
The Complexity of Online Graph Games
Janosch Fuchs
Department of Computer Science, RWTH Aachen University, Germany
fuchs@algo.rwth-aachen.de

Christoph Grüne
Department of Computer Science, RWTH Aachen University, Germany
gruene@algo.rwth-aachen.de

Tom Janßen
Department of Computer Science, RWTH Aachen University, Germany
janssen@algo.rwth-aachen.de

Abstract
Online computation is a concept to model uncertainty where not all information on a problem
instance is known in advance. An online algorithm receives requests which reveal the instance
piecewise and has to respond with irrevocable decisions. Often, an adversary is assumed that
constructs the instance knowing the deterministic behavior of the algorithm. Thus, the adversary
is able to tailor the input to any online algorithm. From a game theoretical point of view, the
adversary and the online algorithm are players in an asymmetric two-player game.

To overcome this asymmetry, the online algorithm is equipped with an isomorphic copy of the
graph, which is referred to as unlabeled map. By applying the game theoretical perspective on online
graph problems, where the solution is a subset of the vertices, we analyze the complexity of these
online vertex subset games. For this, we introduce a framework for reducing online vertex subset
games from TQBF. This framework is based on gadget reductions from 3-Satisfiability to the
corresponding offline problem. We further identify a set of rules for extending the 3-Satisfiability-
reduction and provide schemes for additional gadgets which assure that these rules are fulfilled.
By extending the gadget reduction of the vertex subset problem with these additional gadgets, we
obtain a reduction for the corresponding online vertex subset game.

At last, we provide example reductions for online vertex subset games based on Vertex Cover,
Independent Set, and Dominating Set, proving that they are PSPACE-complete. Thus, this
paper establishes that the online version with a map of NP-complete vertex subset problems form a
large class of PSPACE-complete problems.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases Online Algorithms, Computational Complexity, Online Algorithms Complex-
ity, Two-Player Games, NP-complete Graph Problems, PSPACE-completeness, Gadget Reduction

Funding This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) — GRK 2236/1, WO 1451/2-1.

ar
X

iv
:2

21
0.

01
69

4v
3

 [
cs

.C
C

]
 2

7
N

ov
 2

02
3

https://orcid.org/0000-0003-3993-222X
mailto:fuchs@algo.rwth-aachen.de
https://orcid.org/0000-0002-7789-8870
mailto:gruene@algo.rwth-aachen.de
https://orcid.org/0000-0003-4617-3540
mailto:janssen@algo.rwth-aachen.de

2 The Complexity of Online Graph Games

1 Introduction

Online computation is an intuitive concept to model real time computation where the full
instance is not known beforehand. In this setting, the instance is revealed piecewise to the
online algorithm and each time a piece of information is revealed, an irrevocable decision
by the online algorithm is required. To analyze the worst-case performance of an algorithm
solving an online problem, a malicious adversary is assumed.

The adversary constructs the instance while the online algorithm has to react and compute
a solution. This setting is highly asymmetric in favor of the adversary. Thus, for most
decision problems, the adversary is able to abuse the imbalance of power to prevent the
online algorithm from finding a solution that is close to the optimal one. To overcome the
imbalance, there are different extensions of the online setting in which the online algorithm
is equipped with some form of a priori knowledge about the instance. In this work, we
analyze the influence of knowing an isomorphic copy of the input instance, which is also
called an unlabeled map. With the unlabeled map, the algorithm is able to recognize unique
structures while the online instance is revealed – like a vertex with unique degree – but it
cannot distinguish isomorphic vertices or subgraphs.

The relation between the online algorithm and the adversary corresponds to players in an
asymmetric two-player game, in which the algorithm wants to maximize its performance and
the adversary’s goal is to minimize it. The unlabeled map can be considered as the game
board. One turn of the game consists of a move by the adversary followed by a move of the
online algorithm. Thereby, the adversary reveals a vertex together with its neighbors and
the online algorithm has to irrevocably decide whether to include this vertex in the solution
or not. The problem is to evaluate whether the online algorithm has a winning strategy, that
is, it is able to compute a solution of size smaller/greater or equal to the desired solution
size k, for all possible adversary strategies.

Papadimitriou and Yannakakis make use of the connection between games and online
algorithms for analyzing the canadian traveler problem in [12], which is an online problem
where the task is to compute a shortest s-t-path in an a priori known graph in which certain
edges can be removed by the adversary. They showed that the computational problem of
devising a strategy that achieves a certain competitive ratio is PSPACE-complete by giving
a reduction from True Quantified Boolean Formula, short TQBF.

Independently, Halldórsson [7] introduced the problems online coloring and online in-
dependent set on a priori known graphs, which is equivalent to having an unlabeled map.
He studies how the competitive ratios improve compared to the model when the graph is
a priori not known. Based on these results, Halldórsson et al. [8] continued the work on
the online independent set problem without a priori knowing the graph. These results are
then applied by Boyar et al. [3] to derive a lower bound for the advice complexity of the
online independent set problem. Furthermore, they introduce the class of asymmetric online
covering problems (AOC) containing Online Vertex Cover, Online Independent Set,
Online Dominating Set and others. Boyar et al. [4] analyze the complexity of these
problems as graph property, namely the online vertex cover number, online independence
number and online domination number, by showing their NP-hardness.

Moreover based on the work by Halldórsson [7], Kudahl [11] shows PSPACE-completeness
of the decision problem Online Chromatic Number with Precoloring on an a priori
known graph, which asks whether some online algorithm is able to color G with at most
k colors for every possible order in which G is presented while having a precolored part
in G. This approach is then improved by Böhm and Veselý [2] by showing that Online

J. Fuchs, C. Grüne, T. Janßen 3

Chromatic Number is PSPACE-complete by giving a reduction from TQBF.
Our contribution is to analyze the computational complexity of a subclass of AOC problems

that consider graph problems where the solution is a subset of the vertices. Similar to the
problem Online Chromatic Number, we equip the online algorithm with an unlabeled
map in order to apply and formalize the ideas of Böhm and Veselý. We call these problems
online vertex subset games due to their relation to two-player games. While symmetrical
combinatorial two-player games are typically PSPACE-complete [5], this principle does not
apply to our asymmetrical setting. We are still able to prove PSPACE-completeness for the
online vertex subset games based on Vertex Cover, Independent Set and Dominating
Set by designing reductions such that the adversary’s optimal strategy corresponds to the
optimal strategy of the ∀-player in TQBF.

In order to derive reductions from TQBF to online vertex subset games, we identify
properties describing the revelation or concealment of information to correctly simulate the
∀- and ∃-decisions as well as the evaluation of the quantified Boolean formula in the online
vertex subset game. This simulation is modeled by disjoint and modular gadgets, which form
a so-called gadget reduction – similar to already known reductions between NP-complete
problems. Different forms of gadget reductions are described by Agrawal et al. [1] who
formalize AC0-gadget-reductions in the context of NP-completeness and by Trevisan et
al. [14] who describe gadgets in reductions of problems that are formalized as linear programs.
By formalizing gadgets capturing the above mentioned properties, we provide a framework
to derive reductions for other online vertex subset games, which are based on problems that
are gadget-reducible from 3-Satisfiability.

Paper Outline

First, we explain the online setting that we use throughout the paper and important terms,
e.g., the online game, the problem class and the reveal model of our online problems.
Secondly, we define the gadget reduction framework to reduce 3-Satisfiability to vertex
subset problems. In the third section, we extend the framework to the online setting by
identifying a set of important properties that must be fulfilled in the reduction. We also
provide a scheme for gadgets that enforce these properties to generalize the framework to
arbitrary vertex subset problems. In the fourth section, we detail the application of this
framework to the problem Vertex Cover. Lastly, we apply the framework to the problems
Independent Set and Dominating Set in the fifth section. At the end, we summarize
the results and give a prospect on future possible work.

