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Abstract. The key to dynamic or multi-contrast magnetic resonance
imaging (MRI) reconstruction lies in exploring inter-frame or inter-
contrast information. Currently, the unrolled model, an approach com-
bining iterative MRI reconstruction steps with learnable neural network
layers, stands as the best-performing method for MRI reconstruction.
However, there are two main limitations to overcome: firstly, the unrolled
model structure and GPU memory constraints restrict the capacity of
each denoising block in the network, impeding the effective extraction of
detailed features for reconstruction; secondly, the existing model lacks the
flexibility to adapt to variations in the input, such as different contrasts,
resolutions or views, necessitating the training of separate models for each
input type, which is inefficient and may lead to insufficient reconstruction.
In this paper, we propose a two-stage MRI reconstruction pipeline to ad-
dress these limitations. The first stage involves filling the missing k-space
data, which we approach as a physics-based reconstruction problem. We
first propose a simple yet efficient baseline model, which utilizes adjacent
frames/contrasts and channel attention to capture the inherent inter-
frame/-contrast correlation. Then, we extend the baseline model to a
prompt-based learning approach, PromptMR, for all-in-one MRI recon-
struction from different views, contrasts, adjacent types, and acceleration
factors. The second stage is to refine the reconstruction from the first stage,
which we treat as a general video restoration problem to further fuse fea-
tures from neighboring frames/contrasts in the image domain. Extensive
experiments show that our proposed method significantly outperforms
previous state-of-the-art accelerated MRI reconstruction methods.

Keywords: MRI reconstruction · Prompt-based learning · Dynamic ·
Multi-contrast · Two-stage approach

1 Introduction

Cardiovascular disease, including conditions such as coronary artery disease, heart
failure, and arrhythmias, remains the leading cause of death globally. Cardiac
magnetic resonance (CMR) imaging is the most accurate and reliable non-invasive
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technique for accessing cardiac anatomy, function, and pathology [13]. In the field
of accelerated MR imaging (MRI) reconstruction, unrolled networks have achieved
state-of-the-art performance. This is attributed to their ability to incorporate
the known imaging degradation processes, the undersampling operation in k-
space, into the network and to learn image priors from large-scale data [16,2]. As
transformers have become predominant in general image restoration tasks [18,9],
there is a noticeable trend towards incorporating transformer-based denoising
blocks into the unrolled network [2], which enhances reconstruction quality.
However, the adoption of transformer blocks concurrently increases the network
parameters and computational complexity. The stacking of denoising blocks, in
an unrolled manner, further exacerbates this complexity, making the network
training challenging. Therefore, one challenging question is how to design efficient
denoising blocks within an unrolled model while fully leveraging the k-space
information. Another challenge arises from the versatility of MRI, which enables
the acquisition of multi-view, multi-contrast, multi-slice, and dynamic image
sequences, given specific clinical demands. While there is a prevailing trend
towards designing all-in-one models for natural image restoration [7,12], existing
MRI reconstruction models cannot offer a unified solution for diverse input types.
We thus endeavor to address these challenges with the following contributions:

• Firstly, we propose a simple yet efficient convolution-only baseline model for
MRI reconstruction, which outperforms previous state-of-the-art methods
on two public multi-coil MRI reconstruction tasks, the CMRxRecon and
fastMRI knee image reconstruction.

• Then, by extending our baseline model with prompt-based learning, we are the
first to propose an all-in-one approach, PromptMR, for multi-view/-contrast
and dynamic MRI reconstruction.

• Lastly, we extend our approach to address the capacity limitations of unrolled
models, by proposing a two-stage MRI reconstruction pipeline. In the first
stage we solve a physics-based inverse problem in k-space domain to fill the
missing k-space data, and in the second stage we solve a video restoration
problem in the image domain to further refine the MRI reconstruction.

