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Abstract. In majority voting dynamics, a group of n agents in a social
network are asked for their preferred candidate in a future election be-
tween two possible choices. At each time step, a new poll is taken, and
each agent adjusts their vote according to the majority opinion of their
network neighbors. After T time steps, the candidate with the majority
of votes is the leading contender in the election. In general, it is very
hard to predict who will be the leading candidate after a large number
of time-steps.
We study, from the perspective of local certification, the problem of
predicting the leading candidate after a certain number of time-steps,
which we call Election-Prediction. We show that in graphs with
sub-exponential growth Election-Prediction admits a proof labeling
scheme of size O(log n). We also find non-trivial upper bounds for graphs
with a bounded degree, in which the size of the certificates are sub-linear
in n.
Furthermore, we explore lower bounds for the unrestricted case, showing
that locally checkable proofs for Election-Prediction on arbitrary n-
node graphs have certificates on Ω(n) bits. Finally, we show that our
upper bounds are tight even for graphs of constant growth.

Keywords: Local Certification · Majority Dynamics · Proof Labeling
Schemes.

1 Introduction

Understanding social influence, including conformity, opinion formation, peer
pressure, leadership, and other related phenomena, has long been a focus of
research in sociology [28,31]. With the advent of online social network platforms,
researchers have increasingly turned to graph theory and network analysis to
model social interactions [1,6,35]. In particular, opinion formation and evolution
have been extensively studied in recent years [5,29,30,38,40,42].

One of the simplest and most widely studied models for opinion formation is
the majority rule [6]. In this model, the opinion of an individual evolves based
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on the opinion of the majority of its neighbors. Specifically, consider an election
with two candidates, labeled as 0 and 1, and let G be an undirected, connected,
and finite graph representing the social network. Each node in the graph rep-
resents an individual with a preference for the candidate they will vote for. We
call this preference an opinion. A particular assignment of opinions to each node
is called a configuration. At the beginning, we consider that an initial configu-
ration is given, representing the personal beliefs of each individual about their
vote intentions. The configuration evolves in synchronous time-steps, where each
individual updates its opinion according to the opinion of the majority of its
neighbors. If the majority of its neighbors plan to vote for candidate 1, the node
changes its opinion to 1. Conversely, if the majority of its neighbors prefer 0,
the node switches to 0. In the event of a tie, where exactly half of the neighbors
favor 1 and the other half favor 0, the individual retains their current opinion.

All graphs have configurations in which (locally) every node has the same
opinion as the majority of its neighbors. These configurations are called fixed
points since each node retains its opinion in subsequent time-steps. Interestingly,
every graph admit non-trivial fixed points, where the local majority opinion of
some nodes is different from the global majority. In general, the initial global
majority opinion (among all nodes) is not preserved when the opinions evolve
in the majority dynamics. In fact, the majority opinion can shift between the
two candidates in non-trivial ways, which depend on both the properties of the
graph and the initial distribution of opinions within it.

Actually, some initial configurations never converge to a fixed point. For
example, in a network consisting of only two vertices connected by an edge,
where one vertex initially has opinion 0 and the other has opinion 1, the two
nodes exchange their opinions at each time-step, never reaching a fixed point.
Configurations with this behavior are called limit cycle of period 2. Formally,
a limit cycle of period 2 is a pair of configurations that mutually evolve into
one another under the majority dynamics. In [25], it was shown that for any
initial configuration on any graph, the majority dynamics either converge to a
fixed point or a limit cycle of period 2. The results of [25] also imply that the
described limit behavior (called attractor) is reached after a number of time-steps
that is bounded by the number of edges in the input graph.

Therefore, even assuming that the opinion a society evolves according to the
majority rule, deciding who wins the election is a non-trivial task. During the
last 25 years, there has been some effort in characterizing the computational
complexity of this problem [7,24,37]. In this article we tackle this problem from
the perspective of distributed algorithms and local decision.

Local decision. Let G = (V,E) be a simple connected n-node graph. A dis-
tributed language L is a (Turing-decidable) collection of tuples (G, id, In), called
network configurations, where In : V → {0, 1}∗ is called an input function and
id : V → [nc] is an injective function that assigns to each vertex a unique iden-
tifier in {1, . . . , nc} with c > 1. In this article, all our distributed languages are
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independent of the id assignments. In other words, if (G, id, In) ∈ L for some id,
then (G, id′, In) ∈ L for every other id′.

Given t > 0, a local decision algorithm for a distributed language L is an algo-
rithm on instance (G, id, In), each node v of V (G) receives the subgraph induced
by all nodes at distance at most t from v (including their identifiers and inputs).
The integer t > 0 depends only on the algorithm (not of the size of the input).
Each node performs unbounded computation on the information received, and
decides whether to accept or reject, with the following requirements:

– When (G, id, In) ∈ L then every node accepts.
– When (G, id, In) /∈ L there is at least one vertex that rejects.

Distributed languages for majority dynamics. Given an graph G and an
initial configuration x. The orbit of x, denoted Orbit(x), is the sequence of con-
figurations {xt}t>0 such that x0 = x and for every t > 0, xt is the configuration
obtained from xt−1 after updating the opinion of every node under the majority
dynamics. We denote by Election-Prediction the set of triplets (G, x, T ),
where the majority of the nodes vote 1 on time-step T starting from configura-
tion x. Formally,

Election-Prediction =







(G, (x, T )) :

x is a configuration of V (G),
T > 0,

and
∑

v∈V (G) x
T
v > |V (G)|

2 .







It is easy to see that there are no local decision algorithms for Election-

Prediction. That is, there are no algorithms in which every node of a net-
work exchange information solely with nodes in its vicinity, and outputs which
candidate wins the election. Intuitively, a local algorithm solving Election-

Prediction requires the nodes to count the states of other nodes in remote
locations of the input graph. In fact, this condition holds even when there is no
dynamic, i.e. T = 0. In that sense, the counting difficulty of problem Election-

Prediction hides the complexity of predicting the majority dynamics. For that
reason, we also study the following problem:

Reachability =

{

(G, (x, y, T )) :
x is a configuration of V (G),
T > 0, and xT = y.

}

.

Problem Reachability is also hard from the point of view of local decision
algorithms. Indeed, the opinion of a node v after t time-steps depends on the
initial opinion of all the nodes at distance at most t from v. There are graphs for
which the majority dynamics stabilizes in a number of time-steps proportional
to the number of edges of the graph [25]. Therefore, no local algorithm will be
able to even decide the opinion of a single vertex in the long term.