Neighborhood Reveal Model

Each request of the online problem reveals information about the instance for the online
algorithm. The amount of information in each step is based on the reveal model. For an
online problem with a map, the subgraph that arrives in one request is called revelation
subgraph.

The neighborhood reveal model, which we use in this paper, was introduced by Haru-
tyunyan et. al. [9]. Within that model, the online algorithm gains information about the
complete neighborhood of the revealed vertex. Nevertheless, the online algorithm has to
make a decision on the current revealed vertex only but not on the exposed neighborhood
vertices. All exposed but not yet revealed neighborhood vertices have to be revealed in the
process of the online problem such that a decision can be made upon them. We denote the
closed neighborhood of v with N [v], that is, the set of v and all vertices adjacent to v.

4 The Complexity of Online Graph Games

▶ Definition 1 (Neighborhood Reveal Model). The neighborhood reveal model is defined
by an ordering of graphs (Vi, Ai, Ei)i≤|V |. The reveal order of the adversary is defined by
adv ∈ S|V |, where S|V | is the symmetric group of size |V |. The graph Gi is defined by

V0 = E0 = ∅,

Vi = Vi−1 ∪ N [vadv(i)], for 0 < i ≤ |V |
Ei = Ei−1 ∪ {(vadv(i), w) ∈ E | w ∈ Vi}, for 0 < i ≤ |V |.

The revelation subgraph G′ in the neighborhood reveal model is the subgraph of Gi defined by
G′ = (V ′, E′) with V ′ = N [vadv(i)] and E′ = {{vadv(i), w} ∈ E}. The online algorithm has
to decide whether vadv(i) is in the solution or not.

Online Vertex Subset Games

Throughout the paper, we consider a special class of combinatorial graph problems. The
question is to find a vertex subset, whereby the size should be either smaller or equals, for
minimization problems, or greater or equals, for maximization problems, some k, which is
part of the input. Thereby, the vertex set needs to fulfill some constraints based on the
specific problem. We call these problems vertex subset problems. Well-known problems like
Vertex Cover, Independent Set and Dominating Set are among them.

We denote the online version with a map of a vertex subset problem P V S with P V S
o and

define them as follows.

▶ Definition 2 (Online Vertex Subset Game). An online vertex subset game P V S
o has a graph

G and a k ∈ N as input. The question is, whether the online algorithm is able to find a
vertex set of size smaller (resp. greater) or equals k, which fulfills the constraints of P V S for
all strategies of the adversary. Thereby, the online algorithm has access to an isomorphic
copy of G and the adversary reveals the vertices according to the neighborhood reveal model.

2 Gadget Reductions

Gadget reductions are a concept to reduce combinatorial problems in a modular and structured
way. For the context of the paper, we define gadget reductions from 3-Satisfiability to
vertex subset problems. The 3-Satisfiability instances φ = (L, C) are defined by their
literals L and their clauses C. We use a literal vertex vℓ for all ℓ ∈ L to represent a literal
in the graph. There are implicit relations over the literals besides the explicit relation C,
in that the reduction may be decomposed. For example, the relation between a literal and
its negation, which is usually implicitly used to build up a variable gadget. These variable
gadgets are connected by graph substructures that assemble the clauses as clause gadgets.

▶ Definition 3 (Gadget Reduction from 3-Satisfiability to Vertex Subset Problems). A
gadget reduction Rgadget(P V S) from a 3-Satisfiability formula φ = (L, C) to a vertex
subset problem with graph Gφ = (V, E) is a tuple containing functions from the literal set
and all relations of the 3-Satisfiability formula to the vertex set and all relations of the
vertex subset problem. In the following, we denote the gadget based on element x to be
Gx := (Vx, Ex) with Vx being a set of vertices and Ex a set of edges, whereby the edges are
potentially incident to vertices of a different gadget.

The literal set of a 3-Satisfiability formula ℓ1, ℓ2, . . . , ℓ|L|−1, ℓ|L| is mapped to the
vertex set of the graph problem. Thereby, each literal is mapped to exactly one vertex:

RL→V
gadget(P V S) : L → V, ℓ 7→ Gℓ

J. Fuchs, C. Grüne, T. Janßen 5

The following relations on the literals are mapped as well.
(1) Literal - Negated Literal: RL,L

gadget(P
V S) : R(L, L) → (V, E), (ℓ, ℓ) 7→ G

ℓ,ℓ

(2) Clause: RC
gadget(P V S) : R(C) → (V, E), Cj 7→ GCj

(3) Literal - Clause: RL,C
gadget(P

V S) : R(L, C) → (V, E), (ℓ, Cj) 7→ Gℓ,Cj

(4) Negated Literal - Clause: RL,C
gadget(P

V S) : R(L, C) → (V, E), (ℓ, Cj) 7→ G
ℓ,Cj

Additionally, the following mapping allows for constant parts that do not change depending
on the instance: Rconst

gadget(P V S) : ∅ → (V, E), ∅ 7→ Gconst. Thereby, the vertices and edges of
all gadgets are pairwise disjoint.

We use the more coarse grained view of variable gadgets as well. These combine the
mappings RL→V

gadget and RL,L
gadget to RX

gadget, and RL,C
gadget and RL,C

gadget to RX,C
gadget, where X is

the set of n variables.
The important function of the variable gadget is to ensure that only one of the literals of

ℓ, ℓ ∈ L is chosen. On the other hand, the function of the clause gadget is to ensure together
with the constraints of the vertex subset problem P V S that the solution encoded on the
literals fulfill the 3-Satisfiability-formula if and only if the literals induce a correct solution.
These functionalities are utilized in the correctness proof of the reduction by identifying the
logical dependencies between the literal vertices vℓ for ℓ ∈ L and all other vertices based on
the graph and the constraints of P V S together with combinatorial arguments on the solution
size. We denote these logical dependencies as solution dependencies as they are logical
dependencies on the solutions of P V S . Due to the asymmetric nature of the online problems,
the adversary can reveal a solution dependent vertex before revealing the corresponding
literal vertex. Thus, a decision on the solution dependent vertex is implicitly also a decision
on the literal vertex, although it has not been revealed. We address this specific problem
later in the description of the framework.

▶ Definition 4 (Solution dependent vertices). Given a gadget reduction, the following vertices
of the reduction graph are solution dependent:
1. All literal vertices are solution dependent on their respective variable.
2. For a literal ℓ (resp. its negation ℓ), we denote the set of vertices that need to be part of

the solution if vℓ (resp. vℓ) is part of the solution with Vℓ (resp. Vℓ). Then the vertices,
that are in one but not both of these sets, i.e. Vℓ △ Vℓ, are solution dependent on the
corresponding variable.

All vertices that are not solution dependent on any variable are called solution independent.

For example, in the reduction from 3-Satisfiability to Vertex Cover [6], the following
solution dependencies apply: For each literal, the vertices vℓ and vℓ are solution dependent
on their respective variable. Furthermore, if a literal is part of the solution, all clause vertices
representing its negation must also be part of the solution. Thus all clause vertices are
solution dependent on their respective variable. Consequently, all vertices of the reduction
graph for vertex cover are solution dependent.

3 A Reduction Framework for Online Vertex Subset Games

In this section, we present a general framework for reducing TQBF Game to an arbitrary
online vertex subset game P V S

o with neighborhood reveal model. The TQBF Game is
played on a fully quantified Boolean formula, where one player decides the ∃-variables and
the other decides the ∀-variables, in the order they are quantified. Deciding whether the
∃-player has a winning strategy is PSPACE-complete [13], and thus this reduction proves

6 The Complexity of Online Graph Games

PSPACE-hardness for P V S
o . We assume that the TQBF Game consists of clauses with at

most three literals, which is also known to be PSPACE-complete [6].
Before we describe the reduction, we prove that the online game version of each vertex

covering graph problem in NP is in PSPACE.

