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Abstract. Let n be a positive integer greater than 2. We define the

Proth numerical semigroup, Pk(n), generated by {k2n+i + 1 | i ∈ N},
where k is an odd positive number and k < 2n. In this paper, we intro-
duce the Frobenius problem for the Proth numerical semigroup Pk(n)
and give formulas for the embedding dimension of Pk(n). We solve the
Frobenius problem for Pk(n) by giving a closed formula for the Frobenius
number. Moreover, we show that Pk(n) has an interesting property such
as being Wilf.

Keywords: Combinatorial techniques · Frobenius problem · Proth
Number · Numerical semigroup · Apéry Set · pseudo-Frobenius number
· type · Wilf’s conjecture

1 Introduction

The mathematician Ferdinand Frobenius defines the problem that asks to find
the largest integer that is not expressible as a non-negative integer linear com-
bination of elements of L, where L is a set of m coprime positive integers.

The Frobenius problem is defined as follows: Given a set L = {l1, l2, ..., lm}
of coprime positive integers and li ≥ 2, find the largest natural number that
is not expressible as a non-negative linear combination of l1, l2, ..., lm. It is also
known as the money exchange or coin exchange problem in number theory. In
literature, the connection between graph theory, theory of computer science and
Frobenius problem has been developed (see [10,11,15,14]). This is because the
Frobenius problem has attracted mathematicians as well as computer scientists
since the 19-th century (see [3], Chapter 1 in [6], Problem C7 in [9], [28]).

For the special case e.g., m = 2, the explicit formula to find the Frobenius
number is known, it is l1l2 − l1 − l2 proved in [26]. In addition to that, for the
case m = 3, semi-explicit formula is known to find the Frobenius number [17].
Moreover, Rödseth [24], Selmer [25] and Beyer [4] have developed algorithms
to solve the Frobenius problem in the case m = 3. In 1996, Ramírez-Alfonsín
showed that the Frobenius problem for variable m is NP-hard [16].

The Frobenius problem has been studied for several special cases, e.g., num-
bers in a geometric sequence, arithmetic sequence, Pythagorean triples, three
consecutive squares or cubes [29,30,7,13]. Moreover, the Frobenius problem is
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defined on some special structure like Numerical semigroup (see the definition
below).

Let N and Z be the set of non-negative integers and set of integers, respec-
tively. A subset S of N containing 0 is a numerical semigroup if S is closed under
addition and has a finite complement in N. If S is a numerical semigroup and
S = 〈B〉, then we call B, a system of generators of S. A system of generators B
of S is minimal if no proper subset of B generates S. In [18] Rosales et al. proved
that every numerical semigroup admits a unique minimal system of generators
and such a system is finite. The cardinality of a minimal system of generators of
S is called the embedding dimension of S denoted by e(S).

The Frobenius number of a numerical semigroup S = 〈{a1, a2, . . . , an}〉 (de-

noted by F(S)) is the greatest integer that cannot be expressed as a sum
n
∑

i=1

tiai,

where t1, . . . , tn ∈ N [18,2].
To solve the Frobenius problem for numerical semigroups, several methods

were introduced, e.g., see [5,19,18,20]. In particular, in recent articles, the method
of computing the Apéry set (see Definition 1) and deduce the Frobenius num-
ber using the Apéry set has been presented. In literature, there exists a large
list of publications devoted to solve the Frobenius problem for special classes
of numerical semigroup, including the Frobenius problem for Fibonacci numeri-
cal semigroup [12], Mersenne numerical semigroup [21], Thabit numerical semi-
group [22] and repunit numerical semigroup [23]. We note that the study of the
Frobenius number for the mentioned numerical semigroups has been inspired by
special primes such as Fibonacci, Mersenne, Thabit and repunit primes. In this
paper, we introduce Proth numerical semigroup motivated by the Proth number.
The main aim of this paper is to study the Proth numerical semigroup and its
invariants like embedding dimension, Frobenius number, etc.

In number theory, the Proth number (named in honor of the mathematician
François Proth) is a natural number of the form k2n + 1, where n and k are
positive numbers and k < 2n is an odd number. We say that a Proth number is
a Proth prime if it is prime.

A numerical semigroup S is the Proth numerical semigroup if n ∈ N such
that S = 〈{k2n+i+1 | i ∈ N}〉, where n and k are positive numbers and k < 2n

is an odd number. We denote by Pk(n) the numerical semigroup 〈{k2n+i + 1 |
i ∈ N}〉. It is easy to see that when k = 1 the Proth numerical semigroup is the
Cunningham numerical semigroup [27]. Hence, we can assume that 2r < k <
2r+1 for some r.

In this paper, we first prove that e(Pk(n)) is n+ r + 1 where 2r < k < 2r+1.
Later, we find the Frobenius number of the Proth numerical semigroup. More
formally, we prove the following theorem.

Theorem 1. Let n > 2 be a positive integer. Then F(P2r+1(n)) = 2s1 + sn +
sn+r − s0, where si = k2n+i + 1 for i ∈ N.

