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Abstract. The HOM-problem, which asks whether the image of a regu-
lar tree language under a tree homomorphism is again regular, is known
to be decidable. In this paper, we prove the weighted HOM-problem for
all fields decidable, provided that the tree homomorphism is tetris-free (a
condition that generalizes injectivity). To this end, we reduce the prob-
lem to a property of the device representing the homomorphic image in
question; to prove this property decidable, we then derive a pumping
lemma for such devices from the well-known pumping lemma for regular
tree series over fields, proved by Berstel and Reutenauer in 1982.

1 Introduction

The well-known model of finite-state automata has seen various extensions over
the past decades. On the one hand, the qualitative evaluation of these accep-
tors was generalized to a quantitative one, leading to weighted automata [28].
Such devices assign a weight to each input word, and are thus suited to model
numerical factors related to the input, such as costs, probabilities and consump-
tion of resources or time. The research community focused on automata theory
has studied weighted automata consistently and fruitfully [9,10,27]. Thereby, the
favoured domains for weight calculations are often semirings [16,18], as they are
both quite general and computationally efficient due to their distributivity.

Another dimension of generalization for finite-state automata targets their
input, allowing them to handle more complex data structures such as infinite
words [24], trees [5], graphs [4] and pictures [26]. In particular, finite-state tree
automata and the regular tree languages they recognize were introduced inde-
pendently in [7,30,31]. These devices find applications in a variety of areas like
natural language processing [19], picture generation [8] and compiler construc-
tion [32]. Unsurprisingly, combining both types of generalizations leads to intri-
cate yet fruitful research areas, and so several variants of weighted tree automata
(WTA) and the regular tree series they recognize continue to be studied [11].

Tree homomorphisms are widely used in the context of term rewriting [13]
and XML types [29]. A tree homomorphism is a structure-preserving transfor-
mation on trees which can duplicate subtrees, so the trees in the homomorphic
image might have identical subtrees. Unfortunately, tree automata have limited
memory, so they cannot ensure that certain subtrees are equal [12] (much like
the classical (string) automata cannot ensure that the numbers of a’s and of b’s
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in a word are equal). Therefore, unlike in the word case, regular tree languages
are not closed under tree homomorphisms. It was a long-standing open question
if, given a regular tree language L and a tree homomorphism h as input, it is
decidable whether h(L) is again regular. This HOM-problem was finally solved
in [6,14,15], with the help of a well-studied extension called tree automata with
constraints ; these devices can explicitely require certain subtrees to be equal,
and can thus handle the duplications performed by h.

In the weighted HOM-problem, a regular tree series and a tree homomor-
phism are given as input. By its nature, this question requires a customized
investigation for different semirings. Most recently, this problem was proved de-
cidable for different scenarios [22,23], but in both cases, the semiring must be
zero-sum free; this strong condition already excludes essential rings such as Z.
In this paper, we decide the weighted HOM-problem for all fields (and thus,
all subspaces of fields), provided that the tree homomorphism is tetris-free, a
property that generalizes injectivity.

The paper is structured as follows: In Section 2 we represent the homo-
morphic image of the input tree series by a WTA with constraints (WTAh).
In Section 4 we show that, if the input tree homomorphism is tetris-free, then
the weighted HOM-problem is equivalent to a certain decidable property of this
WTAh. Proving said decidability relies on a pumping lemma for WTAh over
fields, which we derive in Section 3. from the well-known pumping lemma for
(regular) WTA over fields [1]. Finally, we present an example that illustrates
why the approach is entirely unsuited for non-tetris-free tree homomorphisms.

2 Preliminaries and Technical Background

We denote the set {0, 1, 2, . . .} by N, and we let [k] = {1, . . . , k} for every k ∈ N.
Let A and B be sets. We write |A| for the cardinality of A, and A∗ for the set of
finite strings over A. The empty string is ε and the length of a string w is |w|.

A ranked alphabet is a pair (Σ, rk) that consists of a finite set Σ and a rank
mapping rk: Σ → N. For every k ≥ 0, we define Σk = rk−1(k), and we some-
times write σ(k) to indicate that σ ∈ Σk. We often abbreviate (Σ, rk) by Σ,
leaving rk implicit. Let Z be a set disjoint with Σ. The set of Σ-trees over Z,
denoted by TΣ(Z), is the smallest set T that satisfies (i) Σ0 ∪ Z ⊆ T and (ii)
σ(t1, . . . , tk) ∈ T for every k ∈ N, σ ∈ Σk and t1, . . . , tk ∈ T . We abbrevi-
ate TΣ(∅) simply to TΣ, and call any subset L ⊆ TΣ a tree language. Con-
sider t ∈ TΣ(Z). The set pos(t) ⊆ N∗ of positions of t is defined by pos(t) = {ε}
for every t ∈ Σ0 ∪ Z, and by pos

(
σ(t1, . . . , tk)

)
= {ε} ∪

⋃
i∈[k]{ip | p ∈ pos(ti)}

for all k ∈ N, σ ∈ Σk and t1, . . . , tk ∈ TΣ(Z). The set of positions of t inherits
the lexicographic order ≤lex from N∗. The size |t| of t is defined by |t| = | pos(t)|
and the height ht(t) of t by ht(t) = maxp∈pos(t) |p|. For p ∈ pos(t), the la-
bel t(p) of t at p, the subtree t|p of t at p and the substitution t[t′]p of t′ into t
at p are defined for t ∈ Σ0 ∪ Z by t(ε) = t|ε = t and t[t′]ε = t′, and for
t = σ(t1, . . . , tk) by t(ε) = σ, t(ip′) = ti(p

′), t|ε = t, t|ip′ = ti|p′ , t[t′]ε = t′,
and finally t[t′]ip′ = σ(t1, . . . , ti−1, ti[t

′]p′ , ti+1, . . . , tk) for every k ∈ N, σ ∈ Σk,



t1, . . . , tk ∈ TΣ(Z), i ∈ [k] and p′ ∈ pos(ti). For every subset S ⊆ Σ ∪ Z, we
let posS(t) = {p ∈ pos(t) | t(p) ∈ S} and we abbreviate pos{s}(t) by poss(t) for
every s ∈ Σ ∪ Z. Let X = {x1, x2, . . .} be a fixed, countable set of formal vari-
ables. For k ∈ N we denote by Xk the subset {x1, . . . , xk}. For any t ∈ TΣ(X)
we let var(t) = {x ∈ X | posx(t) 6= ∅}. For t ∈ TΣ(Z), a subset V ⊆ Z and a
mapping θ : V → TΣ(Z), we define the substitution tθ applied to t by vθ = θ(v)
for v ∈ V , zθ = z for z ∈ Z \ V , and σ(t1, . . . , tk)θ = σ

(
t1θ, . . . , tkθ

)
for all

k ∈ N, σ ∈ Σk and t1, . . . , tk ∈ TΣ(Z). If V = {v1, . . . , vn}, we write θ explicitly
as [v1 ← θ(v1), . . . , vn ← θ(vn)], or simply as [θ(x1), . . . , θ(xn)] if V = Xn.

A (commutative) semiring [16,17] is a tuple (S,+, · , 0, 1) that satisfies the
following conditions: (S,+, 0) and (S, · , 1) are commutative monoids, · dis-
tributes over +, and 0 · s = 0 for all s ∈ S. Examples include N =

(
N,+, · , 0, 1

)
,

Z =
(
Z,+, ·, 0, 1

)
,Q =

(
Q,+, ·, 0, 1

)
, the Boolean semiring B =

(
{0, 1},∨,∧, 0, 1

)

and the arctic semiring A =
(
N ∪ {−∞},max,+,−∞, 0

)
. When there is no risk

of confusion, we refer to a semiring (S,+, · , 0, 1) simply by its carrier set S. A
semiring is a field if it is (i) a ring, i.e. there exists −1 ∈ S such that 1+(−1) = 0,
and (ii) a semifield, i.e. for every a ∈ S \ {0} there exists a multiplicative inverse
a−1 such that a · a−1 ∈ S. Let F be a field, then S is a subsemiring of F if S ⊆ F
and the operations of S are embeddable in F, i.e., (+F)|S = +S, ( · F)|S = · S,
0S = 0F and 1S = 1F. The semirings N and Z are subsemirings of Q, but not B.