Local certification. A locally checkable proof for a distributed language L
is a prover-verifier pair where the prover is a non-trustable oracle assigning
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certificates to the nodes, and the verifier is a distributed algorithm enabling
the nodes to check the correctness of the certificates by a certain number of
communication rounds with their neighbors. Note that the certificates may not
depend on the instanceG only, but also on the identifiers id assigned to the nodes.
In proof-labeling schemes, the information exchanged between the nodes during
the verification phase is limited to the certificates. Instead, in locally checkable
proofs, the nodes may exchange extra-information regarding their individual
state (e.g., their inputs In or their identifiers, if not included in the certificates,
which might be the case for certificates of sub-logarithmic size). The prover-
verifier pair must satisfy the following two properties.

Completeness: Given (G, In) ∈ L, the non-trustable prover can assign certifi-
cates to the nodes such that the verifier accepts at all nodes;

Soundness: Given (G, In) /∈ L, for every certificate assignment to the nodes by
the non-trustable prover, the verifier rejects in at least one node.

The main complexity measure for both locally checkable proofs, and proof-
labeling schemes is the size of the certificates assigned to the nodes by the prover.
Another complexity measure is the number of communication rounds executed
during the verification step. In this article, all our upper-bounds are valid for
Proof Labeling Schemes with one-round certification, while all our lower-bounds
apply to locally ceckable proofs with an arbitrary number of rounds of verifica-
tion.

1.1 Our results

We show that in several families of graphs there are efficient certification proto-
cols for Reachability. More precisely, we show that there is a proof labeling
scheme for Reachability with certificates on O(log n) bits in n-node networks
of sub-exponential growth.

A graph has sub-exponential growth if, for each node v, the cardinality of the
set of vertices at distance at most r from v growths as a sub-exponential function
in r, for every r > 0. Graphs of sub-exponential growth have bounded degree,
and include several structured families of graphs such as the d-dimensional grid,
for every d > 0. Nevertheless, not every class of graphs of bounded degree is
of sub-exponential growth. For instance, a complete binary tree has exponential
growth.

For graphs of bounded degree, we show that Reachability admits proof
labeling schemes with certificates of sub-linear size. More precisely, we show that
there is a proof labeling scheme for Reachability with certificates on O(log2 n)
bits in n-node networks of maximum degree 3. Moreover, for each ∆ > 3 there
exists a ǫ > 0 such that is a proof labeling scheme for Reachability with
certificates onO(n1−ǫ) bits in n-node networks of maximum degree∆ > 3. Then,
we show that all our upper-bounds are also valid for Election-Prediction.

Then, we focus on lower-bounds. First, we show that in unrestricted fami-
lies of graphs every, locally-checkable proof for the problem Reachability as
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well as Election-Prediction requires certificates of size Ω(n). We also show
that even restricted to graphs of degree 2 and constant growth, every locally-
checkable proof for Reachability requires certificates of size Ω(n).

Our techniques. Our upper bounds for the certification of Reachability are
based on an analysis of the maximum number of time-steps on which an indi-
vidual may change its opinion during the majority dynamics. This quantity is in
general unbounded. For instance, in an attractor which is a cycle of period two
an oscillating node switches its state an infinite number of time-steps. However,
when we look to two consecutive iterations of the majority dynamic, we obtain
that the number of changes of a given node depends on the topology of the net-
work. We show that the in the dynamic induced by two consecutive iterations of
the majority dynamic (or, alternatively, looking one every two time-steps of the
majority dynamics), the number of times that a node switches is state is con-
stant on graphs of sub-exponential growth, logarithmic on graphs of maximum
degree 3 and sublinear on graphs of bounded degree. The bound for graphs of
sub-exponential growth was observed in [19], while the other two bounds can be
obtained by a careful analysis of the techniques used in [19] (see Section 3 for
further details). Roughly speaking, the idea consists defining a function that as-
signs to each configuration a real value denoted the energy of the configuration.
This energy function is strictly decreasing in the orbit of a configuration before
reaching an attractor. In fact, through the definition of such function it can be
shown that the majority dynamics reaches only fixed points or limit cycles of
period two, in at most a polynomial number of time-steps [25]. In this article,
we analyze a different energy function proposed in [19], from which obtain the
upper-bounds for the number of times that a node can switch states in two-step
majority dynamic.

Our efficient proof labeling schemes are then defined by simply giving each
vertex the list of time-steps on which it switches it state. From that information
the nodes can reconstruct their orbit. We show that the nodes can use the
certificates of the neighbors to verify that the recovered orbit corresponds to its
real orbit under the majority dynamic. Our upper bounds for the certification of
Election-Prediction follow from the protocol used to certify Reachability,
and the use of classical techniques of local certification to count the total number
of nodes in the graph, as well as the number of vertices that voted for each
candidate.

Our lower-bounds are obtained using two different techniques. First, we show
that in unrestricted families of graphs, every locally-checkable proof for the prob-
lem Reachability or Election-Prediction requires certificates of size Ω(n)
by a reduction to the disjointedness problem in non-deterministic communi-
cation complexity. Then, we prove that restricted to graphs of degree 2 and
constant growth, every locally-checkable proof for Reachability requires cer-
tificates of size Ω(n) by using a locally-checkable proof for Reachability to
design a locally-checkable proof that accepts only if a given input graph is a
cycle. In [26] it is shown that any locally checkable proof for the problem of
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distinguishing between a path of a cycle requires certificates of size Ω(log n),
implying that certifying Reachability on graphs of degree at most 2 and con-
stant growth (a cycle or a path) also requires Ω(log n) certificates.

1.2 Related Work

Majority dynamics for modeling social influence Numerous studies have
been conducted on the majority dynamics. In [36], the authors studied how noise
affects the formation of stable patterns in the majority dynamics. They found
that the addition of noise can induce pattern formation in graphs that would
otherwise not exhibit them. In [40] the authors explore opinion dynamics on com-
plex social networks, finding that densely-connected networks tend to converge
to a single consensus, while sparsely-connected networks can exhibit coexistence
of different opinions and multiple steady states. Node degree influences the final
state under different opinion evolution rules. Variations of the majority dynam-
ics have been proposed and studied, such as the noisy majority dynamics [41],
where agents have some probability of changing their opinion even when they
are in the local majority, and the bounded confidence model [9,27], where agents
only interact with others that have similar opinions.