Let S be a numerical semigroup. An integer x is a pseudo-Frobenius number
of S if x ∈ Z \ S and x+ s ∈ S for all s ∈ S \ {0}. The set of pseudo-Frobenius
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numbers of S is denoted by PF(S), and the cardinality of the set PF(S) is called
the type of S denoted by t(S) [18,2].

We find the set of pseudo-Frobenius numbers of the Proth numerical semi-
group P2r+1(n) and prove that its type is n+ r − 1.

In the context of a numerical semigroup, it is reasonable to study the prob-
lems that connect the Frobenius number and other invariants of a numerical
semigroup. One such problem posed by Wilf (known as Wilf’s conjecture) in [31]
is as follows: Let S be a numerical semigroup and ν(S) = |{s ∈ S | s ≤ F(S)}|,
is it true that F(S)+ 1 ≤ e(S)ν(S), where e(S) is the embedding dimension and
F(S) is the Frobenius number of S? Note that the numerical semigroups that
satisfy Wilf’s conjecture are called Wilf.

The conjecture is still open; in spite of it, an affirmative answer has been
given for a few special classes of a numerical semigroup. In this paper, we prove
that the Proth numerical semigroup P2r+1(n) supports Wilf’s conjecture.

This paper is an attempt to understand the Frobenius problem and Wilf con-
jecture for arbitrary embedding dimension through the Proth numerical semi-
group. Our approach was inspired by the ideas discussed in [21,22]. However, it
is worth noting that our techniques to find the Apéry set of the Proth numerical
semigroups differ from the existing ones [21,22].

The reader not familiarized with the study of numerical semigroup and the
terminologies like embedding dimension, pseudo-Frobenius numbers, type, etc.,
can refer to the literature [18,2].

2 The Embedding Dimension

We begin this section by proving that Pk(n) is a numerical semigroup. Later, we
prove that the embedding dimension of Pk(n) is n+r+1. Some of the techniques
used in this section are introduced earlier see, e.g., [21,22,27].

Lemma 1. (Lemma 2.1 in [18]) Let S be a nonempty subset of N. Then 〈S〉 is
a numerical semigroup if and only if gcd(S) = 1.

Theorem 2. Let n > 2 be an integer, then Pk(n) is a numerical semigroup.

Proof. It is clear that Pk(n) ⊆ N is closed under addition and contains zero.
Note that from Lemma 1 it is enough to show that gcd(Pk(n)) = 1. Let k2n+1,
k2n+1+1 ∈ Pk(n). Then gcd(k2n+1, k2n+1+1) = gcd(k2n+1, k2n+1−k2n) =
gcd(k2n + 1, k2n) = 1. Therefore, Pk(n) is a numerical semigroup. ⊓⊔

Next we give the minimal system of generators of the Proth numerical semi-
group. To this purpose, we need some preliminary results.

Lemma 2. (Lemma 2.1 in [27]) Let S be a numerical semigroup generated by
a non-empty set M of positive integers. Then the following conditions are equiv-
alent:

(i) 2m− 1 ∈ S for all m ∈ M ;
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(ii) 2s− 1 ∈ S for all s ∈ S \ {0}.

Theorem 3. Let n > 2 be an integer, then Pk(n) = 〈{k2n+i+1 | i = 0, . . . , n+
r}〉.

Proof. Let P = 〈{k2n+i +1 | i ∈ {0, 1, . . . , n+ r}
}

〉. It is clear that P ⊆ Pk(n).
To prove the other direction it is enough to prove that k2n+i+1 ∈ P for all i ∈ N.
Let i ∈ {0, 1, . . . , n+r−1}, then 2(k2n+i+1)−1 = k2n+i+1+1 ∈ P . For i = n+r,
2(k2n+n+r+1)−1 = ((k−2r)2n+1+3)(k2n+1)+((2r+1−k)2n−2)(k2n+1+1) ∈ P .
From Lemma 2, we get 2s − 1 ∈ P for all s ∈ P \ {0}. By induction, we can
deduce that k2n+i+1 ∈ P for all i ≥ n+ r+1 and hence Pk(n) = 〈{k2n+i+1 |
i = 0, . . . , n+ r}〉. ⊓⊔

Note that, Theorem 3 tells us that {k2n+i+1 | i = 0, . . . , n+ r} is a system
of generators of Pk(n).

Lemma 3. Let n > 2 be an integer, then k2n+n+r + 1 /∈ 〈{k2n+i + 1 | i ∈
{0, 1, . . . , n+ r − 1}

}

〉.

Proof. Assume to the contrary that there exists a0, a1, . . . , an+r−1 ∈ N such that

k2n+n+r + 1 =

n+r−1
∑

i=0

ai(k2
n+i + 1)

=k2n
(

n+r−1
∑

i=0

2iai

)

+

n+r−1
∑

i=0

ai.

Hence,
∑n+r−1

i=0 ai = 1(mod k2n) and we get,
∑n+r−1

i=0 ai = tk2n + 1 for some

t ∈ N. Observe that t 6= 0. Thus,
∑n+r−1

i=0 ai ≥ k2n+1. Therefore, k2n+n+r+1 =
n+r−1
∑

i=0

ai(k2
n+i + 1) ≥ (

∑n+r−1
i=0 ai)(k2

n + 1) ≥ (k2n + 1)2. Since 2r < k we get

2r+n < 2nk < 2nk + 2 ⇒ k2r+n+n < k222n + 2k2n

⇒ k2r+n+n + 1 < k222n + 2k2n + 1

⇒ k2n+n+r + 1 < (k2n + 1)2.