LetΣ be a ranked alphabet and Z a set. Any mapping ϕ : TΣ(Z)→ S is called
a tree series over S, and its support is the set supp(ϕ) = {t ∈ TΣ(Z) | ϕ(t) 6= 0}.

Given ranked alphabets Σ and ∆, let h′ : Σ → T∆(X) be a mapping such
that for all k ∈ N and σ ∈ Σk, we have h′(σ) ∈ T∆(Xk). We extend h′ to a
mapping h : TΣ → T∆ by h(α) = h′(α) ∈ T∆(X0) = T∆ for all α ∈ Σ0, and
by h(σ(s1, . . . , sk)) = h′(σ)[x1 ← h(s1), . . . , xk ← h(sk)] for all k ∈ N, σ ∈ Σk,
and s1, . . . , sk ∈ TΣ. The mapping h is called the tree homomorphism induced
by h′, and we identify h′ and its induced tree homomorphism h. We call h

– nonerasing if h(σ) /∈ X for all σ ∈ Σ,
– nondeleting if σ ∈ Σk implies var(h′(σ)) = Xk for all k ∈ N,
– input-finitary if the preimage h−1(t) is finite for every t ∈ T∆, and
– tetris-free if it is nondeleting, nonerasing and for s, s′ ∈ TΣ , h(s) = h(s′)

implies (i) pos(s) = pos(s′) and (ii) h
(
s(p)

)
= h

(
s′(p)

)
for all p ∈ pos(s).

In other words, a nondeleting and nonerasing h : TΣ → T∆ is tetris-free if
we cannot combine the building blocks h(σ), σ ∈ Σ in different ways to build
the same tree. Thus if we list all possible trees that can be generated from these
building blocks, no tree will occur twice. This condition was introduced in [23]
and generalizes injectivity: Intuitively, if a tree homomorphism h is tetris-free,
then any non-injective behaviour of h is located entirely at the symbol level.

Example 1. Let Σ = {α(0), β(0), ψ(2)} and ∆ = {a(0), f (3)}. Consider the tree
homomorphism h : TΣ → T∆ that is induced by the mapping h(α) = h(β) = a
and h(ψ) = f(x2, x1, x1). While h is not injective, it is tetris-free. However,
the tree homomorphism h′ : TΣ → T∆ induced by h′(α) = a, h′(β) = f(a, a, a)
and h′(ψ) = f(x2, x1, a) is not: ψ(α, α) and β violate the tetris-free condition.



If h : TΣ → T∆ is nonerasing and nondeleting, then for every s ∈ h−1(t),
we have |s| ≤ |t|. In particular, h is then input-finitary. Let A : TΣ → S be a
tree series. Its homomorphic image under h is the tree series h(A) : T∆ → S
defined for every t ∈ T∆ by h(A)(t) =

∑
s∈h−1(t)A(s). This relies on h to be

input-finitary, otherwise the defining sum is not finite, so h(A)(t) might not be
well-defined. For this reason, we only consider nondeleting and nonerasing tree
homomorphisms.

Recently it was shown [20,21] that such homomorphic images of regular tree
languages can be represented efficiently using weighted tree automata with hom-
constraints (WTAh) which were defined in [20], and first introduced for the
Boolean case in [14]. All following concepts are illustrated in Example 5 below.

Definition 2 (cf. [21, Definition 1]). Let S be a commutative semiring. A
weighted tree automaton over S with hom-constraints (WTAh) is a tuple of the
form A =

(
Q,Σ, F,R,wt

)
where Q is a finite set of states, Σ is a ranked alpha-

bet, F ⊆ Q is the set of final states, R is a finite set of rules of the form (ℓ, q, E)
such that ℓ ∈ TΣ(Q) \ Q, q ∈ Q and E is an equivalence relation on posQ(ℓ),
and wt: R→ S assigns a weight to each rule.

Rules of WTAh are typically depicted as r = ℓ
E
−→wt(r) q. The components of

such a rule are the left-hand side ℓ, the target state q, the set E of constraints and
the weight wt(r). A constraint (p, p′) ∈ E is listed as “p = p′ ”, and if p is different
from p′, then p and p′ are called constrained positions. The equivalence class of p
in E is denoted [p]≡E

. We generally omit the trivial constraints (p, p) ∈ E.
The WTAh is a weighted tree grammar (WTG) if E = ∅ (strictly speaking,

E is the identity relation) for every rule ℓ
E
−→ q, and a WTA in the classical

sense [5] if additionally posΣ(ℓ) = {ε}. WTG and WTA are equally expressive,
as WTG can be translated straightforwardly into WTA using additional states.

We are particularly interested in a specific subclass of WTAh, namely the eq-
restricted WTAh [21]. In such a device, there is a designated sink-state whose
sole purpose is to neutrally process copies of identical subtrees. More precisely,
whenever subtrees are mutually constrained, there is one leading copy among
them that can be processed as usual with arbitrary states and weights, while
every other copy is handled exclusively by the weight-neutral sink-state.

Definition 3. A WTAh
(
Q,Σ, F,R,wt

)
is eq-restricted if it has a so-called sink

state ⊥ ∈ Q \ F such that (i) σ(⊥, . . . ,⊥) →1 ⊥ belongs to R for all σ ∈ Σ,

and no other rules target ⊥, and (ii) for every rule ℓ
E
−→ q with q 6= ⊥, if

posQ(ℓ) = {p1, . . . , pn} and qi = ℓ(pi) for i ∈ [n], the following conditions hold:

1. For each i ∈ [n], the set {qj | pj ∈ [pi]≡E
} \ {⊥} is a singleton.

2. There exists exactly one pj ∈ [pi]≡E
such that qj 6= ⊥.

In other words, among each E-equivalence class there is only one occurrence of
a state different from ⊥, and every other E-related position is labelled by ⊥.
Moreover, ⊥ processes every possible tree with weight 1. We denote the state
sets of WTAh by Q∪̇{⊥} instead of Q ∋ ⊥ to point out the sink-state.

Next, let us recall the semantics of WTAh from [21, Definitions 2 and 3].



Definition 4. Let A =
(
Q,Σ, F,R,wt

)
be a WTAh. A run of A is a tree over

the ranked alphabet Σ∪R where the rank of a rule is rk(ℓ
E
−→ q) = rk

(
ℓ(ε)

)
, and

it is defined inductively. Consider t1, . . . , tn ∈ TΣ, q1, . . . , qn ∈ Q and suppose
that ̺i is a run of A for ti to qi with weight wt(̺i) = ai for each i ∈ [n]. Assume

there exists ℓ
E
−→a q in R such that ℓ = σ(ℓ1, . . . , ℓm), posQ(ℓ) = {p1, . . . , pn}

with ℓ(pi) = qi, and that ti = tj for all (pi, pj) ∈ E. Let t = ℓ[t1]p1 · · · [tn]pn ,

then ̺ =
(
ℓ

E
−→a q

)
(ℓ1, . . . , ℓm)[̺1]p1 · · · [̺n]pn is a run of A for t to q. Its

weight wt(̺) is computed as a ·
∏
i∈[n] ai. If wt(̺) 6= 0, then ̺ is valid, and if

in addition, q ∈ F for its target state q, then ̺ is accepting. The value wtq(t)
is the sum of all weights wt(̺) of runs of A for t to q. Finally, the tree series
‖A‖ : TΣ → S recognized by A is defined simply by ‖A‖ : t 7→

∑
q∈F wtq(t).

Since the weights of rules are multiplied, we assume wlog wt(r) 6= 0 for all r ∈ R.

Example 5. Let ∆ = {a(0), g(2), f (3)} and A′ =
(
Q∪̇{⊥}, ∆, F ′, R′,wt

)
be the

WTGh over Z with Q = {q, qf}, F ′ = {qf} and the set of rules and weights

R′ =
{
a→1 q , g(a, q)→2 q , f(q, q,⊥)

2=3
−→1 qf ,

a→1 ⊥ , g(⊥,⊥)→1 ⊥ , f(⊥,⊥,⊥)→1 ⊥ } .