2 Preliminaries

Consider reconstructing a complex-valued MR image x from the multi-coil
undersampled measurements y in k-space, such that,

y = Ax+ ϵ, (1)

where A is the linear forward complex operator which is constructed based
on multiplications with the sensitivity maps S, application of the 2D Fourier
transform F , while it under-samples the k-space data with a binary mask M ;
ϵ is the acquisition noise. According to compressed sensing theory [1], we can
estimate x by formulating an optimization problem:

min
x

1

2
||y −Ax||22 + λR(x), (2)
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Stage I 
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Stage II 
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Fig. 1: The proposed two-stage MRI reconstruction pipeline. The first stage solves
a physics-based inverse problem to fill the missing k-space data, which are then
transformed to the image domain by the inverse Fast Fourier Transformation
(IFFT) and root-sum-of-squares (RSS) is applied to get the first-stage recon-
structed image. The second stage solves a general denoising problem to further
refine the image reconstruction result.

where ||y −Ax||22 is the data consistency term, R(x) is a sparsity regularization
term on x (e.g., total variation) and λ is a hyper-parameter which controls the
contribution weights of the two terms. E2E-VarNet [16] solves the problem in
Eq. 2 by applying an iterative gradient descent method in the k-space domain.
In the t-th step, the k-space is updated from kt to kt+1 using:

kt+1 = kt − ηtM(kt − y) +G(kt), (3)

where ηt is a learned step size and G is a learned function representing the gradient
of the regularization term R. We can unroll the iterative updating algorithm to
a sequence of sub-networks, where each cascade represents an unrolled iteration
in Eq. 3. The regularization term is applied in the image domain:

G(k) = F (E(D(R(F−1(k))))), (4)

where R(x1, ..., xN ) =
∑N

i=1 Ŝ
∗
i xi is the reduce operator that combines N coil

images {xi}Ni=1 via estimated sensitivity maps {Ŝi}Ni=1, Ŝ∗
i is the complex conju-

gate of Ŝi, and E(x) = (Ŝix, ..., ŜNx) is the expand operator that computes coil
images from image x. Therefore, the linear forward operator A is computed as
A = MFE . D is a denoising neural network used to refine the complex image.
Ŝ = SME(yACS) is computed by a sensitivity map estimation (SME) network
from the low-frequency region of k-space yACS, called the Auto-Calibration Signal
(ACS), which is typically fully sampled. The final updated multi-coil k-space is
converted to the image domain by applying an inverse Fourier transform followed
by a root-sum-of-squares (RSS) method reduction [14] for each pixel.
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Fig. 2: Overview of PromptMR in Stage I: an all-in-one unrolled model for MRI
reconstruction. Adjacent inputs, depicted in image domain for visual clarity,
provide neighboring k-space information for reconstruction. To accommodate
different input varieties, the input-type adaptive visual prompt is integrated into
each cascade of the unrolled architecture to guide the reconstruction process.

3 Method

We propose a two-stage pipeline for dynamic and multi-contrast MRI reconstruc-
tion, as shown in Fig. 1. Below, we give more details of each stage.

3.1 Stage I: Filling the K-Space

The center of the k-space preserves image contrast, and the periphery of the
k-space contains edge information. In the first stage, we fill the missing k-space
data constrained by the existing k-space acquisition and learned image priors.

Baseline Model We follow the implementation of E2E-VarNet [16] to construct
an unrolled model in Stage I. Inspired by the adjacent slice reconstruction (ASR)
method [2], which learns inter-slice information by jointly reconstructing a set
of adjacent slices instead of relying on a single k-space to be reconstructed,
we devise the following new method. We generalize ASR to adjacent k-space
reconstruction along any dimension, e.g., temporal/slice/view/contrast dimension,
and the updating formula of Eq. 3 is improved as follows:

kt+1
adj = ktadj − ηtA(ktadj − yadj) +G(ktadj), (5)