Complexity of Majority Dynamics. Our results are in the line of a series of
articles that aim to understand the computational complexity of the majority
rule by studying different variants of the problem. In that context, two perspec-
tives have been taken in order to show the P-Completeness. In [21] it is shown
that the prediction problem for the majority rule is P-Complete, even when the
topology is restricted to planar graphs where every node has an odd number
of neighbors. The result is based in a crossing gadget that use a sort of traf-
fic lights, that restrict the flow of information depending on the parity of the
time-step. Then in [20] it is shown that the prediction problem for the majority
rule is P-Complete when the topology is restricted to regular graphs of degree
3 (i.e. each node has exactly three neighbors). In [23] study the majority rule
in two dimensional grids where the edges have a sign. The signed majority con-
sists in a modification of the majority rule, where the most represented state
in a neighborhood is computed multiplying the state of each neighbor by the
corresponding sign in the edge. The authors show that when the configuration
of signs is the same on every site (i.e. we have an homogeneous cellular au-
tomata) then the dynamics and complexity of the signed majority is equivalent
to the standard majority. Interestingly, when the configuration of signs may differ
from site to site, the prediction problem is P-Complete. A last variant considers
the prediction problem under a sequential updating scheme. More precisely, the
asynchronous prediction problem asks for the existence of a permutation of the
cells that produces a change in the state of a given cell, in a given time-step. In
fact, in [37] Moore suggested in this case it holds a similar dichotomy than in the
synchronous case: namely, the complexity in the two-dimensional case is lower
than in three or more dimensions. This conjecture was proven in [22] where it
was shown that the asynchronous prediction in two dimension is in NC, while it
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is NP-Complete in three or more dimensions.

Local certification. Since the introduction of PLSs [33], different variants
were introduced. As we mentioned, a stronger form of PLS are locally check-
able proofs [26], where each node can send not only its certificates, but also its
state and look up to a given radious. Other stronger forms of local certifications
are t-PLS [13], where nodes perform communication at distance t ≥ 1 before de-
ciding. Authors have studied many other variants of PLSs, such as randomized
PLSs [18], quantum PLSs [16], interactive protocols [8,32,39], zero-knowledge
distributed certification [3], PLSs use global certificates in addition to the local
ones [15], etc. On the other hand, some trade-offs between the size of the certifi-
cates and the number of rounds of the verification protocol have been exhibited
[13]. Also, several hierarchies of certification mechanisms have been introduced,
including games between a prover and a disprover [2,12].

PLSs have been shown to be effective for recognizing many graph classes.
For example, there are compact PLSs (i.e. with logarithmic size certificates) for
the recognition of acyclic graphs [33], planar graphs [14], graphs with bounded
genus [10], H-minor-free graphs (as long as H has at most four vertices) [4], etc.
In a recent breakthrough, Bousquet et al. [11] proved a “meta-theorem”, stating
that, there exists a PLS for deciding any monadic second-order logic property
with O(log n)-bit certificates on graphs of bounded tree-depth. This result has
been extended by Fraigniaud et al [17] to the larger class of graphs with bounded
tree-width, using certificates on O(log2 n) bits.

Up to our knowledge, this is the first work that combines the study of ma-
jority dynamics and local certification.

2 Preliminaries

Let G = (V,E) be a graph. We denote by NG(v) the set of neighbors of v,
formally NG(v) = {u ∈ V : {u, v} ∈ E}. The degree of v, denoted dG(v) is the
cardinality of NG(v). The maximum degree of G, denoted ∆G, is the maximum
value of dG(v) taken over all v ∈ V . We say that two nodes u, v ∈ V are
connected if there exists a path in G joining them. In the following, we only
consider connected graphs. The distance between u, v, denoted dG(u, v) is the
minimum length (number of edges) of a path connecting them. The diameter of
G is the maximum distance over every pair of vertices in G. For a node v, and
k ≥ 0, the ball of radius k centered in v, denoted by B(v, k) is the set of nodes
at distance at most k from v. Formally,

BG(v, k) = {u ∈ V : dG(v, u) ≤ k}

We also denote by ∂BG(v, k) = BG(v, k) \ BG(v, k − 1) the border of BG(v, k).
In the following, we omit the sub-indices when they are obvious by the context.

Let G = (V,E) be a graph, v ∈ V be an arbitrary node and f : N → R a
function. We say that v has a f -bounded growth if there exist constants c1, c2 > 0
such that, for every k > 0, c1f(k) ≤ |∂B(v, k)| ≤ c2f(k) . We also say that
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G has f -bounded growth if every node v has f -bounded growth. A family of
graphs G has f - bounded growth if every graph in G has f -bounded growth.
A family of graphs G has constant-growth (respectively linear, polynomial, sub-
exponential, exponential)-growth if G has f -bounded growth, with f a constant
(resp. linear, polynomial, sub-exponential, exponential) function. Observe that
since B(v, 1) = N(v), for every f -bounded graph G we have that ∆(G) ≤ f(1).

2.1 Majority and finite state dynamics.

Let G = (V,E) be a connected graph. We assign to each node in G an initial
opinion v 7→ xv ∈ {0, 1}. We call x a configuration for the network G. We call
x(t) the configuration of the network in time t. We define the majority dynamics
in G by the following local rules for u ∈ V and t ≥ 0:

xt+1
u =



















1 if
∑

v∈N(u)

xt
v > d(v)

2 ,

xt
u if

∑

v∈N(u)

xt
v = d(v)

2 ,

0 otherwise.

where x0 = x is called an initial configuration. Notice that in the tie case (i.e. a
node observe the same number of neighbors in each state), we consider that the
node remains in its current state. Therefore, nodes of even degree may depend
on their own state while nodes of odd degree do not. Therefore, we can also
define the local rule of the majority dynamics as follows:

xt+1
u = sgn

(

∑

v∈V

auvx
t
v −

d(u)

2

)

where

auv =











1 if uv ∈ E,

1 if u = v and d(u) is even,

0 otherwise.

and sgn(z) is the function that equals 1 when z > 0 and 0 otherwise.
Given a configuration x of a graph G and a vertex v ∈ V (G), we define the

orbit of x as the sequence of states that Orbit(x) = (x0 = x, x1, x2, . . .) that the
majority dynamics visit when the initial configuration is x. We also define the
orbit of vertex v as the sequence Orbit(x) = (x0

v = xv, x
1
v, x

2
v, . . . , ).

Observe that the orbit of every configuration is finite and periodic. In other
words, there exist non-negative integers T = T (G, x) p = p(G, x) such that
xT+p = xT . Indeed, in an n-node graph it is possible to define exactly 2n pos-
sible configurations. Therefore, in every orbit there is at least one configuration
that is visited twice. The minimum T and p satisfying previous condition are
denoted, respectively, the transient length and the period of configuration x.
The transient length Transient(G) and the period Period(G) of graph a G are
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defined, respectively, as the maximum transient length and period of over all
configurations of G. Formally,

Transient(G) = max{T (G, x) : x ∈ {0, 1}V },

Period(G) = max{p(G, x) : x ∈ {0, 1}V }.