The constrained positions 2, 3 in the third rule satisfy (ii) from Definition 3, and
the ⊥-rules are as required in (i), so A′ is eq-restricted. If we replace the third

rule with f(q, q, q)
2=3
−→1 qf , then the resulting WTAh is not eq-restricted any

more. Let t = f
(
a, g(a, a), g(a, a)

)
∈ T∆. A′ has a unique accepting run ̺ for t:

t : f

a g

a a

g

a a

̺ : f(q, q,⊥)
2=3
−→1 qf

a→1 q g(a, q)→2 q

a a→1 q

g(⊥,⊥)→1 ⊥

a→1 ⊥ a→1 ⊥

We have wt(̺) = 2 despite | posg(t)| = 2 because due to the eq-restriction, the
duplicated subtree t|3 is processed exclusively in the state ⊥ with weight 1.

If a tree series is recognized by a WTA, it is called regular, and if it is recognized
by an eq-restricted WTAh, then it is called hom-regular. This choice of name
hints at the fact that eq-restricted WTAh are tailored to represent homomorphic
images of regular tree series. The following example demonstrates this property.

Example 6. Consider Σ = {α(0), γ(1), ψ(2)} and let A =
(
{q, qf}, Σ, {qf}, R,wt

)

be the WTA over Z with the following set of rules:

R =
{
α→1 q, γ(q)→2 q, ψ(q, q)→1 qf

}
.

It is supp(‖A‖) =
{
ψ
(
γn(α), γm(α)

)
| n,m ∈ N

}
=

{
s ∈ TΣ | posψ(s) = {ε}

}

and ‖A‖ : ψ
(
γn(α), γm(α)

)
7→ 2n+m = 2|posγ(s)|. Let ∆ = {a(0), g(2), f (3)} and



let h : TΣ → T∆ be the tetris-free tree homomorphism induced by

h(α) = a , h(γ) = g(a, x1) and h(ψ) = f
(
x2, x1, x1

)
.

Then the eq-restricted WTAh A′ from Example 5 recognizes h(‖A‖) defined by
supp

(
h(‖A‖)

)
=

{
t ∈ T∆ | posf (t) = {ε}

}
and h(‖A‖) : t 7→ 2|posg(t)\posg(t|3)|.

The rules in R′ are obtained from the rules in R by applying h to their left-hand
sides, and the duplicated subtree at position 3 below f targets ⊥ instead of q to
avoid distorting the weight with an additional factor 2n.

Formally, the following statement was shown in [20]. We have included the
proof for better readability.

Lemma 7. (see [20, Theorem 19]) Let A =
(
Q,Σ, F,R,wt

)
be a WTA over

a commutative semiring S and h : TΣ → T∆ a nondeleting and nonerasing tree
homomorphism. There is an eq-restricted WTAh A′ that recognizes h(‖A‖).

Proof. An eq-restricted WTAh A′ for h(‖A‖) is constructed in two stages.
First, we define A′′ =

(
Q∪̇{⊥}, ∆ ∪ ∆ × R,F ′′, R′′,wt′′

)
such that for ev-

ery r = σ(q1, . . . , qk)→wt(r) q in R and h(σ) = u = δ(u1, . . . , un), we include

r′′ =
(
〈δ, r〉(u1, . . . , un)Jq1, . . . , qkK

E
−→wt′′(r′′) q

)
∈ R′′

with

E =
⋃

i∈[k]

posxi
(u)2

where the substitution 〈δ, r〉(u1, . . . , un)Jq1, . . . , qkK replaces for every i ∈ [k]
only the ≤lex-minimal occurrence of xi in 〈δ, r〉(u1, . . . , un) by qi, and every
other occurrence by ⊥. For this rule we set wt′′(r′′) = wt(r). Additionally, we
let r′′δ = δ(⊥, . . . ,⊥) → ⊥ ∈ R′′ with wt′′(r′′δ ) = 1 for every k ∈ N and δ ∈ ∆k.
No other productions are in R′′. Finally, we let F ′′ = F .

We can now delete the annotation: We use a deterministic relabeling to re-
move the second components of labels of ∆ × R, adding up the weights of now
identical rules. Since hom-regular languages are closed under relabelings [21,
Theorem 4], we obtain an eq-restricted WTAh A′ =

(
Q∪̇{⊥}, ∆, F ′, R′,wt′

)

recognizing h(‖A‖). ⊓⊔

As illustrated in Examples 5 and 6, the WTAh A′ for the homomorphic image
of a WTA A replaces each symbol σ in a rule of A by h(σ), and preserves the
original state behaviour, only adding ⊥ along the duplicated subtrees. Thus, we
can define a mapping that traces the runs of A to the runs of A′.

Definition 8. [23, Definition 9] Let A =
(
Q,Σ, F,R,wt

)
be a WTA over

a commutative semiring S and h : TΣ → T∆ a nondeleting and nonerasing tree
homomorphism. Let A′ be the WTAh for h(‖A‖) provided by Lemma 7. Consider
a rule r = σ(q1, . . . , qk)→ q of A and let h(σ) = δ(u1, . . . , un), then we set

hR(r) = δ(u1, . . . , un)Jq1, . . . , qkK
E
−→ q,



where the substitution Jq1, . . . , qkK replaces for every i ∈ [k] only the ≤lex-minimal
occurrence of xi in δ(u1, . . . , un) by qi, and every other occurrence by ⊥. The

constraint set is defined as E =
⋃
i∈[k]

[
posxi

(
δ(u1, . . . , un)

)]2
.

The assignment hR extends naturally to the runs of A: For a run of the
form ϑ = r = (α→ q) with α ∈ Σ0, we set hR(ϑ) = hR(r). For ϑ = r(ϑ1, . . . , ϑk)
with r = σ(q1, . . . , qk)→ q and h(σ) = δ(u1, . . . , un) we set

hR(ϑ) =
(
hR(r)

)
(u1, . . . , un)Jh

R(ϑ1), . . . , h
R(ϑk)K ;

here, the substitution JhR(ϑ1), . . . , h
R(ϑk)K replaces for every i ∈ [k] only the

≤lex-minimal occurrence of xi in
(
hR(r)

)
(u1, . . . , un) by hR(ϑi), and all other

occurrences by the respective unique run to ⊥ for the tree processed by ϑi.

Let us see how hR acts on our example from above.

Example 9. Recall the WTA A and WTAh A′ from Examples 5 and 6. We have

hR : ψ(q, q)→ qf 7→ f
(
q, q,⊥)

2=3
−→ qf ,

and for the unique run of A for the tree ψ
(
γ(α), α

)
, the image under hR is

ψ(q, q)→1 qf

γ(q)→2 q

α→1 q

α→1 q 7→

f(q, q,⊥)
2=3
−→1 qf

a→1 q g(a, q)→2 q

a a→1 q

g(⊥,⊥)→1 ⊥

a→1 ⊥ a→1 ⊥ .

The following statement is a direct consequence of the proof of Lemma 7.

Lemma 10. The mapping hR from Definition 8 is well-defined on R, although
not necessarily injective. Its image is hR(R) = {r′ ∈ R′ | r′ targets some q 6= ⊥}.
If ϑ is a run of A for s ∈ TΣ, then hR(ϑ) is a run of A′ for h(s); conversely, for
every run ̺ of A′ for some t ∈ T∆ to some q 6= ⊥, there exists s ∈ h−1(t) and a
run ϑ of A for s to q such that hR(ϑ) = ̺, but wt(ϑ) and wt′(̺) may differ.

3 A Pumping Lemma over Fields

The weighted HOM-problem takes a WTA A and a nondeleting, nonerasing
tree homomorphism h as input, and asks whether h(‖A‖) is again regular. As
mentioned earlier, the N-variant of this problem was shown to be decidable
in [22]. The proof presented there makes two assumptions on the semiring used
for the weight calculations: First, it must be a subsemiring of a field, and second,
it must be zero-sum free; the only common semiring that satisfies both conditions
is N. Remarkably, the strong condition of zero-sum freeness is only used to prove
a pumping lemma for h(‖A‖). In this section, we derive an alternative pumping



lemma over fields, provided that h is tetris-free. This way, we bypass the zero-sum
freeness assumption, which allows us to lift the proof of [22] to the HOM-problem
over fields, for tetris-free tree homomorphisms.

We begin by establishing a notation for the tree fragment read by a rule.

Definition 11. Let A′ =
(
Q∪̇{⊥}, ∆, F,R,wt

)
be an eq-restricted WTAh and

let r = ℓ
E
−→ q be a rule of A′ with some q 6= ⊥. Let posQ\{⊥}(ℓ) = {p1, . . . , pk}.