Hence, k2n+n+r + 1 ≥ (k2n + 1)2 > k2n+n+r + 1, which is a contradiction.
Therefore, k2n+n+r + 1 /∈

〈{

k2n+i + 1 | i ∈ {0, 1, . . . , n+ r − 1}
}〉

. ⊓⊔

Theorem 4. Let n > 2 be an integer and let Pk(n) be the Proth numerical
semigroup associated to n, then e(Pk(n)) = n + r + 1. Moreover, {k2n+i + 1 |
i ∈ {0, 1, . . . , n+ r}

}

is the minimal system of generators of Pk(n).

Proof. By Theorem 3, we know that {k2n+i+1 | i ∈ 0, 1, . . . , n+r} is a system of
generator for Pk(n). Suppose that it is not minimal system of generators of Pk(n).
Then there exists l ∈ {1, 2, . . . , n+ r− 1} such that k2n+l+1 ∈ 〈k2n+i+1 | i ∈
{0, 1, . . . , l−1}〉. Let T = 〈k2n+i+1 | i ∈ {0, 1, . . . , l−1}〉. If i ∈ {0, 1, . . . , l−2},
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then 2(k2n+i+1)−1 = k2n+i+1+1 ∈ T and 2(k2n+l−1+1)−1 = k2n+l+1 ∈ T .
From Lemma 2, we have 2t−1 ∈ T for all t ∈ T \{0}. Hence, by induction we can
obtain that k2n+i+1 ∈ T for all i ≥ l, which is a contradiction as k2n+n+r+1 /∈ T
from Lemma 3. Therefore, {k2n+i + 1 | i ∈ {0, 1, . . . , n + r}

}

is the minimal
system of generators of Pk(n) and e(Pk(n)) = n+ r + 1. ⊓⊔

3 The Apéry Set

In this section, we study the notion of Apéry set and give the explicit description
of the elements of the Apéry set of the Proth numerical semigroup P2r+1(n) for
all r ≥ 1. We denote by si the element k2n+i + 1 for all i ∈ N. Thus, with this
notation, {s0, s1, ..., sn+r} is the minimal system of generators of Pk(n).

Definition 1. [1,18] Let S be a numerical semigroup and n ∈ S \ {0}. The
Apéry set of S with respect to n is Ap(S, n) = {s ∈ S | s− n /∈ S}.

It is clear from the following lemma that |Ap(S, n)| = n.

Lemma 4. (Lemma 2.4 in [18]) Let S be a numerical semigroup and let n be a
nonzero element of S. Then Ap(S, n) = {w(0), w(1), . . . , w(n − 1)}, where w(i)
is the least element of S congruent with i modulo n, for all i ∈ {0, . . . , n− 1}.

Our next goal is to describe the elements of Ap(Pk(n), s0).

Lemma 5. Let n > 2 be an integer. Then:

(1) if 0 < i ≤ j < n+ r then si + 2sj = 2si−1 + sj+1;
(2) if 0 < i ≤ n+r then si+2sn+r = 2si−1+αs0+βs1, where α = (k−2r)2n+1+3

and β = (2r+1 − k)2n − 2.

Proof. (1) If 0 < i ≤ j < n+ r then we have

si + 2sj =(k2n+i + 1) + 2(k2n+j + 1)

=2(k2n+i−1 + 1) + (k2n+j+1 + 1) = 2si−1 + sj+1.

(2) If 0 < i ≤ n+ r then we get

si + 2sn+r =(k2n+i + 1) + 2(k2n+n+r + 1)

=2(k2n+i−1 + 1) + k22n+r+1 + 1

=2si−1 + α(k2n + 1) + β(k2n+1 + 1) = 2si−1 + αs0 + βs1,

where α = (k − 2r)2n+1 + 3, β = (2r+1 − k)2n − 2. ⊓⊔

Let P (r, n) denotes the set of all n+ r-tuple (a1, . . . , an+r) that satisfies the
following conditions:

1. for every i ∈ {1, . . . , n+ r}, ai ∈ {0, 1, 2};
2. if aj = 2 for some j = 2, . . . , n+ r then ai = 0 for i < j.



6 P. Srivastava and D. Thakkar

Lemma 6. (Lemma 3.3 in [8]) The cardinality of P (r, n) is equal to 2n+r+1−1.

Lemma 7. Let n > 2 be an integer and let P2r+1(n) be the Proth numerical
semigroup minimally generated by {s0, s1, . . . , sn+r}. If s ∈ Ap(P2r+1(n), s0)
then there exist (a1, . . . , an+r) ∈ P (r, n) such that s = a1s1 + · · ·+ an+rsn+r.