▶ Theorem 5. If P V S is in NP, then P V S
o is in PSPACE.

Proof. The instance graph is encoded in linear space. The solution (subset of vertices) is
encoded in at most linear space because the base problem P V S is in NP. The number of
moves is the number of universe elements, which are vertices. This is linear in the input
size. For each move, the currently revealed graph is stored as well as the current solution.
This is again linear in the input size. Thus, the used space is overall polynomial for each
move, whereby there is only a linear number of moves. Consequently, the problem P V S

o is in
PSPACE. ◀

This framework uses an (existing) gadget reduction of the vertex subset problem P V S

from 3-Satisfiability and extends it in order to give the online algorithm the ability to
recognize the current revealed vertex. Due to the quantification of variables, we call the
variable gadget of a ∀-variable a ∀-gadget (resp. ∃-gadget for an ∃-variable). Based on
this, the online algorithm can use a one-to-one correspondence between the solution of the
TQBF Game instance and the P V S

o instance. The one-to-one correspondence between
the ∀-variables and the ∀-gadgets is ensured by the knowledge of the adversary about the
deterministic online algorithm. It simulates the response of the algorithm on the ∀-gadget.

Extension Gadgets

We extend the reduction graph Gφ of the offline problem with gadgets to a reduction graph
for the online problem. These gadgets extend Gφ by connecting to a subset of its vertices.
We denote these gadgets Gext as extension gadgets.

▶ Definition 6 (Graph Extension). A graph extension of a graph G = (V, E) by an extension
gadget Gext = (Vext, Eext, Econ) with the set of connecting edges Econ ⊆ V × Vext is defined
as H = G ◦ Gext, whereby

V (H) = V ∪ Vext,

E(H) = E ∪ Eext ∪ Econ.

We further define G◦i∈I Gi
ext :=

(
. . .

((
G ◦ Gi1

ext

)
◦ Gi2

ext

)
◦ . . .

)
◦ G

i|I|
ext.

We also need the notion of self-contained gadgets. These do not influence the one-to-one
correspondence between solutions of the online vertex subset game P V S

o and TQBF Game.
In other words, optimal solutions on the graph and the extension gadget can be disjointly
merged to obtain an optimal solution on the extended graph. Due to this independence, we
are able to provide local information to the online algorithm via the map without changing
the underlying formula. An example for self-contained extension gadgets is provided in
Figure 1. Note that, it can occur that self-containment depends on the extended graph.

For our reduction framework, we introduce three types of self-contained extension gadgets:
fake clause gadgets, dependency reveal gadgets and ID gadgets. The goal of these gadgets is
that it is optimal for the adversary to reveal variables in the order of quantification, and
that the online algorithm is able to assign the value of the ∃-variables, while the adversary is
able to assign the value of the ∀-variables.

J. Fuchs, C. Grüne, T. Janßen 7

H G

· · ·

· · ·
GextEcon H G

· · ·

· · ·
GextEcon

Figure 1 On the left, there is an example for an extension gadget that is self-contained w.r.t. the
dominating set problem: No matter the solution on G, at least one vertex of Gext has to be chosen.
Additionally, choosing the black vertex of Gext dominates all vertices attached to G, and thus any
solution on G remains valid. On the right, there is an example for an extension gadget that is not
self-contained w.r.t. the dominating set problem: If the solution on G contains the black vertices, it
is also a solution for H, but the optimal solution on Gext contains one vertex.

Fake Clause Gadgets

The number of occurrences of a certain literal in clauses is information that may allow the
online algorithm to distinguish the literals of some ∀-variables, allowing the online algorithm
to decide the assignment instead of the adversary. To avoid this information leak, we add
gadgets for all possible non-existing clauses to the reduction graph. A fake clause gadget is
only detectable if and only if a vertex, which is part of that clause gadget, is revealed by the
adversary. The gadget needs to be self-contained such that the one-to-one correspondence
between the solutions of the P V S

o and TQBF Game is not affected.

▶ Definition 7 (Fake Clause Gadget). A fake clause gadget Gfc(C ′
j) for a non-existing clause

C ′
j /∈ C is an extension gadget that is self-contained. The fake clause gadgets are connected

to the variable gadgets like the clause gadgets are to the variable gadgets according to the
original gadget reduction, see Definition 3.

All fake clause gadgets are pairwise disjoint. Let Gφ be the gadget reduction graph and

G′
φ := Gφ ◦

C′
j

/∈C

Gfc(C ′
j).

After adding fake clause gadgets for all clauses C ′
j /∈ C to Gφ, the revelation subgraphs of all

vertices v ∈ V (G′
φ), which are part of a literal gadget, are pairwise isomorphic.

Dependency Reveal Gadgets

The two functions of the dependency reveal gadgets are that the adversary chooses the reveal
order to be the order of quantification and the online algorithm knows the decision on the
∀-variables after the decision is made by the adversary. If the adversary deviates from the
quantification order, the ∀-decision degenerates to an ∃-decision for the online algorithm.
On the other hand, since the adversary forces the online algorithm to blindly choose the
truth value of a ∀-quantified variable, the online algorithm does not know the chosen truth
value. Thus, we need to reveal the truth value to the online algorithm whenever a solution
dependent vertex of the next variables is revealed.

▶ Definition 8 (Dependency Reveal Gadget). A dependency reveal gadget Gdr(xi) for ∀-
variable xi is an extension gadget that is self-contained with the property: Let ℓ, ℓ be the
literals of xi. If a solution dependent vertex of xj with j ≥ i is revealed to the online algorithm,
the online algorithm is able to uniquely identify the vertices vℓ and vℓ.

8 The Complexity of Online Graph Games

ID Gadgets

At last, the online algorithm needs information on the currently revealed vertex to identify
it with the help of the map. For this, we introduce ID gadgets, which make the revelation
subgraph of vertices distinguishable to a certain extent. Thus, the online algorithm is able
to correctly encode the TQBF solution into the solution of the vertex subset game. The ID
gadget is always connected exactly to the vertex it identifies, thus they are pairwise disjoint.

▶ Definition 9 (ID Gadget). An identification gadget Gid(v) is a self-contained extension
gadget connected to v such that the revelation subgraph of v is isomorphic to revelation
subgraphs of vertices within a distinct vertex set V ′ ⊆ V .

The General Reduction for Online Vertex Subset Games

With the gadget schemes defined above, we are able to construct a gadget reduction from
TQBF Game to P V S

o . The idea of the reduction is to construct the optimal game strategy
for the online algorithm to compute the solution to the TQBF Game formula. Furthermore,
encoding the solution to the TQBF Game into the P V S

o instance is a winning strategy
by using the equivalence of the ∃- and ∀-gadgets to the ∃- and ∀-variables. At last, there
is a one-to-one correspondence between the reduction graph solution of P V S and the 3-
Satisfiability-solution.

A gadget reduction from 3-Satisfiability to vertex subset problem P V S can be extended
such that P V S

o is reducible from TQBF Game as follows. Recall that Gφ is the gadget
reduction graph of a fixed but arbitrary instance of P V S .

1. Add fake clause gadgets for all clauses that are
not in the TQBF Game instance

G′
φ = Gφ◦

c′ /∈C

Gfc(c′) .

2. Add dependency reveal gadgets
for all ∀-variables x

G′′
φ = G′

φ ◦
x∈X

x is ∀

Gdr(x) .

3. Add ID gadgets to all vertices

G′′′
φ = G′′

φ ◦
v∈V (G′′

φ)

Gid(v) .

Then, if all gadgets can be constructed in polynomial time, G′′′
φ is the corresponding

reduction graph of P V S
o . The gadget reduction also implies the following gadget properties,

which individually have to be proven for a specific problem.
1. The fake clause gadgets are self-contained.
2. The dependency reveal gadgets are self-contained.
3. The ID gadgets are self-contained.
4. In G′′′

φ , each solution dependent vertex which is not in a literal gadget of a ∀-variable has
a unique revelation subgraph.