Let x a configuration satisfying that T (x,G) = 0 is called an attractor. An
attractor x satisfying p(x,G) = 1 is denoted a fixed point. Otherwise, it is denote
a limit-cycle of period p(x,G).

2.2 Limit behavior of majority dynamics

In [25] it is shown that the transient length of the majority dynamics over every
graph G = (V,E) is at most |E|. Moreover, the all the attractors are either
fixed-points or limit-cycles of period 2. For sake of completeness, we give a full
proof of this result.

Proposition 1. For every graph G, Transient(G) ≤ |E| and Period(G) ≤ 2.

Let us fix a graph G a configuration x ∈ {0, 1}V . The energy of the orbit
of Orbit(x) is a function that assigns to each time step t the a value Et(x) as
follows:

Et(x) =
∑

u,v∈V

auv|x
t+1
u − xt

v|

Lemma 1. Et+1(x) < Et for every t < T (G, x).

Proof. Observe that, since G is undirected,

∑

u,v∈V

auv|x
t
u − xt−1

v | =
∑

u,v∈V

auv|x
t−1
u − xt

v|.

Then,

Et+1(x)− Et(x) =
∑

u,v∈V

auv|x
t+1
u − xt

v| −
∑

u,v∈V

auv|x
t
u − xt−1

v |

=
∑

u,v∈V

auv
(

|xt+1
u − xt

v| − |xt−1
u − xt

v|
)

=
∑

u∈V

∑

v∈N(u)

(

|xt+1
u − xt

v| − |xt−1
u − xt

v|
)

For each u ∈ V let us call Σu =
∑

v∈N(u)

(

|xt+1
u − xt

v| − |xt−1
u − xt

v|
)

. If t > 0 is

such that xt+1
u = xt−1

u , then we have Σu = 0. Otherwise, by the majority rule, at
time t, we have that the majority of the neighbors of u are in state xt+1

u which
implies that Σu < 0.
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The proof Proposition 1 is a direct consequence of the previous lemma.

Proof (Proof of Proposition 1). From Lemma 1 we have that the energy is strictly
decreasing in the transient of a orbit. Observe that for every configuration x and
every t > 0 we have that 0 ≤ Et(x) ≤ |E|. Moreover, if t ≤ T (G, x) then
Et+1(x) − Et(x) ≤ −1. Therefore, in t ≤ |E| time-steps the orbit satisfies that
Et+1(x) = Et(x). Such a time-step must satisfy xt+1

u = xt−1
u for every u ∈ V .

In other words, the configuration reached is a fixed point or a limit cycle of
period 2.

3 Majority on graphs of bounded degree

In this section, we focus in the case of networks of bounded degree. Our analysis
is based on the results of [19], where the authors aim to study the asymptotic
behavior of the majority dynamics on infinite graphs. Our goal is to bound the
number of changes in the two-step majority dynamics. We consider a variant
of the energy operator. More precisely, for each t > 0 and u ∈ V , we aim to
bound the number of time-steps on which the quantity ctu(x) = |xt+1

u − xt−1
u | is

non-zero.

Theorem 1. Let G be a graph and x be an arbitrary configuration. Then, for
every r ∈ V and every T > 0, it holds:

1. If G is a graph of sub-exponential growth, then

T
∑

t=1

ctr(x) = O(1).

2. If G is a graph of maximum degree 3, then

T
∑

t=1

ctr(x) = O(log n).

3. If G is a graph of maximum degree ∆, then

T
∑

t=1

ctr(x) = O(n1−ε), where

ε =

(

log(∆+ 2)

log(∆)
− 1

)

>
1

∆ log(∆)
.

Proof. We fist show (3), and then adapt la proof to show (1) and (2). We define
an energy operator relative to r, giving weights to the edges of G that decrease
exponentially with the distance from r. Formally, we denote by Et

r the energy
operator centered in r, defined as follows:

Et
r(x) =

∑

u,v∈V

ãu,v|x
t+1
u − xt

v|

where ãu,v = au,v · α
δ(u,v), with α ∈ (0, 1) a constant that we will fix later, and

δ(u, v) = min{d(r, u), d(r, v)}. Then,
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Et+1
r (x)− Et

r(x) =
∑

{u,v}∈E

αδ(u,v)|xt+1
u − xt

v| −
∑

{u,v}∈E

αδ(u,v)|xt
u − xt−1

v |

=
∑

{u,v}∈E

αδ(u,v)|xt+1
u − xt

v| −
∑

{u,v}∈E

αδ(u,v)|xt−1
u − xt

v|

=
∑

{u,v}∈E

αδ(u,v)
(

|xt+1
u − xt

v| − |xt−1
u − xt

v|
)

We aim to upper bound Et+1
r (x)−Et

r(x). Observe that for u ∈ ∂B(r, i) and
v ∈ N(u), the value of δ(u, v) is either i− 1 or i. Suppose that ctu 6= 0. We have
that

(

|xt+1
u − xt

v| − |xt−1
u − xt

v|
)

is maximized when almost half of the neighbors
of u are in a different state than u in t − 1, and exactly those neighbors are
connected with edges of weight αi−1. Therefore,

Et+1
r (x) − Et

r(x) =

∞
∑

i=0

∑

u∈∂B(r,i)

∑

v∈N(u)

αδ(u,v)
(

|xt+1
u − xt

v| − |xt−1
u − xt

v|
)

≤− ctr(x)

+

∞
∑

i=1

∑

u∈∂B(r,i)
d(u) is even

ctu(x)

((

d(u)

2

)

αi−1 −

(

d(u)

2
+ 1

)

αi

)

+
∞
∑

i=1

∑

u∈∂B(r,i)
d(u) is odd

ctu(x)

((

d(u)− 1

2

)

αi−1 −

(

d(u) + 1

2

)

αi

)

We now choose α. We impose that for each u ∈ V \ {r} such that d(u) is
even,

(

d(u)

2

)

αi−1 −

(

d(u)

2
+ 1

)

αi ≤ 0 ⇒ α ≥
d(u)

d(u) + 2
; (1)

and for each u ∈ V \ {r} such that d(u) is odd,

(

d(u)− 1

2

)

αi−1 −

(

d(u) + 1

2

)

αi ≤ 0 ⇒ α ≥
d(u)− 1

d(u) + 1
. (2)

Picking α =
∆

∆+ 2
we obtain that conditions 1 and 2 are satisfied for every

u ∈ V \ {r}. Then,
Et+1

r (x) − Et
r(x) ≤ −ctr.