The ∆-part of r is the tree ℓ̂ = ℓ[⊥]p1 · · · [⊥]pk ∈ T∆({⊥}).

The ∆-part of a rule extracts the tree fragment from its left-hand side and
overwrites every state label (for convenience simply with ⊥). Note that ℓ can be

easily recovered from ℓ̂, E and the states ℓ(p1), . . . , ℓ(pk) in the correct order.
To prove the desired pumping lemma for our WTAh, we reduce it to the

pumping lemma for WTA over fields proved by Berstel and Reutenauer in [1].
For this, we must construct a WTA related to the WTAh A′ for h(‖A‖). The
naive idea to simply use the input WTA A falls short: If h is not injective, there
may be s, s′ ∈ supp(‖A‖) with h(s) = h(s′) /∈ supp(‖A′‖) since in fields, different
runs for h(s) might cancel each other out, so we cannot lift the pumping lemma
from A to A′. Instead, we fabricate a new WTA that traces the behaviour of A′

but ignores duplicated subtrees in order to remain regular. We will argue the
well-definedness of this construction using some technical lemmas below.

Definition 12. Let A′ =
(
Q∪̇{⊥}, ∆, F,R,wt

)
be the eq-restricted WTAh from

Lemma 7 for a WTA and a tetris-free tree homomorphism. Consider the ranked
alphabet ∆̂ = {ℓ̂ | ℓ is the left-hand side of some r ∈ R} with the rank function

r̂k( ℓ̂ ) = |posQ\{⊥}(ℓ)|. We define the WTA Â =
(
Q \ {⊥}, ∆̂, F, R̂, ŵt

)
such

that if r = ℓ
E
−→ q ∈ R with q 6= ⊥ and posQ\{⊥}(ℓ) = {p1, . . . , pk} ordered

lexicographically with ℓ(pi) = qi for all i ∈ [k], then ℓ̂(q1, . . . , qk) → q ∈ R̂ with

weight wt(r). No other rules are in R̂.

The translation A′ 7→ Â induces a mapping t 7→ t̂ defined inductively as fol-

lows: Consider t ∈ T∆, a run ̺ of A′ for t with ̺(ε) = ℓ
E
−→ q and let posQ\{⊥}(ℓ)

be the set {p1, . . . , pk} in lexicographic order. Then t̂ = ℓ̂
(
t̂|p1 , . . . , t̂|p2

)
∈ T

∆̂
.

The WTA Â reinterprets the trees t ∈ T∆ as trees t̂ ∈ T
∆̂

which, instead of
symbols δ ∈ ∆, are now composed of the ∆-parts of the rules of A′. As the
WTA Â, without the instrument of constraints at hand, cannot ensure equality
of subtrees, all ⊥-processed copies are discarded, and ⊥ is not a state anymore.

Example 13. Recall the WTAh A′ from Example 5. The ranked alphabet ∆̂
is the set ∆̂ = {a(0), [g(a,⊥)](1), [f(⊥,⊥,⊥)](2)}, and the WTA Â is defined

by Â =
(
Q, ∆̂, F ′, R̂, ŵt

)
with the following set of rules and weights:

R̂ =
{
a→1 q , [g(a,⊥)](q)→2 q , [f(⊥,⊥,⊥)](q, q)→1 qf

}
.

For t = f
(
a, g(a, a), g(a, a)

)
∈ T∆ it is t̂ = [f(⊥,⊥,⊥)]

(
a, [g(a,⊥)](a)

)
∈ T

∆̂
:



t :

f

a g

a a

g

a a

7→ t̂ :

f

⊥ ⊥ ⊥

g

a ⊥

.

mmmammm mmmammm
.

a

The following two lemmas are the basis for the correctness of our translation
above. Unlike in a WTA where trees are read symbol-by-symbol, a rule of a
WTAh processes an entire tree fragment; in general, there may be different ways
to assemble a certain tree from these ∆-parts of the rules of the WTAh, but by
definition, tetris-free tree homomorphisms exclude this ambiguity.

Lemma 14. Let A′ =
(
Q∪̇{⊥}, ∆, F,R,wt

)
be the eq-restricted WTAh from

Lemma 7 for a WTA and a tetris-free tree homomorphism. For every t ∈ T∆,
the runs of A′ for t differ only in the states they process, but neither in the
∆-part of the rules they use, nor in their constraints. In particular, the set of
positions related to any p′′ ∈ pos(t) by the constraints of the rules used in a run
coincides for all runs of A′ for t, i.e. it is uniquely determined by t.

Proof. Let ̺ and ̺′ be runs of A′ for some t ∈ T∆. By Lemma 10, there are two
runs ϑ and ϑ′ of A for some s and s′, respectively, such that h(s) = h(s′) = t,
and hR(ϑ) = ̺ and hR(ϑ′) = ̺′. Since h is tetris-free, it is pos(s) = pos(s′) and
h
(
s(p)

)
= h

(
s′(p)

)
at every p ∈ pos(s). By the definition of hR, these identical

terms h
(
s(p)

)
and h

(
s′(p)

)
already determine the ∆-parts of the rules used by ̺

and ̺′. Moreover, the constraint sets are implicit to these terms, therefore ̺
and ̺′ can only differ in the states they process. ⊓⊔

The next lemma is again a consequence of the tetris-freeness.

Lemma 15. Let A′ be the eq-restricted WTAh from Lemma 7 for a WTA and
a tetris-free tree homomorphism. If A′ has two rules r, r′ with the same ∆-parts,
then their constraint sets coincide as well.

Proof. We will infer the statement from a general property of tetris-free tree
homomorphisms: Let h : TΣ → T∆ be tetris-free, and let σ, τ ∈ Σ such that h(σ)
and h(τ) coincide on their ∆-positions – formally, pos∆

(
h(σ)

)
= pos∆

(
h(τ)

)
,

and
(
h(σ)

)
(p) =

(
h(τ)

)
(p) for all p ∈ pos∆

(
h(σ)

)
– then a lready h(σ) = h(τ).

To see this, note first that since pos∆
(
h(σ)

)
= pos∆

(
h(τ)

)
and the vari-

ables x ∈ X are nullary symbols, it follows that pos
(
h(σ)

)
= pos

(
h(τ)

)
. Next,

let α ∈ Σ0 be a nullary symbol. By assumption, h
(
σ(α, . . . , α)

)
= h

(
τ(α, . . . , α)

)
,

since the same subtree h(α) is attached to every X-position of h(σ) and h(τ),
regardless of the particular variable. But since h was assumed to be tetris-free,
we infer that (σ and τ have the same rank and) h(σ) = h(τ). The claim of the
lemma follows immediately by applying this property of h to Definition 8. ⊓⊔



We are now ready prove that our translation A′ 7→ Â is correct:

Lemma 16. The WTA Â from Definition 12 is well-defined. The mapping t 7→ t̂
induced by it is also well-defined and injective, and ‖A′‖(t) = ‖Â‖(t̂).

Proof. First, recall that ℓ can be recovered from ℓ̂, E and the states q1, . . . , qk.
While ℓ̂ and q1, . . . , qk are preserved in the rules of Â, E is uniquely determined
by ℓ̂ as stated in Lemma 15. Thus the weight function ŵt is well-defined.

Let t ∈ T∆. By Lemma 14, all runs of A′ for t have the same ∆-parts, and
these are precisely the alphabet symbols for t̂ ∈ T

∆̂
. Thus, the mapping t 7→ t̂

is well-defined. Since E (and thus the positioning of every direct subtree) is

uniquely determined by ℓ̂ via Lemma 15, the mapping is also injective. Finally, Â
preserves the state behaviour and weights, so every run of A′ for t to some q 6= ⊥
corresponds to a run of Â for t̂ to q, and vice versa, which proves the claim.

For illustration purposes, consider cases where Lemmas 14 and 15 do not hold.