5. In G′′′
φ , the two literal vertices of a ∀-variable have the same revelation subgraph, but

different from vertices of any other gadget.
6. In G′′′

φ , each vertex that is solution independent or part of an extension gadget has a
revelation subgraph that allows for an optimal decision.

From the above construction, the following Lemmas 10 to 12, are fulfilled such that P V S
o

is proven to be PSPACE-hard in the following Theorem 13.

J. Fuchs, C. Grüne, T. Janßen 9

▶ Lemma 10. In the construction of the reduction, there is a one-to-one correspondence
between the solution of the problem P V S

o and TQBF Game, if there is a one-to-one corre-
spondence between the solutions in the gadget reduction from P V S and 3-Satisfiability.
The equivalence is computable in PTIME.

Proof. The one-to-one-correspondence is preserved by the definition of self-contained exten-
sion gadgets. All graph extensions are based on self-contained gadgets. Thus, the original
solution is preserved and only complemented by the disjoint partial solution on all extension
gadgets.

The ID gadgets ensure that the optimal decision for vertices of the same degree is unique
(by Gadget Property 4-6), except for literal vertices of ∀-variables. Thus, a one-to-one
correspondence between vertices of the map and the actual online game instance is easy to
find by the online algorithm. Therefore, the online algorithm is able to decide whether to
put a vertex in the solution or not by vertex degree for all vertices, except for literal vertices
of ∀-variables. On the other hand, the adversary can decide the assignment of ∀-variables, as
it is able to simulate the online algorithm and predict its decision. ◀

In the following, we show that the adversary has to reveal one literal vertex of each
variable gadget before revealing vertices of other gadgets (except ID gadgets). Furthermore,
the adversary has to adhere to the quantification order of the variables when revealing the
first literal vertices of each gadget. If the adversary deviates from this strategy, it may
allow the online algorithm to decide the truth assignment of ∀-variables. This may allow
the algorithm to win a game based on an unsatisfiable formula. Thus, an optimal adversary
strategy always follows the quantification order.

▶ Lemma 11. Every optimal game strategy for the adversary adheres to the reveal ordering

Gℓ1 or Gℓ1
< Gℓ2 or Gℓ2

< · · · < Gℓn or Gℓn
, (1)

Gℓ or Gℓ < Gc(Cj), for all ℓ ∈ Cj ∈ C, (2)

Gℓ or Gℓ < Gfc(C ′
j), for all ℓ ∈ C ′

j /∈ C, (3)

Gℓ or Gℓ < Gdr(x), for all x ∈ X. (4)

Proof. We prove each proposition one after another.
(1) Assume a vertex of the variable gadget of xj is revealed before any vertex of the variable

gadget of xi is revealed for i < j. The following cases may apply:
a. xi and xj are ∃-variables

Then, a ∀-variable xk exists, i < k < j, for which the dependency reveal gadget is
revealed before the vertices of its variable gadget are revealed. Therefore, the variable
xk degenerates to an ∃-variable.

b. xi is an ∃-variable and xj is an ∀-variable
Case 1: j > i + 1 Then, a ∀-variable xk exists, i < i + 1 ≤ k < j, for which the
dependency reveal gadget is revealed before the vertices of its variable gadget are
revealed. Therefore, the variable xk degenerates to an ∃-variable.
Case 2: j = i + 1 Then, the decision on xj happens before xi. However, the online
algorithm is not able to detect which decision took place. Consequently, it has no
additional information for the ∃-variable xi. This does not change the game at all.

c. xi is an ∀-variable and xj is an ∃-variable
Then, the dependency reveal gadget for xj is revealed and xj degenerates to an
∃-variable.

10 The Complexity of Online Graph Games

d. xi and xj are ∀-variables
Then, the dependency reveal gadget for xj is revealed and xj degenerates to an
∃-variable.

(2) By revealing a clause gadget before the corresponding literal gadgets, it is revealed which
literals are in the clause and whether the clause is a fake clause or not. Thus, it is
dominant to reveal that information after revealing the literals.

(3) By revealing a fake clause gadget before the corresponding literal gadgets, it is revealed
which literals are in the fake clause and whether the fake clause is a fake clause or not.
Thus, it is dominant to reveal that information after revealing the literals gadget.

(4) The dependency reveal gadgets connected to a literal gadget reveal the information which
literal gadget represents the negated literal. Thus, the ∀-variable degenerates to an
∃-variable.

The degeneration of a ∀-variable to an ∃-variable gives the online algorithm the possibility
to satisfy a possibly unsatisfiable formula, because revelation of the dependency reveal gadget
is easily detectable in PTIME. ◀

▶ Lemma 12. The vertex assignments of an ∃-variable gadget (resp. ∀-variable gadget)
are equivalent to the decision of the ∃-player (resp. ∀-player) on an ∃-quantifier (resp.
∀-quantifier) in the TQBF Game. The equivalence is computable in PTIME.

Proof. By the dominating strategy of the adversary described in Lemma 11, for all i, 1 ≤
i ≤ n, the adversary reveals all vertices of the variable gadget of variable xi. Thereby, the
online algorithm has to take a decision after each revealed vertex.

(∃) Due to Gadget Properties 4 and 6, the online algorithm is able to detect which exact
vertex of the variable gadget is revealed. Thus, the online algorithm is able to decide
which vertices to take into the solution to encode both of the truth values of the variable
into the solution. This implies that the online algorithm takes the decision on the variable
as in the TQBF Game.

(∀) Because of Lemma 11, the adversary will reveal the literal gadgets first. The literal
gadgets of different variables may only be connected by a path of length ≥ 2, if there
is a connection via a clause gadget or dependency reveal gadget. These do not reveal
information as every possible clause is covered either by a clause gadget or a fake clause,
but it is not revealed whether the connection is established by clause or fake clause gadget
unless a vertex of a clause gadget or fake clause gadget is revealed. The dependency
reveal gadget reveals only additional information if a reveal ordering which does not
correspond to Lemma 11 is used. Due to Gadget Property 5, the online algorithm is not
able to detect whether a vertex that encodes an assignment to true or false is revealed
over the degree. Thus, the online algorithm is not able to detect which literal gadget
resembles the true or false assignment.
Therefore, a reveal ordering of the variable gadgets of the ∀-variables exists that forces
every fixed deterministic online algorithm to choose the options that prevent the online
algorithm from winning if and only if the TQBF Game formula is unsatisfiable.

The computation is in PTIME because only the degree of the vertex needs to be checked. ◀

Therefore, the solutions to the formula in the TQBF Game and the solutions to the
online vertex subset game are equivalent. Thus, the reduction graph G′′′

φ is a valid reduction
from TQBF Game because the one-to-one correspondence between solutions is preserved,
which concludes the proof of Theorem 13. At last, the online algorithm is able to win the
game if and only if the TQBF Game is winnable.

J. Fuchs, C. Grüne, T. Janßen 11

▶ Theorem 13. If P V S is gadget reducible from 3-Satisfiability and Lemmas 10 to 12
hold, then P V S

o is PSPACE-complete.

4 Vertex Cover

In this section, we use our reduction framework to show that the online vertex subset game
based on the Vertex Cover problem, the Online Vertex Cover Game, is PSPACE-
complete. Vertex Cover was originally shown to be NP-complete by Karp [10] with a
reduction from Clique. However, since our reduction framework extends reductions from
3-Satisfiability, we use an alternative reduction from Garey and Johnson [6].

Let φ be the 3-Satisfiability-formula, let X be the set of n variables and let C be
the set of m clauses of φ. We construct the following graph Gφ = (V, E): For each variable
xi, introduce a variable gadget consisting of two vertices, connected by an edge. One of
these vertices represents the positive literal, while the other represents the negative literal.
Thus we refer to these vertices as literal vertices. For each clause Cj , j ∈ {1, . . . , m}, we
construct a clause gadget, which is a triangle of vertices, where each vertex represents one of
the literals in Cj . Finally, each vertex of a clause is connected to the literal it represents. An
example of this construction is shown in Figure 2.