Using that Et
r(x) ≥ 0 for every t > 0, we obtain

T
∑

t=1

ctr(x) ≤

T
∑

t=1

(

Et
r(x) − Et+1

r (x)
)

= E1
r (x)− ET

r (x) ≤ E1
r (x)
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To obtain our bound for
∑T

t=1 c
t
r(x), we upper bound E1

r (x). Observe that

E1
r (x) =

∑

{u,v}∈E

αδ(u,v)|xt+1
u − xt

v| =

∞
∑

i=0

∑

u∈∂B(r,i)

∑

v∈N(u)

αδ(u,v)|x1
u − x0

v|

We have that the previous expression is maximized when, for each u ∈ V ,
almost half of the neighbors v of u satisfy x0

v 6= x1
u, and the edge connecting

such neighbors has the maximum possible weight. In that case, we obtain:

E1
r (x) ≤

∆

2

(

1 +

∞
∑

i=1

|∂B(r, i)|αi−1

)

(3)

Now let us fix q =
log(n)

log∆
. We have that:

E1
r (x) ≤

∆

2



1 +

q
∑

i=1

|∂B(r, i)|αi−1 +

∞
∑

i=q+1

|∂B(r, i)|αi−1





≤
∆+ 2

2





q
∑

i=0

(∆α)i +

∞
∑

i=q+1

nαi





=
∆+ 2

2

(

(∆α)q − 1

∆α− 1
+ (α)q+1n

1

1− α

)

=

(

(∆+ 2)2

2(∆+ 1)(∆− 2)

)

((∆α)q − 1) +
∆(∆+ 2)

4
n(α)q

Now observe that

(∆α)q = 2q(2 log∆−log(∆+2)) = n1−( log(∆+2)
log(∆)

−1) = n1−ε

and

n(α)q = n · 2q(log∆−log(∆+2)) = n1−( log(∆+2)
log(∆)

−1) = n1−ε

We conclude that

T
∑

t=1

ctr(x) ≤ E1
r (x) ≤

(

(∆+ 2)2

2(∆+ 1)(∆− 2)
+

∆(∆+ 2)

4

)

· n1−ε = O(n1−ε)

This finishes the proof of (3).

To prove (1), consider Equation 3 and observe that in this case:

E1
r (x) ≤

∆

2

(

1 +

∞
∑

i=1

f(i)αi−1

)
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Since f(i) is sub-exponential, we have that there exists a large enough ℓ > 0
such that

f(ℓ) ≤

(

∆+ 1

∆

)ℓ

.

Then,

E1
r (x) ≤

∆

2

(

1 +

∞
∑

i=1

f(i)αi−1

)

=
∆

2

(

1 +
ℓ
∑

i=1

f(i)αi−1 +
∞
∑

i=i∗+1

f(i)αi−1

)

≤
∆

2
+

∆+ 2

2

(

(

∆+ 1

∆

)ℓ

·
ℓ
∑

i=1

(

∆

∆+ 2

)i

+
∞
∑

i=ℓ+1

(

∆+ 1

∆+ 2

)i
)

=
∆

2
+

∆(∆+ 2)

4
·

(

∆+ 1

∆

)ℓ

·

(

1−

(

∆

∆+ 2

)ℓ
)

+
(∆+ 2)2

2

(

∆+ 1

∆+ 2

)ℓ+1

Since ∆ ≤ f(1), we deduce that

T
∑

t=1

ctr(x) ≤ E1
r (x) = O(1)

Finally, let us prove (2). In a graph of maximum degree 3 we can pick α = 1/2
and satisfy, for every u ∈ V , Equations 1 and 2. Moreover, for every v ∈ V and
every i ≥ 0, |∂B(v, i)| ≤ 3 · 2i−1. Then, starting from Equation 3 and picking
q = 2 log(n) we have that:

E1
r (x) ≤ 1 +

q
∑

i=1

|∂B(r, i)|αi−1 +

∞
∑

i=q+1

|∂B(r, i)|αi−1

≤ 1 + 3

q
∑

i=1

2i−1αi−1 +

∞
∑

i=q+1

nαi

= 1 + 3q + n(α)q = 6 logn+ 1 +
1

n

We deduce that
T
∑

t=1

ctr(x) ≤ E1
r (x) = O(logn)

4 Certification Upper-bounds

In this section we give protocols for the certification of Reachability and
Election-Prediction.
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4.1 Upper-bound for Reachability

For a graph G let us define define Changes(G) = maxx
(

maxv
∑

t>0 c
t
v(x)

)

. For
a set of graphs G we define Changes(G) = maxG∈G Changes(G). Given an infinite
set of graphs G and n > 0, we denote by Gn the subset of G of size n.

Lemma 2. For each n-node graph G there is a proof labeling scheme for problem
Reachability with certificates of size O(Changes(G) · logn).

Proof. Let (G, x, T ) be an instance of the problem Reachability. Let N be
an upper-bound on the size of G that is initially known by all vertices. The
certificate of node v ∈ V (G) consists in a pair

Certificate(v) = (evenChanges(v), oddChanges(v))

where:

– evenChanges(v) is a set of pairs (q, t) where t ∈ [N2] is an even time-step
such that xv(t + 2) = q 6= xv(t). The set evenChanges(v) also includes the
pair (xv, 0).

– oddChanges(v) is a set of pairs (q, t) where t ∈ [N2] is an odd time-step such
that xv(t + 2) = q 6= xv(t). The set oddChanges(v) also includes the pair
(q, 1), where q represents the sate of v in time-step 1.

Verification Algorithm. In the verification round, node v receives Certificate(u)
for every u ∈ N(v). For each u ∈ N [v], vertex v computes the vector orbit(u)

representing the orbit u. Formally, v computes the vector orbit(u) ∈ {0, 1}N
2+1

defined as follows. For each i ∈ {0, . . . , N2}, we define:

tinf(i) =

{

max{t ∈ {0, . . . , i} : ∃q ∈ {0, 1} s.t (t, q) ∈ evenChanges(u) if i is even,
max{t ∈ {0, . . . , i} : ∃q ∈ {0, 1} s.t (t, q) ∈ oddChanges(u) if i is odd.

Then, orbit(u)i = q where q is the state such that (q, tinf(i)) ∈ evenChanges(v)
when i is even, or where (q, tinf(i)) ∈ oddChanges(v) when i is odd. Vertex v re-
jects Certificate(v) if the orbit of v does not coincide with the majority function
on its closed neighborhood. Formally, vertex v checks that for every t ∈ [N2]
the value of orbitt(v) = 1 if and only if

∑

u∈S(v) orbitt−1(u) > d(v)/2, where

S(v) = N(v) when the degree of v is odd, and S(v) = N [v] when the degree of
v is even. Finally v accepts when orbitT (v) = yv.

Completeness and Soundness. Let us analyze now the completeness and
soundness of our proof labeling scheme.