Example 17. Recall the WTAh A′ recognizing h(‖A‖) from Examples 5 and 6.
Since h is tetris-free, A′ satisfies Lemmas 14 and 15. If we add ϕ(2) to the input
alphabet Σ, extend A to, say, B by adding the rule ϕ(q, q)→−2 qf , and extend h
to h⋆ via h⋆(ϕ) = f

(
x1, g(a, x2), g(a, x1)

)
, then h⋆ is not tetris-free. The eq-

restricted WTAh B′ for h⋆(‖B‖) has the rule f
(
q, g(a, q), g(a,⊥)

) 1=32
−→−2 qf ,

which allows an additional run ̺⋆ for our tree t = f
(
a, g(a, a), g(a, a)

)
:

̺⋆ :

f
(
q, g(a, q), g(a,⊥)

) 1=32
−→−2 qf

a→1 q g

a a→1 q

g

a a→1 ⊥ .

It is wt(̺) +wt(̺⋆) = 0, hence t /∈ supp(‖B′‖). The rules at ̺(ε) and ̺⋆(ε) have
different ∆-parts, so the statement in Lemma 14 does not hold. Indeed if we

construct B̂, we obtain the new symbol
[
f
(
⊥, g(a,⊥), g(a,⊥)

)](2)
∈ ∆̂ which

provides a second tree t̂⋆ ∈ T∆̂ related to t:

t̂⋆ :

f

⊥ g

a ⊥

g

a ⊥.

mmamm mmamm

So, while the translation t 7→ t̂ is still injective, it is not well-defined anymore.
Moreover, it is t̂, t̂⋆ ∈ supp(‖B̂‖), despite t /∈ supp(‖B′‖).

On the other hand, instead of ϕ(2) let us add β(0) and κ(2) to Σ, and b to ∆.
We extend A to, say, C by adding the rules β →1 q and κ(q, q) →1 qf , and h



to h⋆ by setting h⋆(β) = b and h⋆(κ) = f(x2, x1, x2). As before, h
⋆ is not tetris-

free. The WTAh C′ has, compared to A′, the additional rules b →1 q, b →1 ⊥

and f(q, q,⊥)
1=3
−→1 qf , so it does not satisfy Lemma 15. When constructing Ĉ, we

only add the symbol b to ∆̂, but now there are two different rules whose ∆-part
is f(⊥,⊥,⊥). It is h⋆

(
κ(α, β)

)
= f(b, a, b) 6= f(b, a, a) = h⋆

(
ψ(α, β)

)
; however,

we have ̂f(b, a, b) = ̂f(b, a, a) =
[
f(⊥,⊥,⊥)

]
(b, a). Not only is it unclear which

weight the rule
[
f(⊥,⊥,⊥)

]
(q, q)→ qf should have in Ĉ, but because the trans-

lation t 7→ t̂ is not injective, we cannot recover ‖C′‖ from ‖Ĉ‖ anymore.

Next, we want to derive a pumping lemma for our WTAh A′, which will
be the foundation for deciding the weighted HOM-problem over fields. To this
end, we apply the well-known pumping lemma for WTA proved by Berstel and
Reutenauer [1] to the WTA Â. We require one more definition: that of a context.

Definition 18. Let ∆ be a ranked alphabet and � /∈ ∆. Any C ∈ T∆({�}) \T∆
is called a multi-context. If |pos�(C)| = 1, then C is a context. For a multi-
context C with pos�(C) = {p1, . . . , pn} and t1, . . . , tn ∈ TΣ({�}), we abbreviate
C[t1]p1 · · · [tn]pn to C[t1, . . . , tn], and if t1 = . . . = tn = t, we simply write C[t].

Let us now recall the pumping lemma for WTA over fields with a slight adjust-
ment, namely that the pumping takes place below a certain position.

Theorem 19 (cf. [1, Theorem 9.2]). Let F be a field, Σ a ranked alphabet
and B a WTA over F and Σ. There exists N ∈ N s.t. for every context C
and t0 ∈ TΣ such that C[t0] ∈ supp(‖B‖) and ht(t0) ≥ N , there exists a sequence
of pairwise distinct trees t1, t2, . . . such that C[ti] ∈ supp(‖B‖) for all i ∈ N.

From this, we obtain the desired pumping lemma for the WTAh A′.

Proposition 20 (Pumping Lemma). Let F be a field and A′ the eq-restricted
WTAh from Lemma 7 for a WTA over F and Σ, and a tetris-free tree homo-
morphism h : TΣ → T∆. There exists N ∈ N such that for every multi-context C
and t0 ∈ T∆ such that t := C[t0] ∈ supp(‖A′‖), ht(t0) ≥ N , and pos�(C) is
an equivalence class of mutually constrained positions in t, there exist infinitely
many pairwise distinct trees t1, t2, . . . such that C[ti] ∈ supp(‖A′‖) for all i ∈ N.

Proof. Recall from Lemma 14 that the equivalence relation of positions that
are mutually constrained by a run of t, is uniquely determined by t. Let Â
be the WTA for A′ from Definition 12 and let N̂ be the pumping constant
for Â from Theorem 19. We set N = N̂ · maxσ∈Σ ht

(
h(σ)

)
. Let t be as in

the statement, then t̂ ∈ supp(Â) is of the form t̂ = Ĉ[t̂0] with a context Ĉ

and ht(t̂0) ≥ N̂ . Thus by Theorem 19, there is a sequence of trees t̂1, t̂2, . . . such

that Ĉ[t̂i] ∈ supp(‖Â‖) for all i ∈ N. In turn, each t̂i has a unique preimage ti
under the mapping t 7→ t̂, and Ĉ translates uniquely back to C. Thus we ob-

tain ti, i ∈ N with ‖A′‖
(
C[ti]

)
= ‖Â‖

(
Ĉ[ti]

)
= ‖Â‖

(
Ĉ[t̂i]

)
6= 0 for all i ∈ N. ⊓⊔



4 The Tetris-Free Weighted HOM-Problem

In this section, we prove that the weighted HOM-problem over fields, restricted to
tetris-free homomorphisms, is decidable. Formally, we show the following result.

Theorem 21. Let F be a field, A a WTA over F and Σ, and h : TΣ → T∆ a
tetris-free tree homomorphism. It is decidable whether h(‖A‖) is regular.

The approach to prove this result is quite natural: Nonregularity of h
(
‖A‖

)

is reduced to the following decidable property of the WTAh A′ for h(‖A‖).

Definition 22 (see [22, Definition 10]). Let A′ =
(
Q∪̇{⊥}, ∆, F,R,wt

)
be

the eq-restricted WTAh from Lemma 7 for a WTA over a field and a tetris-free
tree homomorphism, and let N be the pumping constant of A′. We say that A′

has the large duplication property (LDP) if there exists t ∈ supp(‖A′‖) with an
accepting run ̺, a position p ∈ posR(̺) where ̺(p) has a nontrivial constraint
set E, and a position p′ that is constrained by E such that ht(t|pp′ ) ≥ N .

A constraint that only acts on finitely many trees is expendable, since we can
process these particular trees manually using additional states. If, however, A′

has the LDP, then by our pumping lemma we obtain infinitely many trees to
which a nontrivial constraint E applies, so we cannot bypass E. Thus, the LDP
indicates that the constraints are indeed indispensable for representing ‖A′‖,
and in turn these constraints cause nonregularity, as stated in Proposition 25.

The decision procedure of [22] for input A and h as above is now as follows.

1. Construct an eq-restricted WTAh A′ recognizing h(‖A‖) via Lemma 7.
2. If A′ has the LDP, then h

(
‖A‖

)
is not regular.

3. If A′ does not have the LDP, then h
(
‖A‖

)
is regular.

For this procedure to be correct, the LDP must be (i) decidable and (ii)
equivalent to the nonregularity of ‖A′‖. While proving (ii) only requires technical
adaptations compared to [22], (i) presents new challenges since the pumping

lemma for fields is weaker. We prove (i) indirectly by examining the WTA Â.

Proposition 23. (cf. [22, Lemma 11]) Given as input a WTA A over a field,
and a tetris-free tree homomorphism h, it is decidable whether the eq-restricted
WTAh A′ for h(‖A‖) from Lemma 7 has the LDP.

Proof. Adopting the notation from Definition 22, let t0 = t|pp′ . We will not
decide the existence of a tree t = C[t0] in supp(‖A′‖) as in the LDP directly, but

instead decide whether its counterpart Ĉ[t0] exists in supp(‖Â‖). Consider thus

the WTA Â for A′ constructed in Definition 12. We modify Â by implementing
a counter into its state set, which ensures that only trees of height less than N
are attached to positions that are constrained in A′. Then we check if any trees
have been lost from supp(‖Â‖) in the process. If so, then the counterparts of
these lost trees in A′ confirm the LDP, otherwise A′ does not have the LDP.