where ktadj = [ktc−a, ..., k
t
c−1, k

t
c, k

t
c+1, ..., k

t
c+a] is the concatenation of the central

k-space ktc with its 2a adjacent k-spaces along a specific dimension. To efficiently
extract features from adjacent inputs, we design a Unet-style network [15] with
channel attention [3,4], namely CAUnet, for both the denoising network D and
the sensitivity map estimation network, as shown in Appendix A.1. The CAUnet
has a 3-level encoder-decoder structure. Each level consists of a DownBlock,
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Fig. 3: Overview of the PromptUnet architecture in PromptMR, featuring a
3-level encoder-decoder design. Each level comprises a DownBlock, UpBlock and
PromptBlock. The PromptBlock in the i-th level encodes input-specific context
into fixed prompt Pi, producing adaptively learned prompt P̂i. These prompts,
across multiple levels, integrate with decoder features Fd,i in the UpBlocks to
allow rich hierarchical context learning.

UpBlock, and corresponding skip connection. The architecture integrates a
BottleneckBlock for high-level semantic feature capturing and employs Channel
Attention Blocks (CABs) within each block. The overall unrolled architecture is
shown in Appendix A.2.

PromptMR Considering various image types (e.g., different views, different
contrasts) with different adjacent types (e.g., dynamic, multi-contrast) under
different undersampling rates (e.g., ×4,×8,×10), instead of training separate
models for each specific input, we propose to learn an all-in-one unified model for
all possible adjacent inputs. The image structure remains consistent for multi-
contrast adjacent input, while only the contrast varies. Conversely, the contrast
remains constant for dynamic adjacent input, but the image structure shifts. To
achieve effective performance on diverse input types, the unified model should
be able to encode the contextual information conditioned on the input type.
Inspired by the recent development of visual prompt learning [5,6] and prompt
learning-based image restoration method [12], we introduce PromptMR, an all-in-
one approach for MRI reconstruction, as illustrated in Fig. 2. While PromptMR
retains the same unrolled architecture of the basline model, it extends CAUnet to
PromptUnet by integrating PromptBlocks to learn input-type adaptive prompts
and then interact with decoder features in the UpBlocks at multiple levels, to
enrich the input-specific context, as shown in Fig. 3. The PromptBlock at i-th
level takes features Fd,i ∈ RHf×Wf×Cf from the decoder and Np-components
fixed prompt Pi ∈ RNp×Hp×Wp×Cp as input. Then, Fd,i are processed by a global
average pooling (GAP) layer, followed by a linear layer and a softmax layer to
generate the normalized prompt weights {ωij}

Np

j=1. These weights linearly combine
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the Np prompt components as
∑Np

j=1 ωijPij , which is then interpolated to match
the spatial dimension of Fd,i, before going through a 3× 3 convolution layer to
generate the input-type adaptive prompt P̂i. The process in the PromptBlock
can be summarized as:

P̂i = Conv3×3(Interp(
∑Np

j=1 ωijPij)), ωi = Softmax(Linear(GAP(Fd,i))) (6)

The generated prompts by the PromptBlocks at multiple levels can learn hier-
archical input-type contextual representations, which are integrated with the
decoder features to guide the all-in-one MRI reconstruction.

3.2 Stage II: Refining the Image

After the first stage, the missing k-space data has been filled, and image aliasing
artifacts have been largely removed. However, due to the unrolled nature and
memory limitations, the capability of the denoising block we can use is con-
strained, which may prevent the full exploration of dynamic and multi-contrast
information. In stage II, we further explore the inter-frame/-contrast coherence
in the image domain for multi-frame/-contrast feature aggregation by using a
powerful restoration model, ShiftNet [8], as the refinement network. This net-
work employs stacked Unets and grouped spatio-temporal shift operations to
expand the effective receptive fields. Details of the ShiftNet are not covered here,
since it is not the core part of this paper, and ShiftNet can be replaced by any
state-of-the-art video restoration model.