Completeness. Suppose first that (G, x, T ) belongs to Reachability. Then,
we can choose Certificate(v) as described above, making every node in G accept.

Soundness. Now let us suppose that every node in G has accepted a given
certificate. Following the verification algorithm, v is capable of reconstruct the
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orbit of every node u ∈ N [v]. Then, all the neighbors of vertex v agree in the
same orbit of v. Therefore, if every vertex did not reject in the verification of the
orbits, we deduce that orbitt(v) = xt

v for every t ∈ [N2]. In particular, we have
that xT = y.

Size of the Certificates. For each vertex v, Certificate(v) can be encoded in
O(Changes(G) · log n) bits. Indeed, each pair

(q, t) ∈ evenChanges(v) ∪ oddChanges(v)

can be encoded in 1 + log(N2) = O(log n) bits. Moreover, the cardinality of
evenChanges(v) ∪ oddChanges(v) is, by definition, at most Changes(G).

Theorem 1 pipelined with Lemma 2 gives the main result of this section.

Theorem 2.

1. There is a 1-round proof labeling scheme for Reachability with certificates
on O(log n) bits in n-node networks of sub-exponential growth.

2. There is a 1-round proof labeling scheme for Reachability with certificates
on O(log2 n) bits in n-node networks of maximum degree 3.

3. There is a 1-round proof labeling scheme for Reachability with certificates
on O(n1−ǫ logn) bits in n-node networks of maximum degree ∆ > 2, where
ε = 1/∆ log(∆).

4.2 Upper-bound for Election-Prediction

We now show the proof labeling schemes for Election-Prediction. Our bounds
of the size of the certificates is obtained from Theorem 2 and the following result.
Let us define Count-Ones as the problem of deciding, given a configuration x
and a constant k, if in the graph there are exactly k nodes in state 1. Formally,

Count-Ones =







(G, (x, k)) : x : V → {0, 1}, k ≥ 0 and
∑

v∈V (G)

xv = k







In [33] it is shown that there is a PLS for Count-Ones with certificates of
size O(log n).

Lemma 3. (see [33]) There is a proof labeling scheme for Count-Ones with
certificates of size O(logn).

Roughly, the idea of the PLS of Lemma 3 the following: the certificate of a
node v is a tuple (root, parent, distance, count) where root is the identifier of the
root of a rooted spanning tree τ of G, parent is the identifier of the parent of v
in τ , distance is the distance of v to the root and count is the number of nodes in
state 1 in the subgraph of G induced by the descendants of v in τ . Then, every
vertex checks the local coherence of the certificates, and the root also checks
whether count equals k. The upper bounds for Election-Prediction follow
directly from Theorem 2 and Lemma 3.
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Theorem 3.

1. There is a 1-round proof labeling scheme for Election-Prediction with
certificates on O(logn) bits in n-node networks of sub-exponential growth.

2. There is a 1-round proof labeling scheme for Election-Prediction with
certificates on O(log2 n) bits in n-node networks of maximum degree 3.

3. There is a 1-round proof labeling scheme for Election-Prediction with
certificates on O(n1−ǫ logn) bits in n-node networks of maximum degree ∆ >
2, where ε = 1/∆ log(∆).

Proof. Given an instance G, x, T of Election-Prediction, the protocol con-
sists in giving each node v

1. The state yv of v on time-step T .
2. An integer nv representing the number of nodes in G
3. An integer pv representing

∑

v∈V yv.
4. The certification of Reachability of instance (G, x, (yv)v∈V , T ).
5. The certification of Count-Ones on instance (G, (1)v∈V , nv).
6. The certification of Count-Ones on instance (G, (y)v∈V , pv)

In the verification round v simulates the verification round of the PLS for
Reachability and Count-Ones using the corresponding certificates, and re-
jects if any of the simulations rejects. Finally, v accepts if and only if pv/nv > 1/2.
The completeness and soundness of the protocol follow from Theorem 2 and
Lemma 3. The bound on the size of the certificates is obtained by Theorem 1.

5 Lower-bounds

We first prove that every locally checkable proof for problems Reachability

or Election-Prediction on arbitrary n-node graphs require certificates of
size Ω(n). The proof is a reduction from the disjointedness problem in non-
deterministic communication complexity. In this problem, Alice receives a vector
a ∈ {0, 1}n and Bob a vector b ∈ {0, 1}n. The players can perform a series of
communication rounds and have the task of deciding whether there exists a
coordinate i ∈ {1, . . . , n} such that ai = bi. In [34] it is shown that the non-
deterministic communication complexity of this problem is Ω(n).

Theorem 4. Every locally checkable proof certifying Election-Prediction or
Reachability on arbitrary n-node graphs has certificates on Ω(n) bits.

The construction has three main parts: one produces the sequence of bits
of Alice at some node, one produces the sequence of bits of Bob at some other
node, and the last part is used to change the majority of the entire graph forever
as soon as Alice and Bob have a 1 in their sequence at a common position.

The parts producing the sequence are called sequencer gadgets and they are
using high degree nodes. Such sequencer gadget are based on building blocks
called timer gadgets. A timer gadget is a subgraph that enforces a state change
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1

1

Fig. 1: Timer gadget from Lemma 4.

0 → 1 or 1 → 0 at some nodes, at specific times, independently of the context to
which these nodes are connected (provided they have a single neighbor outside
the gadget).

Lemma 4 (Timer gadget). For any n, there exists a graph G = (V,E) of
size O(n) with 2n distinguished nodes {v1t , v

2
t : 1 ≤ t ≤ n} ⊆ V and an initial

configuration x ∈ {0, 1}V for G such that, for any graph H = (V ′, E′) containing
G as induced subgraph and y ∈ {0, 1}V

′

an initial configuration for H, if

– y|V = x and

– nodes vjt have at most one neighbor outside V in H and no other node of V
has a neighbor outside V ,

then the orbit (yt)t≥0 of configurations of H starting from y = y0 verifies

yt
v
j

k

=

{

0 if t < k,

1 else,

for 1 ≤ k ≤ n and j ∈ {1, 2}.

Proof. Consider for G the graph of Figure 1 with distinguished nodes vji and
initial configuration x where all distinguished nodes are in state 0 and all other
nodes are in the state specified by the figure. Note first that in x, all nodes
which are not among the vji belongs to a triangle of nodes in the same state, and
have at most two neighbors outside the triangle. Therefore they maintain a local
majority corresponding to their own state and will never change of state (recall
that by hypothesis they don’t have neighbors outside G). In x, all distinguished
nodes have 4 neighbors in G in state 0, and 2 neighbors in G in state 1, except
v11 and v21 with respectively 2 for state 0 and 4 for state 1. Therefore, at step 1
and independently of the state of possible neighbors outside G (at most one for
each vji ), nodes v

1
1 and v21 turn into state 1 and all other distinguished nodes stay

in state 0. With the same reasoning, it is straightforward to show by induction
that, at step t, node vji is 0 if and only if t < i.