Formally, let q 6= ⊥ and ℓ
E
−→ q a rule of A′ with posQ\{⊥}(ℓ) = {p1, . . . , pk}

ordered lexicographically, and ℓ(pi) = qi for all i ∈ [k]. Suppose that pi1 , . . . , pij



are the positions constrained by E. Then A′ has the rule ℓ̂(q1, . . . , qk) → q,

and we replace it by the collection of all ℓ̂
(
〈q1, n1〉, . . . , 〈qk, nk〉

)
→ 〈q, n〉 such

that n1, . . . , nk, n ∈ [N ], n = min
{
maxi∈[k](ni+ |pi|), N

}
and ni1 , . . . , nij < N .

All these new rules have the same weight as ℓ̂(q1, . . . , qk)→ q. This operation is

well-defined since by Lemma 15, the constraint E is uniquely determined by ℓ̂.
We proceed this way for every rule of Â and denote the resulting WTA by B̂.

Consider now the WTA recognizing ‖Â‖ − ‖B̂‖ defined by a disjoint union.

Subtracting ‖B̂‖ removes all t̂ from supp(‖Â‖) s.t. all subtrees of t ∈ supp(‖A′‖)
pending from constrained positions are of height less than N ; thus, the WTA
for ‖Â‖ − ‖B̂‖ only accepts trees whose counterparts in A′ satisfy the LDP. It

remains to decide whether ‖Â‖ − ‖B̂‖ is the zero function by minimizing the

WTA for it [2,3] and checking whether it has zero states. If indeed ‖Â‖ = ‖B̂‖,
then A′ has no tree that satisfies the condition of the LDP. If, however, there
exists t̂ ∈ supp(‖Â‖) \ supp(‖B̂‖), then its counterpart t satisfies the LDP. ⊓⊔

Finally, we can complete the proof of Theorem 21. For proving the final
proposition, we apply the following version of Ramsey’s theorem [25]. For a
set X , we denote by

(
X
2

)
the set of all subsets of X of size 2.

Theorem 24. Let k ≥ 1 be an integer and f :
(
N

2

)
→ [k] a mapping. There exists

an infinite subset E ⊆ N such that f |(E2)
≡ i for some i ∈ [k].

Proposition 25. (cf. [22, Prop. 13 and Thm. 17]) Let A be a WTA over
a field F, h a tetris-free tree homomorphism, and A′ the WTAh for h(‖A‖)
constructed in Lemma 7. Then h(‖A‖) is regular iff A′ does not have the LDP.

Proof. Let A′ = {Q∪̇{⊥}, ∆, F,R,wt} and let N be its pumping constant.
Necessity. We begin with the easier direction of this reduction: Suppose first
that A′ does not have the LDP. Therefore, every constraint used in a run of
some t ∈ supp(‖A′‖) only applies to subtrees of height less than N . We will
construct a WTG (without constraints), called the linearization of A′, that is
equivalent to A′. It was first defined for the unweighted case in [14] and adapted
to the weighted setting in [22]. Formally, the linearization of A′ is the WTG
lin(A′) =

(
Q,∆, F,Rlin,wtlin

)
, where Rlin and wtlin are defined as follows.

For ℓ′ ∈ T∆(Q) and q ∈ Q, we include the rule (ℓ′ → q) in Rlin iff there exist a

rule (ℓ
E
−→ q) ∈ R, positions p1, . . . , pk ∈ posQ∪̇{⊥}(ℓ), and trees t1, . . . , tk ∈ T∆

such that

– {p1, . . . , pk} =
⋃
p∈pos

⊥
(ℓ)[p]≡E , that is, p1, . . . , pk are exactly the positions

constrained by E,
– (pi, pj) ∈ E implies ti = tj for all i, j ∈ [k],
– ℓ′ = ℓ[t1]p1 · · · [tk]pk , and
– wtℓ(pi)(ti) 6= 0 and ht(ti) < N for all i ∈ [k].

For every such production ℓ′ → q we set wtlin(ℓ
′ → q) as the sum over all weights

wt(ℓ
E
−→ q) ·

∏

i∈[k]

wtℓ(pi)(ti)



for all (ℓ
E
−→ q) ∈ R, p1, . . . , pk ∈ posQ∪̇{⊥}(ℓ) and t1, . . . , tk ∈ T∆ as above.

In other words, lin(A′) simulates all runs of A′ which only enforce the equality
of subtrees of height less than N . This is achieved by instantiating the con-

strained Q-positions of every rule ℓ
E
−→ q in A′ with compatible trees of height

less than N , while the Q-positions of ℓ that are unconstrained by E remain un-
changed. Since lin(A′) has no constraints and is equivalent to A′, we have found
a regular representation of the tree series h(‖A‖).

Sufficiency. The other direction of the proof is significantly more challeng-
ing. We divide the statement into three parts: Recall that from the LDP for some
tree t = C[t0] together with the pumping lemma (Proposition 20) we obtain a
sequence of pairwise distinct trees t0, t1, t2, . . . such that t[ti]pp′ ∈ supp(‖A′‖)
and the position p′ is constrained in the rule at p (in every run of A′ for t).
First, we decompose A′ as A1 +A2 such that A1 isolates accepting runs of A′

for these trees, which will be the basis for the nonregularity of A′. As a second
step, we identify a subsequence where A2 behaves almost like A1. Finally, in the
third part, we prove nonregularity of ‖A′‖ by contradiction using linear algebra
computations similar to the initial sigma algebra semantics for WTA [11], which
we perform on the subsequence identified in the second step.

Before we begin, we want to introduce an alternative notation for runs which
will come in handy in the remainder of the proof. Consider t ∈ supp(‖A′‖) and a
run ̺ of A′ for t. Let posR(̺) = {p1, . . . , pm} ordered lexicographically, but such
that prefixes are larger, i.e. pm = ε. Other than thinking of ̺ as a tree in T∆∪R,
we can list the rules it applies as

(
̺(p1), p1

)(
̺(p2), p2

)
· · ·

(
̺(pm), pm

)
, sometimes

simply denoted (r1, p1)(r2, p2) · · · (rm, pm) with r1, . . . , rm ∈ R. Recall that for
all runs of a fixed tree t, the positions p1, . . . , pm are the same, as are the positions
among them where the target state is ⊥.

Part 1. Consider t = C[t0] and p, p
′ as in the LDP such that p is of minimal

length among all choices (where p′ is labeled by a non-sink state in the rule ap-
plied at p by any run for t) and the trees t0, t1, t2, . . . such that C[ti] ∈ supp(‖A′‖)
for all i ∈ N. We want to construct two eq-restricted WTAh A1,A2 such that
A′ = A1+A2, and A1 simulates runs of A′ for these trees that coincide above p.
Formally, there exist two eq-restricted WTAh A1 =

(
Q1∪̇{⊥}, ∆, F1, R1,wt1

)

and A2 =
(
Q2∪̇{⊥}, ∆, F2, R2,wt2

)
s.t. A′(s) = A1(s) + A2(s) for all s ∈ T∆

and F1 = {qf} for some qf ∈ Q1, and there exists exactly one rule in R1,

say ℓf
Ef

−→ qf , whose target state is qf , and for this rule there exists (p′′, p⊥) ∈ Ef
with ℓf (p

′′) 6= ⊥ = ℓf(p⊥) such that p′′ ∈ pos�(C) and C[ti] ∈ supp(‖A1‖) for
infinitely many i ∈ N.

