown that there is a position for vi such
that the drawing Di is straight-line and outerplanar. ⊓⊔

Theorem 5 (⋆). Every △-free subcubic graph admits a straight-line forest sto-
ryplan. Such a storyplan can be computed in linear time and has at most five
edges per frame.

Proof. Due to Property 1, it suffices to prove the statement for △-free cubic
graphs. Recall the proof of Theorem 4. In that proof, we showed that, for 4 ≤
i ≤ n− 1, there are at most two edges in G′

i, and two edges may appear only if
they share a vertex. In such a case, we always pick a shared vertex as a neighbor
of the next vertex. Since our graph is △-free, adding a vertex will never make a
cycle visible. Moreover, G′

3 cannot be a triangle and, thus, for every i ∈ [n− 1],
G′

i contains at most two edges. ⊓⊔
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Claim 1 (⋆). The set F has cardinality at least 2.

Proof. Consider the block-cut tree of Hi, that is, the tree that has a node for
each cut vertex of Hi and a node for each 2-connected component (called block)
of Hi. A block node and a cut-vertex node are connected by an edge in the
block-cut tree if, in Hi, the block contains the cut vertex. Clearly, every leaf of
the block-cut tree is a block node, and every block of Hi is either a cycle or an
edge. Consider any leaf of the block-cut tree. It is a block node representing a
cycle of Hi as otherwise it would represent an edge of Hi having an endpoint
that is a vertex of degree 1 in Hi. Clearly, there is an inner vertex of G′

i being
incident with all faces represented by that cycle and all edges of that cycle are
then dual to half-chord edges of G′

i. As each such cycle contains at least two
vertices but at most one of them is a cut vertex in Hi, there is, per leaf of the
block cut tree, at least one vertex of degree two in Hi whose incident edges are
both dual to a half-chord of G′

i. The block-cut tree is either a single block node
representing a cycle in Hi, or the block-cut tree has at least two leaf nodes. Thus,
|F | ≥ 2. ⊓⊔

Claim 2 (⋆). Let the edge e (or the edge pair {e1, e2}) be any chord (half-chord)
of G′

i, let F1 be the set of inner faces on the one side, and let F2 be the set of
inner faces on the other side of e (or {e1, e2}, resp.). Then, F1 ∩ F ̸= ∅ and
F2 ∩ F ̸= ∅.

Proof. If we have a chord e, then the dual edge of e is an edge of Hi, which
corresponds to a block node of the block-cut tree, which cannot be a leaf (because
all leaves represent cycles). Then, however, if we traverse the block-cut tree, in
the one or the other direction of the edge, we will find a leaf in both parts and
each leaf contains a vertex in F as shown in the proof of Claim 1.

If we have a half-chord {e1, e2}, then the dual edges divide a cycle C of Hi

into two. If one of the resulting parts of C does not contain a cut vertex, then it
contains only vertices from F by definition. Otherwise, the previous argument
applies: the block-cut tree gets divided into two parts and each part needs to
contain a leaf of the block-cut tree. ⊓⊔

Claim 3 (⋆). There is a good vertex on the outer face of Ĝ′
i.

Proof. Let F̂ be the subset of F that is contained in Ĝ′
i, which is non-empty by

Claim 2. If there is a face f ∈ F̂ neither incident with u nor w, then we can
pick a free vertex v of f ; see Fig. 12a. Since at least u stays invisible, v observes
rule (R1). Trivially, the other rules are also observed.

Otherwise all faces in F̂ are incident either to u or to w. Note that none of
the faces in F̂ can be incident with both u and w as this would create a triangle.
Assume that there is a face f ∈ F̂ incident with a half-chord with endpoints w
and w′; see Fig. 12b. We claim that we can pick a free vertex v of f . Since at
least u stays invisible, v observes rule (R1). Rules (R2) and (R4) are trivially
observed. Rule (R3) is also observed, since w′ is not incident to a chord whose
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v f
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(a) f is not incident with u or w.
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uw′

(b) f is incident with w.
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u
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(c) f is incident with u.

Fig. 12: Cases when there are chords in G′
i. We always find a good vertex.

other endpoint is visible (as they are all inside Ĝ′
i) and w is not incident with a

chord whose other endpoint is visible, otherwise invariant (I3) would be violated.
Finally, all faces in F̂ are incident with u. For a face f ∈ F̂ , let u′ be the other

endpoint of the half-chord; see Fig. 12c. Note that it might happen now that all
free vertices of f break rule (R1) or rule (R3). We claim, however, that we can
always pick u′. Because of u, u′ observes rule (R1). Furthermore, u′ observes
rule (R2) and rule (R4) as u′ cannot be incident with a chord or a half-chord.
If u′ was incident with a chord or a half-chord, this chord or half-chord would
divide Ĝ′

i into two parts and then there would be a face in F̂ that is not incident
with u due to Claim 2. By the same argument, all chords and half-chords of Ĝ′

i

are incident with u. In order to show that u′ observes rule (R3), note that the
only vertex of Ĝ′

i that is incident with a chord whose other vertex is visible is u.
Since u′ is adjacent neither to u (otherwise there is a triangle) nor to any vertex
that is not in Ĝ′

i, u′ observes rule (R3) as well and, hence, is a good vertex. ⊓⊔
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Fig. 13: The dodecahedron with a vertex numbering that corresponds to a forest sto-
ryplan.
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