Gφ

x1 x2

C1

Figure 2 The reduction graph for the reduction from 3-Satisfiability to Vertex Cover for
instance φ = (x1 ∨ x1 ∨ x2).

The dependencies in Gφ are of the type if a literal vertex is not contained in a solution,
then all clause vertices representing the same literal must be contained in that solution.
Therefore, all vertices in Gφ are solution dependent.

The Online Vertex Cover Game has a graph G and a k ∈ N as input. It asks whether
there is a winning strategy for the online algorithm, that is, it finds a vertex cover of size at
most k for every reveal order while knowing an isomorphic copy of G.

▶ Theorem 14. The Online Vertex Cover Game with the neighborhood reveal model
and a map is PSPACE-complete.

The containment of Online Vertex Cover Game in PSPACE is already established
by Theorem 5. To show hardness, we extend the above reduction for Vertex Cover
according to our framework. Therefore, we need to introduce fake clause gadgets, dependency
reveal gadgets, and ID gadgets and prove that they fulfill the gadget properties, required by
Lemmas 10 to 12.

▶ Definition 15 (Self-contained fake clause gadget for Vertex Cover). The fake clause
gadget, for non-existing clause C ′

j /∈ C, is a triangle, where each vertex has two additional
vertices attached. The vertices of the triangle are connected to the literal vertices they
represent.

An example for a fake clause gadget is shown in Figure 3. Any optimal vertex cover on
the fake clause gadget has size 3 and contains exactly the triangle representing the clause. In

12 The Complexity of Online Graph Games

the neighborhood reveal model, fake clause gadgets can not be distinguished from real clause
gadgets, as long as only vertices of variable gadgets are revealed by the adversary. However,
as soon as a vertex of the fake clause gadget is revealed, it can be distinguished from a real
clause gadget, as the vertex degrees are different.

Gφ

x1 x2

C1
Gfc

Figure 3 The reduction graph for the reduction from 3-Satisfiability to Vertex Cover for
instance φ = (x1 ∨ x1 ∨ x2). The clause (x1 ∨ x1 ∨ x2) does not exist and is represented by a fake
clause gadget Gfc. The blue dashed edges are the set Econ for the fake clause gadget.

▶ Lemma 16 (Gadget Property 1). The fake clause gadget (Definition 15) is self-contained
for Vertex Cover.

Proof. Let C ′
j /∈ C be an arbitrary non-existing clause with Gfc(C ′

j) being its fake clause
gadget. Any optimal vertex cover on Gfc(C ′

j) has size 3 and contains exactly the triangle.
For a contradiction, assume there is a vertex cover S′ of size at most 3 on Gfc(C ′

j), that does
not contain at least one of those three vertices. However, each of them has two neighbors that
are not connected to any other vertices, which would then need to be part of the vertex cover
instead, while not covering any additional edges. Thus S′ additionally needs to contain at
least two vertices of the triangle, to cover its edges. This is a contradiction to S′ containing
at most three vertices.

By the same argument, none of the triangle vertices can be replaced their neighbors in
the reduction graph. Additionally, as the triangle is already part of the vertex cover, none of
their neighbors in the reduction graph are forced to be in the vertex cover to cover the edge
between them.

Let G0
φ = Gφ and let Gγ

φ be the graph that has been extended with γ many fake clause
gadgets. Then given the graph Gγ−1

φ , the graph Gfc(C ′
j) and the graph Gγ

φ = Gγ−1
φ ◦Gfc(C ′

j),
the following holds: There exists a solution of size 3 for Gfc(C ′

j), such that for any optimal
solution of size k∗ on Gγ−1

φ the disjoint union of those two solutions is an optimal solution of
size k∗ + 3 for Gγ

φ. Therefore the fake clause gadget from Definition 15 is self-contained. ◀

Since the vertices of a clause gadget are solution dependent on the literal vertices
they represent, the dependency reveal gadget needs to account for that. An example of a
dependency reveal gadget is depicted in Figure 4a.

▶ Definition 17 (Self-contained dependency reveal gadget for Vertex Cover). The depen-
dency reveal gadget for a ∀-variable xi is a star. Its center vertex is connected to the literal
vertices of all variables with index at least i (except the true literal of variable xi), and all
vertices representing them in clauses (including the true literal of variable xi). The number
of leaves is such that, together with the connecting edges, the degree of the center vertex equals
3
(2n

3
)

+ 2n + 1.

The number of leaves of a dependency reveal gadget is always at least 2. Given a formula
with n variables, there are exactly 2n literals, and

(2n
3

)
possible clauses with three literals.

A dependency reveal gadget can target all three vertices of a clause and all literal vertices,
however the true literal of variable xi is not targeted. Thus, the number of connecting edges

J. Fuchs, C. Grüne, T. Janßen 13

G′
φ

x1 x2

C1
Gdr

(a) The dependency reveal gadget for the ∀-variable
x1, with only one variable of higher index, is de-
picted. The fake clause gadgets of G′

φ are omitted.

G′′
φ

x1

Gid

Gid

(b) The ID gadgets for the ∀-variable x1 are shown.
Both literal vertices have the same degree. For each
gadget, the blue dashed edges are the set Econ.

Figure 4 Dependency reveal gadget and ID gadget for Vertex Cover.

is at most 3
(2n

3
)

+ 2n − 1. Therefore, the optimal solution for the dependency reveal gadget
always contains exactly the center vertex of the star, as we show in the following lemma.

▶ Lemma 18 (Gadget Property 2). The dependency reveal gadget (Definition 17) is self-
contained for Vertex Cover.

Proof. Let xi be any ∀-variable of the TQBF Game-instance. Since Gdr(xi) is a star with
at least 2 leaves, the optimal vertex cover on Gdr(xi) contains exactly the center of the star,
and no other vertices. As covering any edges incident to target vertices by those target
vertices has no effect on the edges in Gdr(xi), no solution on the reduction graph can make
the optimal solution on Gdr(xi) smaller. This also means that the optimal vertex cover on
Gdr(xi) already covers all edges connecting it to its target vertices, thus no vertices of the
reduction graph are forced to be in the vertex cover by attaching Gdr(xi).

Remember that G′
φ is the graph that resulted from Gφ by adding a fake clause gadget for

every possible clause C ′
j /∈ C with three literals. Let G0

φ = G′
φ and let Gγ

φ be the graph that
has been extended with γ many dependency reveal gadgets. Then given the graph Gγ−1

φ ,
the graph Gdr(xi) and the graph Gγ

φ = Gγ−1
φ ◦ Gdr(xi), the following holds: There exists

a solution of size 1 for Gdr(xi), such that for any optimal solution of size k∗ on Gγ−1
φ the

disjoint union of those two solutions is an optimal solution of size k∗ + 1 for Gγ
φ. Therefore

the dependency reveal gadget from Definition 17 is self-contained. ◀

Since both the literal vertices and the vertices of clause gadgets are solution dependent,
the online algorithm needs to be able to identify which variable they correspond to, and
in the case of ∃-variables also which literal they correspond to. For that, we look at the
degrees of all vertices in the graph G′′

φ. The leaves in the stars of the dependency reveal
gadgets and fake clause gadgets have degree 1, and the variable vertices in fake clause gadgets
have degree 5. The center vertices of the dependency reveal gadgets have degree 3

(2n
3

)
+ 2n.