To identify A1, consider all runs of A′ for all trees C[ti] as in the LDP, and
sort them into groups by the rules applied on the prefixes [ε, p] := {pi1 , . . . , pik}
of p in posR(̺) (in ascending order where prefixes are larger). By evaluating each
group, we obtain an expression of the form wt

(
̺|[ε,p]

)
·wtq

′

(ti)·πrest, where ̺|[ε,p]
is the partial run

(
̺(pi1), pi1

)(
̺(pi2), pi2

)
· · ·

(
̺(pik), pik

)
unique to the group, q′

stands for the respective non-sink state at pp′, and πrest contains the weights of
the subtrees of t unrelated to t|pp′ that are attached to the rules ̺(pi1), . . . , ̺(pik)
at positions parallel to pp′. All duplication copies of ti are processed in ⊥ with



weight 1, so their weight can be neglected. Since the field is not zero-sum free,
in some of the groups, the values wtq

′

(ti) · πrest might be zero, but since for
every particular tree C[ti], the sum of weights over all groups is ‖A′‖

(
C[ti]

)
6= 0,

and there are only finitely many groups, for one of the groups there must be
infinitely many trees tj0 , tj1 , tj2 . . . such that wtq

′

(tji) · πrest 6= 0 for all i ∈ N
and the respective state q′ of that group. We pick this subsequence as our new
sequence t0, t1, t2, . . ., and in the following, we will join the partial run ̺|[ε,p] of

this group into the rule ℓf
Ef
−→ qf from the statement at the beginning of Part 1.

From here on, the proof of Part 1 works the same as in [22]. Let ̺(pij ) be of

the form ℓij
Eij

−→ qij for all j ∈ [k]. For a position p̄ and a constraint set Ē we
define the set p̄Ē = {(p̄p′, p̄p⊥) | (p′, p⊥) ∈ Ē}. We want to join the respective
left-hand sides ℓi1 , . . . , ℓik of the rules applied by ̺ on the path from ε to p,

to create a new rule ℓik [ℓik−1
]pik−1

· · · [ℓi1 ]pi1
Ef
−→ qf with Ef =

⋃
j∈[k] pijEij .

Note that by the minimality of p, none of the positions p1i , . . . , pik can occur
in Ef . We define A1 =

(
Q∪̇{⊥}, ∆, F1, R1,wt1

)
with Q1 = Q∪̇{qf}, F1 = {qf}

and R1 = R ∪ {rf} where rf is the rule ℓik [ℓik−1
]pik−1

· · · [ℓi1 ]pi1
Ef

−→ qf with

the constraint set Ef =
⋃
j∈[k] pijEij , and the weight function wt1 is defined

by wt1(rf ) =
∏
j∈[k] wt

(
̺(pij )

)
, and otherwise wt1(r) = wt(r) for all r ∈ R.

Finally, we construct A2 such that A′ = A1+A2. For this, we must simulate
all runs of A′ except for those covered by A1. For a compact definition of A2,
we use � to denote a tree of height 0, and a term �[ℓik ]pik · · · [ℓij+1

]pij+1
[ℓ′]pij

for j = k is to be read as �[ℓ′]pij . We let qf /∈ Q ∪ {⊥} be a new state and

define A2 = (Q2∪̇{⊥}, ∆, F2, R2,wt2) with Q2 = Q∪{qf}, F2 = {qf}∪F \{qik}
(where qik is the target state of rik at the root of ̺), and the following rules:

R2 = R ∪
⋃

j∈[k]

{
�[ℓik ]pik · · · [ℓij+1

]pij+1
[ℓ′]pij

Ef
−→ qf

∣∣∣

r′ = (ℓ′
E′

−→ qij ) ∈ R \ {rij}, Ef = pijE
′ ∪

k⋃

j′=j+1

pij′Eij′

}
.

For a rule rf = �[ℓik ]pik · · · [ℓij+1
]pij+1

[ℓ′]pij
Ef
−→ f constructed with r′ as

above we let wt2(rf ) = wt(r′) ·
∏k

j′=j+1 wt(rij′ ), and for every r′ ∈ R we
let wt2(r

′) = wt(r′). This way, A2 reconstructs all runs of A′ except for the
ones that coincide with ̺ on the path from ε to p. An illustration of this con-
struction was given in [22, Example 15].

Part 2. Next we identify a subsequence of t0, t1, t2, . . . such that C[ti, tj , . . . , tj ]
is not in supp(‖A2‖) if i 6= j. Recall that by the minimality assumption in Part 1,
no prefix of pp′ is a constrained position in t. Let {w1, . . . , wr} be the set of all
positions equality constrained to p′′ = pp′ by Ef in A′, where w1 = p′′. i.e.

{w1, . . . , wr} = pos�(C). Since ℓf
Ef
−→ qf is the only rule of A1 that targets the

final state qf , we have ‖A1‖
(
C[ti, tj , . . . , tj ]

)
6= 0 iff i = j. Of course, A2 might

have valid runs for C[ti], but also for C[ti, tj , . . . , tj ] with i 6= j. We will show



that there is a subsequence of t0, t1, t2, . . . where also ‖A2‖
(
C[ti, tj , . . . , tj ]

)
= 0

if i 6= j. Example 26 below shows an illustration of this selection.
For a run ϑ =

(
r1, p1

)
· · ·

(
rm, pm

)
of A2 and a set S, let {pi1 , . . . , pin} be the

set {p1, . . . , pm} ∩ S, then ϑ|S denotes the restricted run
(
ri1 , pi1

)
· · ·

(
rim , pim

)
;

its weight is wt2(ϑ|S) =
∏
j∈[n] wt2(rij ), and we define for all k, h ∈ N:

Θkh =
{
ϑ|pos(C) | ϑ is accepting run of A2 for C[tk, th, . . . , th]

}
.

We now employ Ramsey’s theorem in the following way. For k, h ∈ N
with k < h, we consider the mapping {k, h} 7→ Θkh. This mapping has a finite
range as every Θkh is a set of finite words over the alphabet R2×pos(C) of length
at most |pos(C)|. Thus, by Ramsey’s theorem, we obtain a subsequence (tij )j∈N

with Θikih = Θ< for all k, h ∈ N and some set Θ<. For simplicity, we assume
that Θkh = Θ< for all k, h ∈ N with k < h. In the same fashion, we may select
a further subsequence and assume that Θkh = Θ> for all k, h ∈ N with k > h.
Finally, the mapping k 7→ Θkk also has a finite range, so by the pigeonhole
principle, we may select a further subsequence and assume that Θkk = Θ= for
all k ∈ N and some set Θ=. In the following, we show that Θ< = Θ> = ∅. For
this, we prove that Θ< = Θ> ⊆ Θ= ; since A′ satisfies Lemma 14 all runs of A′

for C[tk] enforce equality for all positions in pos�(C). Moreover, the (absolute)
positions constrained by runs of A2 are the same as in the corresponding runs
of A′. Therefore the set Θ= is disjoint from both Θ< and Θ>, so overall we
have Θ< = Θ> = ∅.

Assume thus that Θ< 6= ∅. Let (r1, p1) · · · (rm, pm) ∈ Θ< with ri = ℓi
Ei−→ qi

for every i ∈ [m]. Moreover, we will abbreviate Ckh = C[tk, th, th, . . . , th],
Ck� = C[tk,�,�, . . . ,�], and C�h = C[�, th, th, . . . , th] for k, h ∈ N. We show
that every constraint from every Ei is satisfied on all Ckh with k, h ≥ 1, not just
for k < h. More precisely, let i ∈ [m], (u′, v′) ∈ Ei, and (u, v) = (piu

′, piv
′). We

show Ckh|u = Ckh|v for all k, h ≥ 1. Note that by assumption, Ckh|u = Ckh|v is
true for all k, h ∈ N with k < h. We show our statement by a case distinction
depending on the position of u and v in relation to {w1, . . . , wr} = pos�(C).

1. If both u and v are parallel to w1, then Cij |u and Cij |v do not depend on i.
Thus, C0j |u = C0j |v for all j ≥ 1 implies the statement.

2. If u is in prefix-relation with w1 and v is parallel to w1, then Cij |v does
not depend on i. If u ≤ w1, then by our assumption that (ti)i∈N are pair-
wise distinct, we obtain the contradiction C02|v = C02|u 6= C12|u = C12|v,
where C02|v = C12|v should hold. Thus, we have w1 ≤ u and in particular,
Cij |u does not depend on j. Thus, for all i, j ≥ 1 we obtain

Cij |u = Ci,i+1|u = Ci,i+1|v = C0,i+1|v = C0,i+1|u = C0j |u = C0j |v = Cij |v .

If v is in prefix-relation with w1 and u is parallel to w1, then we come to the
same conclusion by formally exchanging u and v in this argumentation.

3. If u and v are both in prefix-relation with w1, then u and v being parallel to
each other implies w1 ≤ u and w1 ≤ v. In particular, both u and v are parallel



to all w2, . . . , wm. Thus, we obtain, as in the first case, that Cij |u and Cij |v
do not depend on j and the statement follows from Ci,i+1|u = Ci,i+1|v for
all i ∈ N.