Proof. Let s ∈ Ap(P2r+1(n), s0). We prove the result of lemma using induction
on s. When s = 0 then result follows trivially. Assume that s > 0 and j be
the smallest element from {0, 1, . . . , n + r} such that s − sj ∈ P2r+1(n). Since
s ∈ Ap(P2r+1(n), s0) we have j 6= 0 and s − sj ∈ Ap(P2r+1(n), s0). Now from
induction hypothesis there exist (a1, . . . , an+r) ∈ P (r, n) such that s − sj =
a1s1 + a2s2 + · · ·+ an+rsn+r, hence s = a1s1 + a2s2 + · · · + (aj + 1)sj + · · ·+
an+rsn+r. Note that, to conclude the proof it suffices to prove that (a1, . . . , aj +
1, . . . , an+r) ∈ P (r, n).

(1) To prove (a1, a2, . . . , aj +1, . . . , an+r) ∈ {0, 1, 2}n+r, it is enough to show
that aj + 1 6= 3. If aj + 1 = 3 then from Lemma 5,

(i) for j < n+ r, we have sj + 2sj = 2sj−1 + sj+1. This implies that,
s− sj−1 = a1s1 + · · ·+ sj−1 + (aj+1 + 1)sj+1 + · · ·+ an+rsn+r.

(ii) for j = n+ r, we have, sj + 2sj = 2sj−1 + αs0 + βs1. This implies that,
s− sj−1 = αs0 + (a1 + β)s1 + a2s2 + · · ·+ (an+r−1 + 1)sn+r−1.

In both the cases, we get s − sj−1 ∈ P2r+1, which is a contradiction to the
minimality of j. Hence, aj + 1 6= 3.

(2) From the minimality of j, we obtain that ai = 0 for all 1 ≤ i < j. Now
assume that there exist l > j such that al = 2, then again from Lemma 5, we
have

(i) for l < n+ r, we have sj + 2sl = 2sj−1 + sl+1;
(ii) for l = n+ r, we have, sj + 2sl = 2sj−1 + αs0 + βs1.

Again by the same argument as in (1), we have s−sj−1 ∈ P2r+1, which contradict
the minimality of j.

Therefore, (a1, . . . , aj + 1, . . . , an+r) ∈ P (r, n). ⊓⊔

It follows from Lemma 7 that Ap(P2r+1(n), s0) ⊆ {a1s1 + · · · + an+rsn+r |
(a1, . . . , an+r) ∈ P (r, n)}.

The next remark tells that the equality in the above expression does not hold
in general.

Remark 1. If possible suppose that, Ap(P2r+1(n), s0) = {a1s1+ · · ·+an+rsn+r |
(a1, . . . , an+r) ∈ P (r, n)}. Then |Ap(P2r+1(n), s0)| = |{a1s1 + · · · + an+rsn+r |
(a1, . . . , an+r) ∈ P (r, n)}| = 2n+r+1 − 1 6= s0.

Thus, it remains to find the elements of the set {a1s1 + · · · + an+rsn+r |
(a1, . . . , an+r) ∈ P (r, n)} which belongs to Ap(P2r+1(n), s0). To do so, we first
define the following sets:

F1 =
{

a1s1 + · · ·+ an+r−1sn+r−1 + sn+r | ai ∈ {0, 1, 2} for 1 ≤ i ≤ n+ r −

2, an+r−1 ∈ {1, 2} and if aj = 2 for some j then ai = 0 for i < j
}

; and
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F2 =
( r−2

⋃

l=0

El∪{2sn+r}
)

∖

{s1+sn+sn+r, 2s1+sn+sn+r, sn+sn+r}, where

El =
{

a1s1 + · · ·+ an+lsn+l + sn+r | ai ∈ {0, 1, 2} for 1 ≤ i ≤ n+ l− 1, an+l ∈

{1, 2} and if aj = 2 then ai = 0 for i < j
}

. Take F = F1 ∪ F2.

Lemma 8. Under the standing hypothesis and notation, the following equalities
hold.

(a) sn+l + sn+r − s0 = ((2n+r − 2n+l) + 2n+1 + 4)s0 + (2n+l − 2n − 3)s1, for
1 ≤ l ≤ r;

(b) si + sn + sn+r − s0 = ((2r +1)2n +2− (2i− 4))s0 +(2i − 4)s1 for 2 ≤ i ≤ n;
(c) s1 + si + sn + sn+r − s0 = ((2r + 1)2n + 2 − (2i − 4))s0 + (2i − 3)s1 for

2 ≤ i ≤ n;

Proof. (a) Let 1 ≤ l ≤ r. Consider

(2n+r − 2n+l + 2n+1 + 4)s0 + (2n+l − 2n − 3)s1

=(2n+r − 2n+l + 2n+1 + 4)((2r + 1)2n + 1) + (2n+l − 2n − 3)((2r + 1)2n+1 + 1)

=(2r + 1)2n(2n+r − 2n+l + 2 · 2n + 4 + 2(2n+l − 2n − 3)) + 2n+r + 2n + 1

=(2r + 1)2n(2n+r + 2n+l − 2) + 2n+r + 2n + 1

=(2r + 1)2n(2n+r + 2n+l − 1) + 1

=(2r + 1)(2n+n+r) + 1 + (2r + 1)2n+n+l + 1− (2r + 1)2n − 1

=sn+r + sn+l − s0.