Therefore, any vertex that was not present in Gφ already has a degree that is either smaller
than

(2n−1
2

)
+4 or larger than

(2n−1
2

)
+4n+3 for n ≥ 2 (which is necessary for three different

literals per clause). Note that the latter inequality holds due to the following:(
2n

3

)
>

(
2n − 1

2

)
n ≥ 2(

2n

3

)
≥ 2n n ≥ 2

3
(

2n

3

)
+ 2n ≥

(
2n

3

)
+ 6n >

(
2n − 1

2

)
+ 4n + 3 n ≥ 2

Therefore, we use that range of degrees for our literal vertices and clause vertices.
Let d∀

<(i) (resp. d∀
≤(i)) be the number of ∀-variables with index smaller (resp. smaller or

14 The Complexity of Online Graph Games

equal) than i. Since the formula of the TQBF Game always alternates between ∃- and
∀-variables, d∀

<(i) =
⌊

i
2
⌋

(resp. d∀
≤(i) =

⌈
i
2
⌉
) if variable x1 is ∀-quantified and d∀

<(i) =
⌊

i−1
2

⌋
(resp. d∀

≤(i) =
⌈

i−1
2

⌉
) otherwise. There are

(2n−1
2

)
possible different clauses with three literals

that contain one specific literal. Thus in G′′
φ, the literal vertices have degree

(2n−1
2

)
+d∀

<(i)+1,
or

(2n−1
2

)
+ d∀

<(i) + 2 in case of the false literal of a ∀-variable that is not the last variable.
With this, we can define the literal ID gadgets. An example for an ID gadget can be seen in
Figure 4b.

Finally, we define ID gadgets of literal vertices and all vertices in clause gadgets as they
are solution dependent. Let d∀

<(i) (resp. d∀
≤(i)) be the number of ∀-variables with index

smaller (resp. smaller or equal) than i. Since the formula of the TQBF Game always
alternates between ∃- and ∀-quantified variables, d∀

<(i) =
⌊

i
2
⌋

(resp. d∀
≤(i) =

⌈
i
2
⌉
) if variable

x1 is ∀-quantified and d∀
<(i) =

⌊
i−1

2
⌋

(resp. d∀
≤(i) =

⌈
i−1

2
⌉
) otherwise.

▶ Definition 19 (Self-contained literal ID gadget for Vertex Cover). Let ℓ be some literal
and xi its corresponding variable. Let d∀

<(i) be defined as above. Further let

d(ℓ) = 4i − d∀
<(i) − 1 if ℓ is positive

d(ℓ) = 4i − d∀
<(i) − 2 if ℓ is negative and xi is ∀-quantified

d(ℓ) = 4i − d∀
<(i) if ℓ is negative and xi is ∃-quantified

Then the literal ID gadget for the literal vertex representing ℓ consists of d(ℓ) paths of length
3, where each middle vertex is connected to the identified literal vertex.

It is necessary that the online algorithm can recognize which literal a clause vertex
represents, as the adversary could choose to reveal a clause vertex before a literal vertex of
the corresponding variable gadget.

▶ Definition 20 (Self-contained clause ID gadget for Vertex Cover). Let ℓ be a literal with
ℓ ∈ Cj for some clause Cj ∈ C and let xi be the variable ℓ belongs to. Let d∀

≤(i) be defined as
above. Further let d(ℓ) =

(2n−1
2

)
+ 4i − d∀

≤(i) − 1 if ℓ is positive and d(ℓ) =
(2n−1

2
)

+ 4i − d∀
≤(i)

if ℓ is negative. Then the clause ID gadget for the clause vertex representing ℓ consists of
d(ℓ) paths of length 3, where each middle vertex is connected to the identified clause vertex.

Vertex degree Type of vertices Strategy
1 leaves of any extension gadget reject
3 center vertices of ID gadgets accept
5 triangle vertices of fake clause gadgets accept
3
(2n

3

)
+ 2n + 1 center vertices of dependency reveal gadgets accept(2n−1

2

)
+ 4i true literal of xi, also false literal of xi if it is ∀-quantified depends on φ(2n−1

2

)
+ 4i + 1 false literal of variable xi if it is ∃-quantified depends on φ(2n−1

2

)
+ 4i + 2 vertex representing true literal of variable xi in a clause depends on φ(2n−1

2

)
+ 4i + 3 vertex representing false literal of variable xi in a clause depends on φ

Table 1 List of all vertex degrees in the final reduction from TQBF Game to Online Vertex
Cover Number, where n is the number of variables. For any vertex that is not part of a literal or
clause gadget, the optimal solution can be deduced just from its degree.

J. Fuchs, C. Grüne, T. Janßen 15

▶ Lemma 21 (Gadget Property 3). The ID gadgets (Definitions 19 and 20) are self-contained
for Vertex Cover.

Proof. Both ID gadgets are a collection of paths with three vertices, where the middle vertex
of each path is connected to the identified vertex. Thus the size of an optimal vertex cover S

on such an ID gadget is equal to the number of paths. Assume there is an optimal vertex
cover S′ on such an ID gadget that does not contain at least one of these middle vertices.
However, then its two outgoing edges need to be covered, meaning S′ is larger than S, since
the neighbors of the middle vertices can not cover any other edges. This is a contradiction to
S′ being optimal. The above argument does not change if the vertex it connects to is in the
vertex cover. Since the optimal vertex cover on Gid(v) already covers all edges connecting it
to v, v is not forced to be part of the vertex cover by attaching Gid(v).

Let G0
φ = G′′

φ and let Gγ
φ be the graph that has been extended with γ many ID gadgets.

Then given the graph Gγ−1
φ , the graph Gid(v) for some literal or clause vertex v, and the

graph Gγ
φ = Gγ−1

φ ◦ Gid(v), the following holds: There exists a solution of size |Econ| for
Gid(v), such that for any optimal solution of size k∗ for Gγ−1

φ the disjoint union of these two
solutions is an optimal solution of size k∗ + |Econ| for Gγ

φ. Therefore, the ID gadgets from
Definitions 19 and 20 are self-contained. ◀

In our framework, we also add ID gadgets to the fake clause gadgets and dependency
reveal gadgets, however the next lemma and Table 1 show that those vertices can already be
recognized by the online algorithm. Therefore, their ID gadgets are simply the empty graph,
which trivially fulfills the property of self-containment. In Table 1, the vertex degrees after
adding all ID gadgets are shown.

▶ Lemma 22 (Gadget Properties 4-6). In G′′′
φ , each solution dependent vertex which is not

in a literal gadget of a ∀-variable has a unique revelation subgraph. Further, the two literal
vertices of a ∀-variable have the same revelation subgraph, but different from vertices of any
other gadget. Finally, each vertex that is solution independent or part of an extension gadget
has a revelation subgraph that allows for an optimal decision.

Proof. All solution dependent vertices that are not part of the literal gadget of a ∀-variable
have a unique revelation subgraph, since they have unique degree, as seen in Table 1.

A literal vertex of a ∀-variable shares its degree with exactly one other vertex, that is the
vertex representing the negated literal. Thus as long as the adversary does not reveal any
(fake) clause vertices, dependency reveal vertices or literal vertices of variables with higher
index, the two literal vertices of a ∀-variable have exactly the same revelation subgraph, but
different from any other vertex.

All solution-independent vertices and vertices of extension gadgets that have a degree
larger than 1 are always contained in an optimal solution, by construction of these gadgets.
Since their degrees are also always different from solution dependent vertices, the online
algorithm can always make an optimal decision for them. Finally, by construction of the
extension gadgets, no vertex of degree 1 is contained in any optimal solution. Therefore, the
online algorithm can also always make an optimal decision on them based on their revelation
subgraph. ◀

Polynomial Time Reduction

All our gadgets can be constructed in polynomial time, as they contain at most O(
(2n

2
)
) =

O(n2) many vertices. Furthermore, the number of gadgets is also polynomial in the number

16 The Complexity of Online Graph Games

of variables, as the number of possible clauses with three literals is bounded by
(2n

3
)

∈ O(n3).
Finally, the solution size k can also be computed in polynomial time.
1. For the base reduction, n + 2m vertices are part of the optimal vertex cover.
2. For the fake clause gadgets, 3 ·

((2n
3

)
− m

)
vertices are part of the optimal vertex cover.