Of course a symmetric timer gadget that triggers 1 → 0 state changes can
be obtained the same way. A sequencer gadget is a subgraph that enforces an
arbitrary sequence of states at some node, independently of the context to which
this node is connected (provided it has a single neighbor outside the gadget).
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v

0

0

0

Timer gadget of type 0 → 1

v11 v21 v13 v23 v15 v25v12 v22 v14 v24

Timer gadget of type 1 → 0

w1
1 w2

1 w1
2 w2

2 w1
4 w2

4w1
3 w2

3 w1
5 w2

5

(a) Example of sequencer gadget asso-
ciated to sequence u = 001010.

v
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· · ·
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(b) Amplifier gadget from Lemma 6.

Fig. 2: Key gadgets for proof of Theorem 4

Lemma 5 (Sequencer gadget). For any n and any sequence u ∈ {0, 1}n,
there exists a graph G = (V,E) of size O(n) with one distinguished node v ∈ V
and an inital configuration x ∈ {0, 1}V such that, for any graph H = (V ′, E′)
containing G as induced subgraph and y ∈ {0, 1}V

′

an initial configuration for
H, if

– y|V = x and
– node v has at most one neighbor outside V in H and no other node of V has

a neighbor outside V ,

then the orbit (yt)t≥0 of configurations of H starting from y = y0 verifies
y0v = u1, and ytv = ut for 1 ≤ t ≤ n, and ytv = un for t > n.

Proof. Suppose that u1 = 0 (the other case is symmetric). Let

1 ≤ s1 < s2 < · · · < sk < n

be the positions j in u such that uj+1 6= uj and uj = 0. Symmetrically, let
1 ≤ t1 < t2 < · · · < tl < n be the positions j in u such that uj+1 6= uj and uj = 1.
Note that since we suppose u1 = 0, it holds that 1 ≤ s1 < t1 < s2 < t2 < · · · and
either k = l (if un = 0) or k = l + 1 (if un = 1). We now describe the sequencer
gadget associated to u. It is made of a first timer gadget that triggers 0 → 1
state changes with distinguished nodes vji for j ∈ {1, 2} and 1 ≤ i ≤ n, and a
second timer gadget that triggers 1 → 0 state changes with distinguished nodes
wj

i for j ∈ {1, 2} and 1 ≤ i ≤ n. Then, an additional node v (the distinguished
node of the sequencer gadget) is connected to timer gadgets as follows:

– for all 1 ≤ i ≤ k, v is connected to both v1si and v2si ;
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– for all 1 ≤ i ≤ l, v is connected to both w1
ti
and w2

ti
.

Moreover, if k = l, we add a clique of 3 nodes in state 0, both of which are
connected to v. The initial configuration of the gadget is made by the initial
configurations of each timer gadget (Lemma 4) and all other nodes (v and pos-
sibly the additional clique) in state 0. See Figure 2a for an example with k = l.

Let us consider the behavior of this initialized gadget inside a larger graph
H as in the hypothesis of the lemma. Initially, v is in state 0, and it has l + 2
neighbors in state 0 and l in state 1 within the sequencer gadget, so even if v has
an additional neighbor outside the gadget, the majority at node v is guaranteed
to be 0. By the behavior of timer gadgets, the neighboring configuration of node
v inside the gadget does not change until time s1, when both v1s1 and v2s1 have
turned into state 1. So, at time s1, node v has l neighbors in state 0 and l+2 in
state 1 within the gadget. Therefore, independently of the potential additional
neighbor outside the gadget and the parity of the degree of v, the local majority
at v is 1 so v turns into 1 at step s1 + 1.

It is straightforward to prove by induction with the same analysis that the
state of v at step j is uj for 1 ≤ j ≤ n and un for j > n and 0 = u1 at initial
step.

An amplifier gadget is subgraph with a special node, such that if at any time
the special node has its two neighbors outside the subgraph in state 1, then the
entire subgraph changes from an initial large majority of 0s to a steady large
majority of 1s.

Lemma 6 (Amplifier gadget). There is a constant 1/2 < α ≤ 1 and, for
any large enough n, a graph G = (V,E) of size Ω(n) with one distinguished
node v ∈ V and an inital configuration x ∈ {0, 1}V such that for any graph
H = (V ′, E′) containing G as induced subgraph and y ∈ {0, 1}V

′

an initial con-
figuration for H, if

– y|V = x and
– v has two neighbors outside V in H and no other node of V has a neighbor

outside V ,

then the orbit (yt)t≥0 of configurations of H starting from y = y0 verifies:

– if node v has its two neighbors outside V in state 1 at some time step, then
the proportion of 0s among nodes of V becomes at most 1− α after time
O(n);

– otherwise, the proportion of 0s among nodes of V stays at least α forever.

Proof. Let α = 4/7(1− ǫ), for ǫ > 0 small enough so that α > 1/2, and consider
the graph of Figure 2b made of v connected to a triangle and n copies of an
identical strip of 14 nodes. Moreover, consider the initial configuration x being
the one appearing in the figure with v in state 0. Note that x contains a pro-
portion of nodes in state 0 at least 4

7 × 14n
14n+4 , i.e. at least α if n is supposed

large enough. Note also that configuration x is stable (the state of each node
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corresponds to the local majority seen at this node), except possibly for node v,
depending of the state of its two neighbors outside the gadget. Precisely, if the
two neighbors of v outside the gadget are in state 1 then the local majority seen
at v changes and v turns into state 1, otherwise v stays unchanged. If at some
time step node v turns into 1, then the two central nodes of the first strip on
its right will turn into 1 the next step. From that point on, they will never turn
back to 0 whatever the behavior at v since the sole strip gives them a majority
of neighbors in state 1. Moreover the central nodes of the next strips will also
progressively turn into state 1 so that after O(n) steps the gadget reaches a
stable configuration identical to x except that the pair of central nodes of each
strip is in state 1, as well as v (which is forced to 1 by the first strip). In this
configuration, the proportion of nodes in state 1 is at least α (for n large enough
as above).

In summary, if the two neighbors of v outside the gadget are both in state 1 at
some step, then, after a linear time, the proportion of 0 in the gadget stabilizes
to at most 1− α. Otherwise, the gadget maintains a proportion of state 0 at
least α forever.