(b) Let 2 ≤ i ≤ n. Consider

((2r + 1)2n + 2− (2i − 4))s0 + (2i − 4)s1

=((2r + 1)2n + 2− (2i − 4))((2r + 1)2n + 1) + (2i − 4)((2r + 1)2n+1 + 1)

=(2r + 1)2n((2r + 1)2n + 2− 2i + 4 + 2 · 2i − 8) + (2r + 1)2n + 2

=(2r + 1)2n((2r + 1)2n + 2i − 2) + (2r + 1)2n + 2

=(2r + 1)2n((2r + 1)2n + 2i − 1) + 2

=(2r + 1)2n+n+r + 1 + (2r + 1)2n+n + 1 + (2r + 1)2n+i + 1− ((2r + 1)2n + 1)

=sn+r + sn + si − s0.

(c) Follows from the proof of part (b). ⊓⊔

The following lemmas give the explicit description of the elements in the Apéry
set Ap(P2r+1(n), s0).

Lemma 9. Let n > 2 be an integer. Then F ∩ Ap(P2r+1(n), s0) = φ.

Proof. Let a1s1 + · · ·+ an+r−1sn+r−1 + sn+r ∈ F1. From Lemma 8(a), we have
sn+r−1 + sn+r − s0 ∈ P2r+1(n). Since an+r−1 ∈ {1, 2}, we have a1s1 + · · · +
an+r−1sn+r−1+sn+r−s0 = a1s1+· · ·+(an+r−1−1)sn+r−1+sn+r−1+sn+r−s0 ∈
P2r+1(n).
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Let a1s1 + · · ·+ an+lsn+l + sn+r ∈ F2 for 1 ≤ l ≤ r − 2. From Lemma 8(a),
we have sn+l + sn+r − s0 ∈ P2r+1(n). Similar argument as above implies that
a1s1 + · · ·+ an+lsn+l + sn+r − s0 ∈ P2r+1(n).

Let a1s1 + · · ·+ ansn + sn+r ∈ F2 (i.e. l = 0). Note that ai 6= 0 for some i ∈
{2, . . . , n−1}. From Lemma 8(b) and (c), we have si+sn+sn+r−s0 ∈ P2r+1(n)
and s1 + si + sn + sn+r − s0 ∈ P2r+1(n). Since ai 6= 0 for 2 ≤ i ≤ n− 1, we have
a1s1 + · · ·+ ansn + sn+r − s0 ∈ P2r+1(n).

Finally, consider 2sn+r ∈ F2. From Lemma 8(a), we have 2sn+r − s0 ∈
P2r+1(n).
Thus, for any element of F say x, we have x − s0 ∈ P2r+1(n) and hence F ∩
Ap(P2r+1(n), s0) = φ. ⊓⊔

Lemma 10. Under the standing hypothesis and notation, we have |F | = 2n+r−
2n − 2.

Proof. Consider the set L11 =
{

a1s1 + · · · + an+r−1sn+r−1 + sn+r | ai ∈

{0, 1} for 1 ≤ i ≤ n+ r − 2 and an+r−1 = 1
}

. Clearly, |L11| = 2n+r−2. Now we
construct a new set L12 as follows: Let a1s1 + · · ·+ an+r−1sn+r−1 + sn+r ∈ L11.
Take the least index m ∈ {1, 2, ..., n+ r − 1} for which am = 1, add an element
b1s1 + · · ·+ bn+r−1sn+r−1 + sn+r in L12 with bm = 2 and bj = aj for all j 6= m.
Clearly, |L12| = 2n+r−2. Note that F1 is the disjoint union of L11 and L12. Hence,
|F1| = 2n+r−1.

Consider the set L21 =
{

a1s1 + · · · + an+lsn+l + sn+r | ai ∈ {0, 1} for 1 ≤

i ≤ n + l − 1 and an+l = 1
}

. Clearly, |L21| = 2n+l−1. Now we construct a
new set L22 as follows: Let a1s1 + · · · + an+lsn+l + sn+r ∈ L21. Take the least
index m for which am = 1, add an element b1s1 + · · · + bn+lsn+l + sn+r in
L22 with bm = 2 and bj = aj for all j 6= m. Clearly, |L22| = 2n+l−1. Note
that El is the disjoint union of L21 and L22. Hence, |El| = 2n+l. Thus we

get, |F2| =
r−2
∑

l=0

|El| + 1 − 3 =
r−2
∑

l=0

2n+l − 2 = 2n+r−1 − 2n − 2. Therefore,

|F | = |F1|+ |F2| = 2n+r−1 + 2n+r−1 − 2n − 2 = 2n+r − 2n − 2. ⊓⊔

Theorem 5. Let n > 2 be an integer. Then

Ap(P2r+1(n), s0) = {a1s1 + · · ·+ an+rsn+r | (a1, . . . , an+r) ∈ P (r, n)} \ F.

Proof. Let P ′(r, n) = {a1s1 + · · · + an+rsn+r | (a1, . . . , an+r) ∈ P (r, n)} \ F .
Now from Lemma 7 and Lemma 9, it is clear that Ap(P2r+1(n), s0) ⊆ P ′(r, n)).
Note that from Lemma 6 and Lemma 10, we have

|P ′(r, n)| = 2n+r+1 − 1− (2n+r − 2n − 2) = s0 = |Ap(P2r+1(n), s0)|.

