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Abstract. The seL4 microkernel is currently the only kernel that has
been fully formally verified. In general, the increased interest in ensuring
the security of a kernel’s code results from its important role in the en-
tire operating system. One of the basic features of an operating system
is that it abstracts the handling of devices. This abstraction is repre-
sented by device drivers - the software that manages the hardware. A
proper verification of the software component could ensure that the de-
vice would work properly unless there is a hardware failure. In this paper,
we choose to model the behavior of a device driver and build the proof
that the code implementation matches the expected behavior. The proof
was written in Isabelle/HOL, the code translation from C to Isabelle was
done automatically by the use of the C-to-Isabelle Parser and AutoCor-
res tools. We choose Isabelle theorem prover because its efficiency was
already shown through the verification of seL4 microkernel.

Keywords: formal verification · operating systems · secure systems

1 Introduction

The kernel is a crucial component of the system, and direct access to hardware
resources leads to an increased risk if a malfunction occurs. In our case, seL4 was
designed as a microkernel in order to reduce the impact of software problems to
the system’s functionalities.

The main topic of interest in the analysis of the seL4 microkernel is the way
to prove the functional correctness through the Isabelle/HOL theorem prover.
The methods applied in system verification are more powerful and accurate than
automated verification techniques such as model checking, static analysis, or de-
ploying the entire kernel in a type-safe language. This method of proving in
Isabelle all the critical properties of the systems allows the analysis of specific
aspects such as exploring the branches of execution of safe scenarios (safe exe-
cution), but also a set of specifications and proofs of kernel behavior reaching
the analysis of implementation in C of the kernel for the ARM platform.

In this paper we investigate the process of adapting and applying the seL4
verification process for verify parts of another operating system and present a
concrete case for the octrng(4) driver for the Octeon/MIPS64 platform provided
by the OpenBSD operating system.

http://arxiv.org/abs/2311.03585v1
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Outline. In Section 2 we introduce the necessary seL4 concepts which, to-
gether with the methodology from Section 3 regarding the translation of C code
to Isabelle theorem prover, allow us to present the verification of the OpenBSD
driver in Section 4. In Section 5 we conclude with limitations and future research.

2 SeL4 verification structure

SeL4 [9] is part of the L4 family - along with other implementations that share
the same L4 interface: Pistachio [11], Fiasco [10] or Hazelnut [3]. The proofs
that underlie the verification of seL4 system are in the form of Hoare structures
that have in their center a code component or whole functions. The difficulty
of verifying the seL4 micro-kernel lies in formulating pre-conditions and post-
conditions that accurately represent security properties that it must meet. At
the same time, the formal representation must be as close as possible to the
structure and functionalities implemented in the source code. Although work to
implement its proofs was started in 2009 formal proofs of the kernel are still
maintained up to date with publicly available source code.

A key aspect of the design of a microkernel and the properties of the C code
in relation to the form of their verification is the separation of kernel functions
calls in two phases [8]: verification and execution. The verification phase can be
understood as a stage of validation of the preconditions: the input data and the
permissions on the actions to be performed are verified. The execution consists
in the actual running of the system function, benefiting from its verification
because the preconditions have already been verified in the previous phase.

Note that in the verification phase the system status is not changed otherwise
this separation would no longer be relevant. This brings a valuable advantage in
the verification process because it simplifies the system call proof: execution will
not return an error if the verification phase has been completed successfully.

2.1 SeL4 memory management

SeL4 kernel memory allocation model transfers allocation control from kernel
space to applications that have this permission. Memory management permission
is represented by having a structure called capability [6]. As a consequence the
kernel heap memory can be precisely partitioned between applications: each
application has that part of the heap for which it has a capability that gives it
that authority. Separating heap memory is especially important for expressing
and demonstrating security properties (integrity and confidentiality).

The basic features of the kernel memory allocation model are as follows [8]:
allocation is explicit and is performed only when assigning a type (retype) to
an untyped memory area, allocation is strictly delimited by the specified free
memory kernel objects are not shared or reused

This memory management model leaves the responsibility for verifying secu-
rity policies outside the kernel. All that is left is to verify the correctness of the
memory allocation algorithm in the kernel. The properties of interest being that
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allocated objects are within the corresponding areas of free memory and that
memory regions allocated to objects do not overlap.

Memory allocation capabilities can be transferred between the kernel compo-
nents. Transfers are represented as a tree in which the capabilities are the nodes
of the tree. Freeing memory is done in two steps that invalidate all references to
that region: search for all the capabilities for which access rights are granted on
the memory object and then delete all these capabilities and mark the memory
region as free. For the first stage, the capability transfer tree is used to find and
invalidate all capabilities that allow permissions on the memory region. In the
second stage, it is verified through the same tree that there are no references in
other objects or global references to the area to be released.