3. Recall that d∀
<(i) is the number of ∀-variables with an index lower than i and therefore

computable in polynomial time. Then the number of vertices in the optimal vertex cover
that are part of dependency reveal gadgets is d∀

<(n).
4. For the ID gadgets, we distinguish between literal and clause ID gadgets. For the literal

ID gadgets,

x′ +
n∑

i=1
2 ·

(
4i + d∀

<(i) − 1
)

vertices are part of the optimal vertex cover, where x′ = 1 iff both x1 and xn are
∃-quantified, x′ = −1 iff both x1 and xn are ∀-quantified, and x′ = 0 otherwise.
For a variable xi we denote with ℓ2i−1 its positive literal and with ℓ2i its negative literal.
For the clause ID gadgets, let #(ℓa) be the number of times the literal ℓa, a ∈ {1, . . . , 2n}
appears in a clause. Then

∑n
i=1(#(ℓ2i−1) + #(ℓ2i)) = 3m and therefore the size of all

#(ℓa) is polynomially bounded. The number of vertices in the optimal vertex cover, that
are part of a clause ID gadget, is given by

n∑
i=1

#(ℓ2i−1) ·
((

2n − 1
2

)
+ 4i − d∀

≤(i) − 1
)

+ #(ℓ2i) ·
((

2n − 1
2

)
+ 4i − d∀

≤(i)
)

Since all constructions are polynomial time computable, we established the requirements
for Theorem 13, thus Theorem 14 is proven. The full construction of G′′′

φ is shown in Figure 5.

∀x1
t fGid Gid

∃x2
t fGid Gid

C1

Gid

Gid

Gid

Gfc Gfc Gfc

Gdr

Figure 5 Complete view on the reduction for the TQBF-instance ∀x1∃x2 (x1 ∨ x1 ∨ x2) to Online
Vertex Cover Game. The thick vertices and edges represent the original reduction. The blue
dashed edges are the connecting edges of the extension gadgets. There are optimal solutions that
contain all the gray vertices and none of the black vertices. Whether the white vertices are contained
depends on the feasible solutions for the TQBF-formula.

J. Fuchs, C. Grüne, T. Janßen 17

5 More Vertex Subset Problems

In this section, we apply Theorem 13 to the Online Independent Set Game and Online
Dominating Set Game. Like the Online Vertex Cover Game, they take a graph G

and a number k ∈ N as input. They ask whether there is a winning strategy for the online
algorithm, that is, it finds an independent set (resp. dominating set) of size at least (resp.
most) k for every reveal order while knowing an isomorphic copy of G.

▶ Theorem 23. The Online Independent Set Game with the neighborhood reveal model
and a map is PSPACE-complete.

Proof. We again extend an existing reduction and apply Theorem 13.
For the base reduction from 3-Satisfiability to Independent Set, we use a slight

modification of the reduction from 3-Satisfiability to Vertex Cover given in [6]. Instead
of connecting each clause vertex to the literal vertex it represents, we connect it to its
negation. The size of the independent set that should be found in Gφ is then k = |X| + |C|.
The correctness argument works analogously to the reduction for Vertex Cover.

For the fake clause gadget, we use the same construction as for Vertex Cover, but
the target vertices are adjusted in the same way as for the clause gadgets. In case of the
dependency reveal gadget and ID gadgets we use exactly the same constructions as for
Vertex Cover. The full construction of the reduction is shown in Figure 6. Recall that for
any vertex cover S ⊆ V , the set V \ S forms an independent set. Since the optimal solution
of any of our extension gadgets for Vertex Cover are the vertices incident to Econ of that
gadget, the optimal solution of these gadgets for Independent Set contains all vertices not
incident to Econ. Thus, their optimal solution can not be influenced by the solution on Gφ

and vice versa. Therefore, they are self-contained for Independent Set. Gadget Properties
4-6 hold for Independent Set by the same arguments as for Vertex Cover.

Since this modified reduction is obviously still computable in polynomial time, Theorems 5
and 13 prove our claim. ◀

▶ Theorem 24. The Online Dominating Set Game with the neighborhood reveal model
and a map is PSPACE-complete.

We again extend an existing reduction and apply Theorem 13. For the base reduction,
we use the following folklore reduction.

Let φ be the 3-Satisfiability-formula, let X be set of n variables and let C be the
set of m clauses of φ. We construct the following graph Gφ = (V, E): For each variable
xi, i ∈ {1, . . . , n}, we introduce a triangle as its variable. Two of the vertices represent the
literals, which we call literal vertices. The third vertex ensures that always one vertex of the
variable gadget has to be chosen. For each clause Cj j ∈ {1, . . . , m}, we construct a clause
gadget consisting of the single vertex. Each clause vertex is connected to the literal vertices
of the literals the clause contains. The size of the dominating set that should be found in Gφ

is set to k = n.
The logical dependencies in Gφ are of the type if the literal vertex representing the literal

ℓ is not contained in a solution, then the literal vertex representing ℓ must be contained.
Furthermore, for each clause containing ℓ, one of the remaining literal vertices must be
contained. As any truth assignment assigns each literal either true or false, the third vertex
of the variable gadget is solution independent. Therefore, only the literal vertices in Gφ are
solution dependent.

We define the following extension gadgets for Dominating Set.

18 The Complexity of Online Graph Games

∀x1
t fGid Gid

∃x2
t fGid Gid

C1

Gid

Gid

Gid

Gfc Gfc Gfc

Gdr

Figure 6 Complete view on the reduction for the TQBF-instance ∀x1∃x2 (x1 ∨ x1 ∨ x2) to Online
Independent Set Game. The thick vertices and edges represent the original reduction. The blue
dashed edges are the connecting edges of the extension gadgets. There are optimal solutions that
contain all the gray vertices and none of the black vertices. Whether the white vertices are contained
depends on the feasible solutions for the TQBF-formula.

▶ Definition 25 (Self-contained fake clause gadget for Dominating Set). The fake clause
gadget for non-existing clause C ′

j /∈ C, is a star with 2n − 2 leaves. Its center is connected to
the literal vertices representing the literals contained in the clause.

▶ Definition 26 (Self-contained dependency reveal gadget for Dominating Set). The depen-
dency reveal gadget for a ∀-variable xi is a star. The target vertices are the literal vertices of
all variables with index at least i, except the true literal of variable xi. The number of leaves
is such that, together with the connecting edges, the degree of the center vertex equals 2n + 1.

▶ Definition 27 (Self-contained literal ID gadget for Dominating Set). Let ℓ be some literal,
and xi the corresponding variable. Let d∀

<(i) be defined as above. Further let

d(ℓ) = 4i − d∀
<(i) − 2 if ℓ is positive

d(ℓ) = 4i − d∀
<(i) − 3 if ℓ is negative and xi is ∀-quantified

d(ℓ) = 4i − d∀
<(i) − 1 if ℓ is negative and xi is ∃-quantified

Then the literal ID gadget for the literal vertex representing ℓ is a star with
(2n−1

2
)

+ 4(n + 1)
leaves, where d(ℓ) of those leaves are also connected to the literal vertex.

Our fake clause gadget and dependency reveal gadget for Dominating Set have the
same structure, as they are stars. Any optimal dominating set on those gadgets contains
exactly the center vertex of the star. The connection of those gadgets to the reduction graph
is done only by edges from the centers of the respective stars to literal vertices. Thus, neither
can make the solution on the reduction graph smaller, as the literal vertices of each variable
are in a triangle together with a third vertex that is not connected to any other vertex. At
the same time, dominating the center vertex of one of those gadgets by one of the connected
literal vertices never removes it from an optimal dominating set, as it has at least two leaves.
This proves the Gadget Properties 1 and 2.