4 Experiments

In this section, we first provide experimental details and results of our proposed
method on the CMRxRecon dataset. We use SSIM, PSNR, and NMSE to compare
the performance of different reconstruction methods under various acceleration
factors (×4, ×8, ×10). Then, we conduct extensive ablation studies of our
proposed method and also benchmark on another large-scale MRI dataset, the
fastMRI multi-coil knee dataset. For experiments on fastMRI dataset, we refer
readers to the Appendix B.

4.1 CMRxRecon Dataset

The CMRxRecon Dataset [17] includes 120 cardiac MRI cases of fully sampled
dynamic cine and multi-contrast raw k-space data obtained on 3 Tesla magnets.
The dynamic cine images in each case include short-axis (SAX), two-chamber
(2-CH), three-chamber (3-CH), and four-chamber (4-CH) long-axis (LAX) views.
Typically 5 ∼ 10 slices were acquired for SAX cine, while a single slice was
acquired for each LAX view. The cardiac cycle was segmented into 12 ∼ 25
phases with a temporal resolution of 50 ms. The multi-contrast cardiac MRI
in each case is in the SAX view, which contains 9 T1-weighted (T1w) images
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conducted using a modified look-locker inversion recovery (MOLLI) sequence and
3 T2-weighted (T2w) images performed using T2-prepared FLASH sequence.

The shape of each k-space data is [time phases/contrasts, slices, coils, readouts,
phase encodings]. All data were compressed into 10 virtual coils. We splited the
cases in an 8 : 2 ratio, resulting in 14, 964 dynamic images and 6, 516 multi-
contrast images for training, and 2, 940 dynamic images and 1, 272 multi-contrast
images for testing.

4.2 Results

We assessed the performance of our proposed baseline model, PromptMR, and
two-stage reconstruction pipeline using the CMRxRecon dataset. In the first
stage, we compared the E2E-VarNet [16] and HUMUS-Net-L [2] with our baseline
in a one-by-one setup, in which we trained four separate models from scratch
for SAX/LAX/T1w/T2w reconstruction task, respectively. Then we compared
our PromptMR and PromptIR [12] in an all-in-one configuration. In the second
stage, we deployed ShiftNet to refine the images reconstructed by PromptMR.
In our experiment, we minimize the SSIM loss between the target image and
the reconstructed image; all unrolled models consist of 12 cascades, except for
HUMUS-Net-L, which only has 8 cascades due to its large parameter size; we
trained networks using AdamW [10] optimizer with a weight decay of 0.01 for 12
epochs; the learning rate was set as 2× 10−4 for the first 11 epochs and 2× 10−5

for the last epoch.
The results are shown in Table 1. Notably, our baseline model outperforms

E2E-VarNet and HUMUS-Net-L across all tasks. Moreover, our PromptMR
demonstrates significant enhancement in the all-in-one setup when compared to
the baseline model trained for individual tasks. PromptIR performs poorly due
to the fact that it is not tailored to account for the MRI forward model. The
refinement in the second stage offers a marginal boost to the SSIM, but provides
considerable improvements for NMSE and PSNR. The qualitative results are
shown in Fig. 4. More qualitative comparisons can be found in Appendix C.
These qualitative comparisons show that our method can recover more finer
details for small anatomical structures on the reconstructed images.

4.3 Ablation Study

Single MRI Reconstruction Task We started with an ablation study on two
single MRI reconstruction tasks, dynamic cine SAX image reconstruction and
multi-contrast T1-weighted image reconstruction, both under ×10 acceleration,
to investigate the impact of adjacent reconstruction and prompt module in
the proposed PromptMR. We changed the number of adjacent images to 1, 3,
and 5, where ‘1’ indicates the absence of adjacent input. The results, shown in
Table 2, underscore the utility of incorporating adjacent input to enhance the
reconstruction quality. Moreover, the inclusion of PromptBlocks proves beneficial
for individual MRI reconstruction tasks.
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Table 1: Comparison of NMSE(×10−2)/PSNR/SSIM of different MRI reconstruc-
tion methods on CMRxRecon dataset under ×10 acceleration. The best and
second best results are highlighted in red and blue colors, respectively.