Let k, h ≥ 1 and ϑC ∈ Θ<. Moreover, let q ∈ Q2 and let ϑk,k+1 and ϑh−1,h

be runs of A2 for Ck,k+1 and Ch−1,h, respectively, to q such that

ϑC = ϑk,k+1|pos(C) = ϑh−1,h|pos(C) .

Let ϑk = ϑk,k+1|pos(Ck,k+1)\pos(C�,k+1) and ϑh = ϑh−1,h|pos(Ch−1,h)\pos(Ch−1,�),
then we can reorder ϑ = ϑkϑhϑC to a run of A2 for Ckh, as all equality con-
straints from ϑk are satisfied by the assumption on ϑk,k+1, all equality con-
straints from ϑh are satisfied by the assumption on ϑh−1,h, and all equality
constraints from ϑC are satisfied by our case distinction. Considering the special
cases k = 2, h = 1, and k = h = 1, and the definitions of Θ> and Θ=, we ob-
tain ϑC ∈ Θ21 = Θ> and ϑC ∈ Θ11 = Θ=, and hence, Θ< ⊆ Θ> and Θ< ⊆ Θ=.

The converse inclusion Θ> ⊆ Θ< follows with an analogous reasoning: Sup-
pose again that Θ> 6= ∅ and consider as before some (r1, p1) · · · (rm, pm) ∈ Θ>, a
pair (u′, v′) constrained in ri for some i ∈ [m], and let (u, v) = (piu

′, piv
′). By as-

sumption, (u, v) is satisfied by Ckh for all k > h. Again, we distinguish three cases
depending on the position of u and v compared to w1. In the first and third case,
we draw the conclusions from Cj+1,j |u = Cj+1,j |v for all j ≥ 0 and Ci0|u = Ci0|v
for all i ≥ 1, respectively. In the second case, if u is in prefix-relation with w1

and v is parallel to w1, we first see that u is not a prefix of w1. Otherwise we
would again have a contradiction via C20|v = C20|u 6= C10|u = C10|v. Then we
argue similarly that for all i, j ≥ 1 we have

Cij |u = Ci0|u = Ci0|v = Cj+1,0|v = Cj+1,0|u = Cj+1,j |u = Cj+1,j |v = Cij |v .

In conclusion, we obtain Θ< = Θ> ⊆ Θ=. Since by Lemma 14, all partial runs
in Θ= enforce constraints on all w1, . . . , wr, it is Θ= ∩Θ< = Θ= ∩Θ> = ∅, and
thus we conclude Θ< = Θ> = ∅ as desired.

Part 3. Finally, we derive a representation of ‖A′‖ that allows us to prove
its nonregularity. For k ∈ N let νk = ‖A2‖(Ckk), then it is ‖A2‖(Ckh) = δkhνk,
where δkh denotes the Kronecker delta. As mentioned above, we similarly
have ‖A1‖(Ckh) 6= 0 iff k = h, so we can overall write ‖A′‖(Ckh) = δkhµk
with µk 6= 0 for all k ∈ N. If ‖A′‖ is regular, then by the initial sigma algebra
semantics [11] we can assume a representation ‖A′‖(Ckh) = g(κk, κh, . . . , κh) for
all k, h ∈ N, where κh is a finite vector of weights over F where each entry corre-
sponds to the sum of all runs for th to a specific state of a WTA recognizing ‖A′‖
by the regularity assumption, and g is a multilinear map encoding the weights
of the runs for C depending on the specific input states at the �-positions and
the target state at ε. Let dim be the number of entries in κh, then all κh, h ∈ N
are elements of the finite-dimensional vector space Fdim. We choose K ∈ N such
that κ1, . . . , κK are a generating set of the F-vector space spanned by κi, i ∈ N.
Then there are coefficients α1, . . . , αK ∈ F such that κK+1 =

∑
i∈[K] αiκi. Thus

we compute

0 6= µK+1 = ‖A′‖(CK+1,K+1) = g(κK+1, κK+1, . . . , κK+1)



=
∑

i∈[K]

αig(κi, κK+1, . . . , κK+1)

=
∑

i∈[K]

αi‖A
′‖(Ci,K+1) =

∑

i∈[K]

αiδi,K+1µi = 0,

so our assumption that ‖A′‖ is regular led to a contradiction. ⊓⊔

To illustrate why it is necessary to identify such a subsequence in the proof
of Proposition 25, consider the following simple example.

Example 26. Consider the WTAhA′ =
(
{q, qf ,⊥}, {a(0), g(1), f (2)}, {qf}, R,wt

)

over Q with the following rules:

R = { a→1 q, g(q)→2 q, f(q,⊥)
1=2
−→1 qf , f

(
q, g(⊥)

) 1=21
−→1 qf } ∪ R⊥

where R⊥ = {a →1 ⊥, g(⊥) →1 ⊥, f(⊥,⊥) →1 ⊥}. The WTAh A′ represents
the image of a WTA under a suitable tetris-free tree homomorphism, and the
context C = f(�,�) and the sequence ti = gi(a) satisfy the conditions of
the LDP. For constructing A1 we can simply choose the third rule as it is.
However, the corresponding WTAh A2 does not satisfy ‖A2‖

(
C[ti, tj ]

)
= 0 if

i = j. Instead, for every i, it is ‖A2‖
(
C[ti, ti+1]

)
6= 0. However, if we choose the

subsequence (t2i), i ∈ N, then indeed ‖A2‖
(
C[t2i, t2j ]

)
= 0 (in particular) for

all i 6= j as required for the computations in Part 3.

Restrictihg the HOM-problem over fields to tetris-free tree homomorphisms
is of essence: On the one hand, we use this assumption to construct a well-
defined WTA Â when proving that the LDP is decidable in Proposition 23. On
the other hand, the statement of Proposition 25, which reduces the weighted
HOM-problem to the LDP, also does not hold if h is not tetris-free:

Example 27. ConsiderA′ =
(
{q, qf , q′f ,⊥}, {a

(0), g(1), f (2)}, {qf , q′f}, R,wt
)
with

R = { a→1 q, g(q)→1 q, f(q, q)→3 qf ,

f(q,⊥)
1=2
−→2 qf , f(q,⊥)

1=2
−→−2 q

′
f } ∪ R⊥

where R⊥ = {a→1 ⊥, g(⊥)→1 ⊥, f(⊥,⊥)→1 ⊥}.
The WTAh A′ represents the image of a WTA under a suitable tree homo-

morphism, but not under any tetris-free one since A′ does not satisfy Lemma 14.
It is easy to see that A′ has the LDP, e.g. with C = f(�,�) and the se-
quence ti = gi(a). However, the accepting runs for C[ti] that use constraints
cancel each other out. Despite A′ having the LDP, ‖A′‖ is the regular tree series
with supp(‖A′‖) =

{
t | posf (t) = {ε}

}
and ‖A′‖ : f

(
gi(a), g(j(a)

)
7→ 3 for all

i, j ∈ N. Thus, without the tetris-free assumption, Proposition 25 does not hold.

5 Conclusion

In this paper, we have proved that the weighted HOM-problem over fields for
tetris-free tree homomorphisms is decidable. Formally, for a WTA A over a field,



and a tetris-free tree homomorphism h as input, it is decidable whether h(‖A‖)
is again regular. A tree homomorphism is tetris-free if its non-injective behaviour
is located only at the symbol level, thus this property generalizes injectivity.

Our proof strategy is similar to [22]: We have reduced the HOM-problem
to a decidable property of (the WTAh that recognizes) h(‖A‖). The homomor-
phism h has the ability to duplicate subtrees of its input trees, and we have
shown that h(‖A‖) is regular iff h duplicates only finitely many subtrees of trees
accepted by A. This limited duplication is in turn decidable, and proving its
decidability is our main contribution. For this, we presented a pumping lemma
for the WTAh recognizing h(‖A‖), by translating it into a WTA and applying
the pumping lemma for WTA over fields proved in [1].

The analogous decision problem, without the tetris-free restriction, is also
decidable for WTA over N [22]. However, since fields allow zero-sums, the proof
strategy fails without the tetris-free restriction, as our last example illustrates.
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