Thus, Ap(P2r+1(n), s0) = {a1s1+· · ·+an+rsn+r | (a1, . . . , an+r) ∈ P (r, n)}\
F . ⊓⊔
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4 The Frobenius Problem

In this section, we give the formula for the Frobenius number of the Proth
numerical semigroup P2r+1(n) for all r ≥ 1. We recall Lemma 4 from Section 3.

Let us begin with some preliminary lemmas.

Lemma 11. Let s ∈ P2r+1(n) such that s 6≡ 0(mod s0), then s+ 1 ∈ P2r+1(n).
Moreover, w(i + 1) ≤ w(i) + 1 for 1 ≤ i ≤ s0 − 1.

Proof. Since s ∈ P2r+1(n), there exist a0, . . . , an+r ∈ N such that s = a0so +
· · · + an+rsn+r. If s 6≡ 0(mod s0) then there exist i ∈ {1, . . . , n + r} such that
ai 6= 0 and we get, s+ 1 = a0s0 + · · ·+ (ai − 1)si + · · ·+ an+rsn+r + si + 1.

Now, si + 1 = k2n+i + 1 + 1 = 2kn+i−1 + 2 = 2si−1. Hence, s + 1 =
a0so + · · ·+ (ai−1 + 2)si−1 + (ai − 1)si + · · ·+ an+rsn+r ∈ P2r+1(n).

Moreover, by definition, w(i) 6≡ 0(mod s0) for 1 ≤ i ≤ s0−1. Thus, w(i)+1 ∈
P2r+1(n). Now, w(i) + 1 ≡ i + 1(mod s0). As w(i + 1) is the least element of
P2r+1(n) which is congruent with i+1 modulo s0, we get w(i+1) ≤ w(i)+1. ⊓⊔

Lemma 12. Let n > 2 be an integer. Then

1. w(2) = s1 + sn + sn+r;
2. w(1) = 2s1 + sn + sn+r. Moreover, w(1)− w(2) = s1.

Proof. (1) Consider

s1 + sn + sn+r − 2 =(2r + 1)2n+1 + 1 + (2r + 1)2n+n + 1 + (2r + 1)2n+n+r − 1

=2 · (2r + 1)2n + (2r + 1)22n(2r + 1) + 1

=(2r + 1) · 2n + 1)2 = s20.

Therefore, s1+sn+sn+r ≡ 2(mods0). From Lemma 5 we have, s1+sn+sn+r ∈
Ap(P2r+1(n), s0). Thus, w(2) = s1 + sn + sn+r.
(2) Note that from (1) we have s1 + sn + sn+r − 2 = s20. Now

2s1 + sn + sn+r − 1 =s1 + sn + sn+r + 2(2r + 1)2n + 1− 1

=s1 + sn + sn+r − 2 + 2s0 = s20 + 2s0.

Therefore, 2s1+sn+sn+r ≡ 1(mods0). Again From Lemma 5 we have, 2s1+sn+
sn+r ∈ Ap(P2r+1(n), s0). Thus, w(1) = 2s1+sn+sn+r. Clearly, w(1)−w(2) = s1.

⊓⊔

The next Lemma is due to Selmer [25] gives us the relation among the Frobe-
nius number and Apéry Set.

Lemma 13. ([25], Proposition 5 in [2]) Let S be a numerical semigroup and let
n be a non-zero element of S. Then F(S) = max(Ap(S, n))− n.

Lemma 14. Under the standing notation, we have

w(1) = max(Ap(P2r+1(n), s0)).
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Proof. From Lemma 11, w(i + 1) ≤ w(i) + 1, for 1 ≤ i ≤ s0 − 1. Thus, we get
w(3) ≤ w(2) + 1, w(4) ≤ w(3) + 1 ≤ w(2) + 2. In general, for 3 ≤ j ≤ s0 − 1, we
have w(j) ≤ w(2) + (j − 2). Since w(1)− w(2) = s1, we get w(j) ≤ w(1)− s1 +
(j−2) = w(1)− (s1− (j−2)) < w(1) as s1− (j−2) > 0. Therefore, w(1) ≥ w(i)
for 0 ≤ i ≤ s0 − 1 and w(1) = max(Ap(P2r+1(n), s0)). ⊓⊔

Thus, from Lemma 13 and 14 we obtain the following formula for the Frobe-
nius number of P2r+1(n).

Theorem 6. Let n > 2 be a positive integer. Then F(P2r+1(n)) = 2s1 + sn +
sn+r − s0.

Next we define the genus of a numerical semigroup.

Definition 2. Let S be a numerical semigroup then the set N \ S is called set
of gaps of S and its cardinality is said to be genus of S denoted by g(S).

Remark 2. It is well known that (see Lemma 3 in [2]), g(S) ≥ F(S)+1
2 .

Corollary 1. Let n > 2 be a positive integer. Then, g(P2r+1(n)) ≥ k(2n+1 +
22n−1 + 22n+r−1 − 2n−1) + 2.