Stage Task Method Cine Mapping
SAX LAX T1w T2w

I
One-by-One

E2E-Varnet [16] 1.6/42.05/0.9744 2.1/39.93/0.9673 1.5/43.12/0.9800 1.4/41.20/0.9777
HUMUS-Net-L [2] 1.3/42.96/0.9791 2.0/40.07/0.9689 1.3/43.85/0.9832 1.1/42.39/0.9824
Baseline (Ours) 1.1/43.68/0.9814 1.9/40.38/0.9705 1.2/44.14/0.9839 0.9/43.12/0.9845

All-in-One PromptIR [12] 2.5/40.16/0.9659 2.7/38.62/0.9581 2.3/41.10/0.9726 1.4/41.10/0.9784
PromptMR (Ours) 1.1/45.58/0.9865 1.2/43.72/0.9836 1.0/46.84/0.9899 0.7/46.24/0.9903

II PromptMR+ShiftNet [8] 0.7/45.63/0.9866 0.9/43.76/0.9837 0.7/47.04/0.9903 0.5/46.33/0.9905

Zero filled E2E-VarNet Baseline PromptIR PromptMR PromptMR+ShiftNet Ground truthHUMUS-Net

Fig. 4: The reconstruction results and absolute error maps of different methods for
LAX 2-CH cine image of case P101 under ×10 acceleration factors. The bottom
two rows show the zoomed area. Red arrows show the difference in recovery of
the mitral valve structure for different reconstruction methods.

All-In-One MRI Reconstruction Task To investigate the impact of the
PromptBlock in the all-in-one MRI reconstruction task, we trained both our
baseline and PromptMR model using all possible input data in the CMRxRecon
dataset. As depicted in Table 3, the integration of the PromptBlock into our
baseline model enables PromptMR to achieve significant improvements across
all individual reconstruction tasks. We also used t-SNE [11] to visualize the
learned prompts in the 12-th cascade at multiple decoder levels from different
types of data in the test set. Fig. 5 shows that the prompts can learn to encode
discriminative information for different input types at lower levels.
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Table 2: Impact of the adjacent input number and the PromptBlock in PromptMR
for two single MRI reconstruction tasks: dynamic cine SAX and multi-contrast
T1-weighted (T1w) reconstruction under ×10 acceleration.

# of adj PromptBlock SAX T1w
PSNR/SSIM PSNR/SSIM

1 ✓ 43.19/0.9798 44.36/0.9845
3 ✓ 43.96/0.9822 44.78/0.9856
5 ✓ 43.87/0.9820 44.75/0.9856
5 ✗ 43.68/0.9814 44.14/0.9839

Table 3: Impact of PromptBlock in all-in-one task. Results are reported on the
CMRxRecon dataset under ×10 acceleration.

Method SAX LAX T1w T2w
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Baseline (Ours) 43.97/0.9825 42.11/0.9786 44.90/0.9862 44.45/0.9874
PromptMR (Ours) 45.58/0.9865 43.72/0.9836 46.84/0.9899 46.24/0.9903

Level 3, cascade 12 Level 2, cascade 12 Level 1, cascade 12

Fig. 5: Visualization of the learned prompts at each decoder level in the 12-th
cascade in PromptMR using t-SNE.

5 Conclusion

In this work, we introduce a robust baseline model for MRI reconstruction that
utilizes neighboring information of adjacent k-space. To accommodate various
input types, adjacent configurations, and undersampling rates within a unified
model, we enhance our baseline with prompt-based learning blocks, creating an
all-in-one MRI reconstruction model, PromptMR. Finally, to overcome the
model capacity constraints of unrolled architectures, we propose a second stage
of image refinement to delve deeper into the adjacent information, which is
particularly useful when immediate reconstruction latency is not a priority.
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Appendix

A Details of the Baseline Model

A.1 CAUnet
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Fig. A.1: Overview of the CAUnet architecture in the proposed baseline model.