J. Fuchs, C. Grüne, T. Janßen 19

Vertex degree Type of vertices Strategy
1 leaves of any fake clause / dependency reveal gadget, reject

leaves of literal ID gadgets not adjacent to a literal vertex
2 leaves of literal ID gadgets adjacent to a literal vertex reject

third vertex of variable gadgets
3 clause vertices reject
2n + 1 center vertex of fake clause / dependency reveal gadgets accept(2n−1

2

)
+ 4(n + 1) center vertex of any literal ID gadget accept(2n−1

2

)
+ 4i true literal of xi, also false literal of xi if it is ∀-quantified depends on φ(2n−1

2

)
+ 4i + 1 false literal of variable xi if it is ∃-quantified depends on φ

Table 2 List of all vertex degrees in the final reduction from TQBF Game to Online Dominating
Set Game. For any vertex that is not part of a literal gadget, the optimal solution can be deduced
just from its degree.

The literal ID gadget is also a star. Since there are always at least 2 of its leaves that are
not connected to any other vertex, an optimal solution on the ID gadget always contains the
center vertex. Thus the vertices that are connected to the reduction graph are dominated,
but not contained in any optimal dominating set. Since they are all connected to the same
vertex, this proves Gadget Property 3.

After extending Gφ with the fake clause gadgets, dependency reveal gadgets and literal
ID gadgets (in that order), Gadget Properties 4-6 already hold as shown in Table 2. Thus we
can use the empty graph as an ID gadget for the clauses, fake clause gadgets and dependency
reveal gadgets to obtain a reduction according to our framework. Since the reduction can
be computed in polynomial time by an analogous argument to the reduction for Online
Vertex Cover Game, Theorem 13 proves PSPACE-hardness of Online Dominating
Set Game. Thus together with Theorem 5, it is also PSPACE-complete.

∀x1

t f

GidGid

∃x2

t f

GidGid

Gdr

C1 C2Gfc Gfc

Figure 7 Complete view on the reduction for the TQBF-instance ∀x1∃x2 (x1 ∨ x1 ∨ x2) ∧
(x1 ∨ x2 ∨ x2) to Online Dominating Set Game. The thick vertices and edges represent the
original reduction. The blue dashed edges are the connecting edges of the extension gadgets. There
are optimal solutions that contain all the gray vertices and none of the black vertices. Whether the
white vertices are contained depends on the feasible solutions for the TQBF-formula.

20 The Complexity of Online Graph Games

6 Conclusion

We derived online games from the typical online setting in order to analyze their computational
complexity. Furthermore, we developed a framework for online versions of vertex subset
problems with neighborhood reveal model that allows reductions from TQBF Game to
show that these are PSPACE-complete. We showed particularly that the online versions
Vertex Cover, Independent Set and Dominating Set with neighborhood reveal
model are PSPACE-complete.

The gap between the complexity analysis that started with the NP-hardness for the
problems from AOC under the vertex arrival model and our PSPACE-completeness results
need to be closed. From our results the questions arises if the three problems Vertex
Cover, Independent Set and Dominating Set are actually PSPACE-complete under
the vertex arrival model. One way to show the PSPACE-completeness is to use our reduction
framework and add a type of error correction gadget. However, the missing knowledge in the
vertex arrival model might increase the asymmetry in favor of the adversary such that the
complexity decreases and it remains NP-hard.

Additionally, the presented framework may be extended to more general subset problems
from AOC where the solution is not a vertex subset.

J. Fuchs, C. Grüne, T. Janßen 21

References
1 Manindra Agrawal, Eric Allender, Russell Impagliazzo, Toniann Pitassi, and Steven Rudich.

Reducing the complexity of reductions. In Frank Thomson Leighton and Peter W. Shor, editors,
Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, pages
730–738, 1997. doi:10.1145/258533.258671.

2 Martin Böhm and Pavel Veselý. Online chromatic number is pspace-complete. Theory Comput.
Syst., 62(6):1366–1391, 2018. doi:10.1007/s00224-017-9797-2.

3 Joan Boyar, Lene M. Favrholdt, Christian Kudahl, and Jesper W. Mikkelsen. The advice
complexity of a class of hard online problems. Theory Comput. Syst., 61(4):1128–1177, 2017.
doi:10.1007/s00224-016-9688-y.

4 Joan Boyar and Christian Kudahl. Adding isolated vertices makes some greedy online
algorithms optimal. Discret. Appl. Math., 246:12–21, 2018. doi:10.1016/j.dam.2017.02.025.

5 Aviezri S. Fraenkel and Elisheva Goldschmidt. Pspace-hardness of some combinatorial games.
J. Comb. Theory, Ser. A, 46(1):21–38, 1987. doi:10.1016/0097-3165(87)90074-4.

6 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

7 Magnús M. Halldórsson. Online coloring known graphs. Electron. J. Comb., 7, 2000. doi:
10.37236/1485.

8 Magnús M. Halldórsson, Kazuo Iwama, Shuichi Miyazaki, and Shiro Taketomi. Online
independent sets. Theor. Comput. Sci., 289(2):953–962, 2002. doi:10.1016/S0304-3975(01)
00411-X.

9 Hovhannes A. Harutyunyan, Denis Pankratov, and Jesse Racicot. Online domination: The
value of getting to know all your neighbors. In Filippo Bonchi and Simon J. Puglisi, editors,
46th International Symposium on Mathematical Foundations of Computer Science, MFCS,
volume 202, pages 57:1–57:21, 2021. doi:10.4230/LIPIcs.MFCS.2021.57.

10 Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer
Computations, pages 85–103, 1972. doi:10.1007/978-1-4684-2001-2_9.

11 Christian Kudahl. Deciding the on-line chromatic number of a graph with pre-coloring
is pspace-complete. In Vangelis Th. Paschos and Peter Widmayer, editors, Algorithms
and Complexity - 9th International Conference, CIAC 2015, Paris, France, May 20-22,
2015. Proceedings, volume 9079 of Lecture Notes in Computer Science, pages 313–324, 2015.
doi:10.1007/978-3-319-18173-8_23.

12 Christos H. Papadimitriou and Mihalis Yannakakis. Shortest paths without a map. Theor.
Comput. Sci., 84(1):127–150, 1991. doi:10.1016/0304-3975(91)90263-2.

13 Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time:
Preliminary report. In Alfred V. Aho, Allan Borodin, Robert L. Constable, Robert W. Floyd,
Michael A. Harrison, Richard M. Karp, and H. Raymond Strong, editors, Proceedings of the
5th Annual ACM Symposium on Theory of Computing, pages 1–9, 1973. doi:10.1145/800125.
804029.

14 Luca Trevisan, Gregory B. Sorkin, Madhu Sudan, and David P. Williamson. Gadgets,
approximation, and linear programming (extended abstract). In 37th Annual Symposium on
Foundations of Computer Science, pages 617–626, 1996. doi:10.1109/SFCS.1996.548521.

https://doi.org/10.1145/258533.258671
https://doi.org/10.1007/s00224-017-9797-2
https://doi.org/10.1007/s00224-016-9688-y
https://doi.org/10.1016/j.dam.2017.02.025
https://doi.org/10.1016/0097-3165(87)90074-4
https://doi.org/10.37236/1485
https://doi.org/10.37236/1485
https://doi.org/10.1016/S0304-3975(01)00411-X
https://doi.org/10.1016/S0304-3975(01)00411-X
https://doi.org/10.4230/LIPIcs.MFCS.2021.57
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-3-319-18173-8_23
https://doi.org/10.1016/0304-3975(91)90263-2
https://doi.org/10.1145/800125.804029
https://doi.org/10.1145/800125.804029
https://doi.org/10.1109/SFCS.1996.548521

	Introduction
	Gadget Reductions
	A Reduction Framework for Online Vertex Subset Games
	Vertex Cover
	More Vertex Subset Problems
	Conclusion