5 Pseudo-Frobenius Numbers and Type

Our purpose in this section is to give the pseudo-Frobenius set and the formula
for the type of the Proth numerical semigroup P2r+1(n) for all r ≥ 1. Let us
recall the definition of pseudo-Frobenius numbers.

Let S be a numerical semigroup. An integer x is a pseudo-Frobenius number
of S if x ∈ Z \ S and x+ s ∈ S for all s ∈ S \ {0}.

Consider the following relation on the set of integers Z: a ≤S b if b − a ∈ S.
Note that this relation is an order relation i.e., it is reflexive, transitive and anti-
symmetric (see [18]). The next lemma characterizes pseudo-Frobenius numbers
in terms of the Apéry set using the relation defined above.

Lemma 15. (Proposition 2.20 in [18]) Let S be a numerical semigroup and let
n be a nonzero element of S. Then

PF(S) = {w − n | w ∈ maximals≤S(Ap(S, n)}.

Remark 3. [22] If w,w′ ∈ Ap(S, x), then w′ − w ∈ S if and only if w′ − w ∈
Ap(S, x). Hence maximal≤S

(Ap(S, x)) =
{

w ∈ Ap(S, x) | w′ − w /∈ Ap(S, x) \

{0} for all w′ ∈ Ap(S, x)
}

.

Let n > 2 be an integer. We define the set X as follows: X = {(a1, . . . , an+r) |
a1s1 + · · ·+ an+rsn+r ∈ F}. Let us consider M(n) = P (r, n) \X . It is clear that
maximal elements in M(n) (with respect to the product order) are

•(2, 1, . . . , 1, 1, 0), . . . , (0, . . . , 0,

r
↓

2, 1, . . . , 1, 0), . . . , (0, . . . , 0, 2, 0);
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•(2, 1, . . . ,

n−1
↓

1 , 0, . . . , 0, 1), . . . , (0, . . . , 0, 2,

n−1
↓

1 , 0, . . . , 0, 1);

•(0, . . . , 0,

n−1
↓

2 , 0, . . . , 0, 1), (2, 0, . . . , 0,

n
↓

1, 0, . . . , 0, 1).
As a consequence of Theorem 5, we get the following lemma.

Lemma 16. Under the standing notation, we have
maximal≤P2r+1(n)(Ap(P2r+1(n), s0)) = maximal≤P2r+1(n)

{

{2si+si+1+· · ·+
sn+r−1 | 1 ≤ i ≤ n + r − 1} ∪ {2sj + sj+1 + · · · + sn−1 + sn+r | 1 ≤ j ≤
n− 2} ∪ {2sn−1 + sn+r, 2s1 + sn + sn+r}

}

.

We are now already to give the main result of this section.

Theorem 7. Let n > 2 be an integer and let P2r+1(n) be the Proth numerical
semigroup associated to n. Then maximal≤P2r+1(n)(Ap(P2r+1(n), s0)) = {2si +
si+1 + · · · + sn+r−1 | 1 ≤ i ≤ r} ∪ {2sj + sj+1 + · · · + sn−1 + sn+r | 1 ≤ j ≤
n− 2} ∪ {2s1 + sn + sn+r}.

Proof. Let i ∈ {r + 1, ..., n+ r − 1}, then

2si + si+1 + · · ·+ sn−1 + sn+r − (2sr+i + sr+i+1 + · · ·+ sn + sn+r−1)

= k2n+i + k2n+i(2r − 1) + r + k22n+r + 2− (k22n(2r − 1) + r + k2n+r+i + 1)

= (k22n + 1) = sn.

Also, 2s1 + sn + sn+r − (2sn−1 + sn+r) = 2s1 + k2n + 1− 2(k2n−1 + 1) = s2.
Hence, we get 2sr+i+ sr+i+1 + · · ·+ sn+ sn+r−1 ≤P2r+1(n) 2si+ si+1 + · · ·+

sn−1 + sn+r for i ∈ {r+ 1, ..., n+ r− 1} and 2sn−1 + sn+r ≤P2r+1(n) 2s1 + sn +
sn+r. From Lemma 16 we obtain that maximal≤P2r+1(n)(Ap(P2r+1(n), s0)) =

maximal≤P2r+1(n)

{

{2si + si+1 + · · ·+ sn+r−1 | 1 ≤ i ≤ r} ∪ {2sj + sj+1 + · · ·+

sn−1 + sn+r | 1 ≤ j ≤ n− 2} ∪ {2s1 + sn + sn+r}
}

.
Consider a set L1 = {pi = 2si + si+1 + · · · + sn+r−1 | 1 ≤ i ≤ r} and

L2 = {qj = 2sj + sj+1 + · · ·+ sn−1 + sn+r | 1 ≤ j ≤ n− 2}. Take L = L1 ∪L2 ∪
{2s1 + sn + sn+1}. We show that L = maximal≤P2r+1(n)(Ap(P2r+1(n), s0)).

Thus, to conclude the proof, it is enough to show that, for any x, y ∈ L,
x 6≤P2r+1(n) y.

Let pi, pi+1 ∈ L1, then

pi+1 − pi = 2si+1 + si+2 + · · ·+ sn+r−1 − (2si + si+1 + · · ·+ sn+r−1)

= −2si + si+1 = −1.