A.2 Unrolled model architecture

Reduce operator

Expand operator

Sensitivity map estimation networkFourier transform

Inverse fourier transform
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DC
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Denoising network

ACS Auto-calibration signal

Learned step size

Cascade 1 Cascade Cascade RSS...

SME
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...

...
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DC
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Fig. A.2: Overview of the unrolled model architecture for both our baseline model
and PromptMR. The primary distinction is in the denoiser D and sensitivity map
estimation (SME) networks: the baseline employs CAUnet, whereas PromptMR
utilizes PromptUnet. Each cascade represents an updating step in Eq. 5 in the
main text. The red module indicates the learnable part in the unrolled model.
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B Experiments on FastMRI Multi-Coil Knee Dataset

Benchmark on FastMRI Multi-Coil Knee Dataset To assess the perfor-
mance of our proposed method across different anatomies, we benchmarked it
on another large-scale MRI reconstruction dataset, the fastMRI multi-coil knee
dataset [19]. Since the online evaluation platform for the fastMRI test set is
unavailable1, we divided the original 199 validation cases into 99 for validation
and 100 for testing. The results of other methods are reported using their officially
pretrained models. As presented in Table B.1, our models outperform all previous
state-of-the-art methods, without significantly increasing the number of network
parameters compared to E2E-Varnet.

Table B.1: Performance of state-of-the-art accelerated MRI reconstruction tech-
niques on the fastMRI knee multi-coil ×8 test dataset. The best and second best
results are highlighted in red and blue colors, respectively.

Method # of params NMSE(×10−2)(↓) PSNR(↑) SSIM(↑)

E2E-Varnet [16] 30M 0.8690 ± 0.9279 37.30 ± 4.925 0.8936 ± 0.1157
HUMUS-Net [2] 109M 0.8974 ± 0.9743 37.20 ± 5.009 0.8946 ± 0.1162

HUMUS-Net-L [2] 228M 0.8587 ± 0.9930 37.45 ± 5.067 0.8955 ± 0.1161

Baseline (ours) 47.5M 0.8321 ± 0.9258 37.57 ± 5.143 0.8964 ± 0.1162
PromptMR (ours) 79.6M 0.8344 ± 0.9648 37.63 ± 5.319 0.8970 ± 0.1168

Effectiveness of Two-Stage Pipeline We employed ShiftNet to refine the
images reconstructed by the pretrained E2E-Varnet on the fastMRI multi-coil
knee test dataset with ×8 undersampling. Table B.2 shows that the second-stage
refinement substantially improves the reconstruction quality, which implies that
the multi-slice information in the fastMRI dataset might not be comprehensively
utilized by the single-stage unrolled model.

Table B.2: Effectiveness of the second-stage image refinement on the fastMRI
knee multi-coil ×8 test dataset.
Stage Method # of params NMSE(×10−2)(↓) PSNR(↑) SSIM(↑)

I E2E-Varnet [16] 30M 0.8690 ± 0.9279 37.30 ± 4.925 0.8936 ± 0.1157

II ShiftNet [8] 2M 0.8415 ± 0.9131 37.46 ± 4.973 0.8953 ± 0.1157

1 https://github.com/facebookresearch/fastMRI/discussions/293

https://github.com/facebookresearch/fastMRI/discussions/293
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C Additional Qualitative Results on CMRxRecon Dataset
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Fig.C.1: Visual comparison of reconstructions from the CMRxRecon dataset
with ×10 acceleration. PromptMR can recover fine details (highlighted in red
box) on reconstructed images that other state-of-the-art methods may miss.