Proof (Proof of Theorem 4). For any n, any input a ∈ {0, 1}n for Alice and any
input b ∈ {0, 1}n for Bob, consider a sequencer gadget GA for sequence a of
size nA, with input xA ∈ {0, 1}VA and distinguished node vA, and similarly a
sequencer gadget GB for sequence b (by Lemma 5). Since sequencer gadgets are
O(n), we can choose m ∈ Θ(n) such that α ·m > (1−α)m+nA+nB where α is
the constant from the amplifier gadget construction (Lemma 6). Then consider
an amplifier gadget G of parameter m with distinguished node v and initial
configuration x. Finally let H be the graph made of the disjoint union of GA,
GB and G and where node v is connected to both vA and vB . Consider the initial
configuration y which is equal to xA, xB and x on VA, VB and V respectively.
H is by construction of size Θ(n).

Observe that the connections of gadgets inside H and the choice of initial
configuration y satisfy the hypothesis of Lemma 5 and 6. Therefore, by Lemma 5,
the sequence of states taken by node vA will be exactly a1, a2, . . . , an, an, . . . and
similarly for node vB with sequence b. Then, by Lemma 6, the proportion of 0s
inside G will converge towards at most (1−α) if there is i such that ai = bi and
towards at least α else. By choice of m, the steady limit majority in the entire
graph H will be for state 1 in the first case, and for state 0 in the second case.
Moreover, there is convergence to a fixed point in linear time in both cases.

To conclude, observe that a locally checkable proof with certificate o(n)
applied to H with the proper initial configuration on each gadget, and some
T ∈ O(n) would give a protocol with o(n) communication to solve DISJ problem
on input (a, b) ∈ {0, 1}n × {0, 1}n since GA is only connected to its complement
in H by one edge.

5.1 Lower bounds for bounded degree graphs

In this section, we study the lower bounds for Reachability on bounded degree
graphs.
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In particular, we study the case in which G2 is the class of graphs with
maximum degree at most 2. In other words, we focus in studying path graphs
and cycle graphs. In this case, we show that Reachability admits proof-label
schemes of size Ω(log n). We accomplish this task by a reduction to the task
of verifying if G is a path or a cycle. More precisely, we define the problem
Cycle = {G ∈ G2 : G is a path graph.}

We recall the notation Pn for a path and Cn for a cycle of n-nodes.

Proposition 2. Let n ≥ 1, G ∈ G2 with n nodes and k ∈ [n]. Let us consider
the configuration x ∈ {0, 1}n for majority in G given by xk = xk+1 = 1 and
xk+j mod n = (1 + xj) mod 2 for 2 ≤ j < n. For a node i ∈ [n] we have that i
stabilizes in time T = O(n). Moreover, for all i ∈ [n] xt

i = 1 for all t ≥ n. In
addition, node k and k + 1 do not change their state, i.e. xt

k = xt
k+1 = 1 for all

t ≥ 0 and for any i ∈ [n], such that xi = 0, we have that i changes at least time,
more precisely, xn

i = 1.

Proof. Without loss of generality, let us assume k = 1. For n = 4 we have that
x = 1101. By the definition of majority rule, it is clear that F (x) = 1111 and
x2(x) = 1111. Thus, F t(x) = 1111 for t ≥ 4. Let us assume that this is true for
n. We claim that the proposition holds for n+ 1. In fact, we have by induction
hypothesis that xn(x)i = 1 for each i ∈ [n], Fn(x)n = 1 and xn

n+1 = 0 By the

majority rule, since n+1 has two neighbors in state 1 we deduce that xn+1
n+1 = 1.

The proposition holds.

Proposition 3. Let n ≥ 1 and let as consider the configuration y ∈ {0, 1}2n

in C2n given by y1 ∈ {0, 1} and yj+1 mod n = (1 + yj) mod 2 for 1 ≤ j < 2n.
For any node i ∈ [2n] we have that i stabilizes in time T = 0. Moreover, for all
i ∈ [n] y2ti = yi and y2t+1 = 1+ yi mod 2 for all t ≥ 0.

Proof. The proposition holds since each node in i C2n satisfies xi = 1+xi, thus,
each node has always two neighbors in the complementary state.

Proposition 4. Let n ≥ 1. If n is odd, the majority dynamics on Pn and Cn

exhibit only fixed points. If n is even then, the configuration y in Proposition 3
is the only attractor that is not a fixed point. Moreover, y is not reachable.

Proof. The proposition follows from the fact that if a node v has a neighbor in
the same state, by the majority rule, it cannot change its state.

Lemma 7. Let us suppose that Reachability restricted to G2 admits a lo-
cally checkable proof with certificates of size L. Then, Cycle admits a locally
checkable proof with certificates of size 2L.

Proof. Let G be an instance of Cycle of size n. Let us fix T = 2n. Let πP =
(Mp,Dp) be a PLS for Reachability(P2n, x,~1, T ) of size L. We define the
marking M′(v) = (Mp(v),Mc(v), yv), where y is defined as in Proposition 3. We
describe the decoding algorithm D′ for each node v:

1. If δ(v) = 1 or δ(v) = 2, node v creates neighbors v1, v2.
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2. Else node v rejects.
3. Verification:
4. Node v verifies that yw = 1 + yv mod 2 for each w ∈ N(v). Otherwise

rejects.
5. If δ(v) = 1, node v assigns yv2 = yv1 = 1 and accept.
6. If δ(v) = 2, node v assigns yv2 = 1 + yv1 mod 2 and rejects.
7. Let G′ be the new graph obtained in the previous steps. Observe that G′ is

whether P2n or C2n. In addition, we have that each node v can test all the
possible labeling for its neighbors. This latter observation together with the
fact that each node has the certificates for P2n imply that each node v in G
can run πP for instance Reachability(G′, x,~1, T ). Then, node v accepts if
and only if it accepts on πP .

We claim that π′ is a PLS for Cycle.
Completenesss. Observe that Cycle(G) = 1 if and only if there is at least

one node v such that δ(v) = 1. On one hand, by definition, the configuration x
is the one in Proposition 2. Then, the attractor will be 1, and thus π′ accepts.

Soundness. On the other hand, if Cycle(G) = 0 then, for all labeling L, by
Proposition 3 πP must reject by Proposition 4. We conclude that π′ is a PLS for
Cycle of size 2L+ 1.

In [26] it is shown that every locally checkable proof forCycle has certificates
of size Ω(log n). We obtain the following theorem.

Theorem 5. Every locally checkable proof for Reachability on n-node graphs
of maximum degree 2 has certificates on Ω(log n) bits.

Proof. Assume that there exists a locally checkable proof π for Reachability

of size o(log n). Thus, by the previous lemma, there must be a locally checkable
proof π′ for Cycle of size o(logn). This is a contradiction with the fact that
the problem Cycle admits a locally checkable proof with size Ω(log n). The
theorem holds.
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