Thus, the difference between any two element of L1 is smaller than r < s0.
Which implies that pi 6≤P2r+1(n) pj for any 1 ≤ i, j ≤ r and i 6= j.

Similarly, one can check that for qi, qi+1 ∈ L2, qi+1−qi = −1 and qi 6≤P2r+1(n)

qj for any 1 ≤ i, j ≤ n− 2 and i 6= j.
Let pi ∈ L1 and qj ∈ L2. Note that, q1 − p1 = sn+r − (sn + · · ·+ sn+r−1) =

k22n+1−r. Now consider qj−pi = q1−(j−1)−(p1−(i−1)) = q1−p1−(j−i) =
k22n + 1− r − j + i.
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Suppose that k22n+1−r−j+i ∈ P2r+1(n), then there exists λ0, λ1, ..., λn+r ∈
N such that

k22n + 1− r − j + i = λ0s0 + λ1s1 + · · ·+ λn+rsn+r

= (λ0 + · · ·+ λn+r) + k2n(λ0 + 2λ1 + · · ·+ 2n+rλn+r).

We get, (λ0 + · · ·+ λn+r) = 1− r− j+ i ≤ 0 which is a contradiction as λi ∈ N.
Thus, qj − pi /∈ P2r+1(n) and hence pi 6≤P2r+1(n) qj for 1 ≤ i ≤ r, 1 ≤ j ≤ n− 2.
Now consider,

2s1 + sn + sn+r − pi = 2s1 + sn + sn+r − (p1 − (i− 1))

= −s2 − · · · − sn−1 − sn+1 − · · · − sn+r−1 + sn+r + i− 1

= (k2n+2 − (n− 3)) + k22n − r + 1 + (i− 1)

= k2n(4 + 2n)− n− r + 3 + i.

If possible suppose that k22n + k2n+2 − n − r + 3 + i ∈ P2r+1(n), then there
exists λ0, λ1, ..., λn+r ∈ N such that

k2n(4 + 2n)− n− r + 3 + i = λ0s0 + λ1s1 + · · ·+ λn+rsn+r

= (λ0 + · · ·+ λn+r) + k2n(20λ0 + · · ·+ 2n+rλn+r).

We get, (λ0 + · · · + λn+r) = −(n + r − 3 − i) ≤ 0, which is a contradiction as
λi ∈ N. Therefore, pi 6≤P2r+1(n) 2s1 + sn + sn+r for 1 ≤ i ≤ r.

Similarly, it is clear that 2s1+sn+sn+r−qj = k2n+2+(j−n+2) /∈ P2r+1(n).
Therefore, qj 6≤P2r+1(n) 2s1 + sn + sn+r for 1 ≤ j ≤ n− 2.

Hence, difference between any two elements of L do not belongs to P2r+1(n).
Thus, from Remark 3, we have L = maximal≤P2r+1(n)(Ap(P2r+1(n), s0)). ⊓⊔

By applying Lemma 15 and Theorem 7 we obtained the following theorem.

Theorem 8. Let n > 2 be an integer and let P2r+1(n) be the Proth numerical
semigroup. Then

PF(P2r+1(n)) = {2si+ si+1 + · · ·+ sn+r−1 − s0 | 1 ≤ i ≤ r}∪ {2sj + sj+1 +
· · ·+ sn−1 + sn+r − s0 | 1 ≤ j ≤ n− 2} ∪ {2s1 + sn + sn+r − s0}
and t(P2r+1(n)) = |PF(P2r+1(n)| = r + n− 1.

6 Wilf’s Conjecture

In this section, we prove that the Proth numerical semigroup P2r+1(n) supports
Wilf’s conjecture. Let us begin with the statement of Wilf’s conjecture.

Conjecture 1. [31] Let S be a numerical semigroup, and ν(S) = |{s ∈ S | s ≤
F(S)}|, then

F(S) + 1 ≤ e(S)ν(S),

where e(S) is the embedding dimension of S and F(S) is the Frobenius number
of S.
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Lemma 17. (Corollary 5 in [2]) Let S be a numerical semigroup. We have
F(S) + 1 ≤ (t(S) + 1)ν(S).

From the previous lemma we obtain the following theorem.

Theorem 9. The Proth numerical semigroup P2r+1(n) satisfies Wilf ’s conjec-
ture.

Proof. Recall that e(P2r+1(n)) = n+ r + 1 and from Lemma 17

F(P2r+1(n)) + 1 ≤ (t(P2r+1(n)) + 1) ν(P2r+1(n))

= (n+ r) ν(P2r+1(n))

< (n+ r + 1) ν(P2r+1(n))

= e(P2r+1(n)) ν(P2r+1(n).

⊓⊔

7 Conclusion

In this work, we obtained the formula for the embedding dimension of the Proth
numerical semigroup Pk(n). As a main result, we solved the Frobenius problem
for P2r+1(n). Moreover, we also attained the pseudo-Frobenius set and the type
of P2r+1(n). We concluded the paper by examining that P2r+1(n) supports Wilf’s
conjecture. The following is an immediate open question to investigate: Is there a
formula to find the Frobenius number and other invariants of the Proth numerical
semigroup Pk(n) for arbitrary k?
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