2.2 Memory access verification

Memory access is an interesting topic in order to model as accurately as possible
the behavior of a C program. In Isabelle pointers are represented as a new type of
data, datatype a ptr = Ptr word32, which means that the pointer is represented
only by the 32-bit address it contains. Using this representation one can reason
about heap memory.
Here an important problem is raised when we pass from one pointer type to
another. For example, if we have two float and int pointers to the same address,
after we use one to change the value from the address to which it points, we
cannot be sure that the other has not been changed. To ensure that pointers of
different types point to different addresses, the Burstall-Bornat model is used as
a solution [2] where heap memory is separated into types. Thus each data type
has its own function that maps pointers to their values:

record state =
heap_int :: word32 → int
heap_float :: word32 → float
heap_intptr :: word32 → addr...

While this solves the issues mentioned above, it also renders type casts unus-
able. A memory area, once allocated, remains defined in the corresponding heap
memory section until it is released.

3 Methodology: C to Isabelle conversion

A key component of the formal check in seL4 is the bridge between C language
and the proofs in Isabelle [13]. This is also the most complex part of the proofs
because the semantics of the C language must be taken into account such as
the ones mentioned in the previous section but also data structures storage,
pointer arithmetic and others. In Isabelle memory addressing is represented by
a function defined on the address space without information about the type of
data to which the address refers. The way different types of data are stored is
treated separately [12]. Abstracting how memory access, data alignment, and
how different data types are modeled removed the need for higher-level proofs to
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employ repetitive checks, such as that a pointer is not null before being accessed,
instead these checks are already defined as constraints.

The correctness of the C language semantics is not, however, treated as crit-
ical to the proofs of the whole system because it adds an additional verification
level: the validation of the correspondence between the formal model and the
result obtained after compilation. The proof technique used to ensure the cor-
respondence between the abstract specifications, the formal model of the source
code, and the model resulting from the analysis of the binary file is called a
refinement. A refinement is defined in [8] as: "Program C is a refinement of
program A, if the set of behaviors of program C is a subset of the behaviors
described by program A". Here a behavior means a sequence of steps given by a
change of system state and the transition between these states. The state of the
system consists of the state of its components (memory, processes, resources)
belonging to the user space and to the kernel space.

3.1 Isabelle/HOL theorem prover

Isabelle is an interactive theorem prover that supports several types of formal
logic systems. Isabelle/HOL is Isabelle’s specialization of Higher Order Logic
(HOL). HOL is a type-based logic whose system resembles the one from func-
tional programming languages [1]. Existing types can be classified [9] into:

– basic types, e.g. bool(boolean), nat(N) or int(Z)
– type constructors, e.g. list and set types. Type constructors are written post-

fix, that is, after their arguments. For example, nat list is the type of lists
whose elements are natural numbers.

– types of functions are denoted by "⇒";
– types of variables are denoted by ′a,′ b, etc.

Terms are represented like in functional programming: by applying functions to
certain types of arguments. If we have f a function of type τ1 ⇒ τ2 and t is a
term of type τ1 then ft is a term of type τ2. In Isabelle the notation t :: τ is
used to represent that the term t is of type τ . Isabelle’s proofs are structured
in theories. A theory is a collection of types, functions and theorems, just like a
module in a programming language. A theory has the following format

theory T
imports B1 ... Bn
begin
statements, definitions, proofs

end

where B1 ... Bn are the names of the existing theories on which the T theory is
based. Each T theory must be in a file called T.thy. HOL contains a Main theory,
which contains all predefined basic theories, such as arithmetic, lists, or sets. A
theory can include a list of more .thy files. In practice, to have all theories needed
for parsing and basic proofs we have to include AutoCorres.AutoCorres. Proofs
can take the form of theorems or lemmas, both can be used inside other proofs.
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There are specific keywords for applying these in order to reach our goal [13],
for example the most common keywords used in our proofs are: unfolding x -
which applies the definition of x on the current goal and apply x - which refers
to other theorems or set of rules to be used.

3.2 Parsing C to Isabelle

Approaching the C language from the perspective of obtaining a semantic model
on which valid reasoning can be built is an important contribution of the seL4
system and deserves to be studied in detail. Several steps are taken to translate
the C code from seL4 into Isabelle [4], steps that we will also need to take for
the OpenBSD driver:

1. each C source file is parsed by an external preprocessor, which extends
#include formulas and macro commands and other directives

2. the result is translated into Simpl by the C-to-Isabelle analyzer [12]
3. each structure in the program is represented by a record in Isabelle
4. local and global variables are analyzed to generate two new types: a global

variables record globals and "a myvars" record for locals
5. functions are translated in equivalent Simpl language representation;
6. proofs are performed on the generated functions to specify which global

variables modify them

The post-translation steps in Simpl are embedded in the AutoCorres tool [4].
Because this tool uses the result of the C-to-Isabelle parser as input, AutoCorres
supports the same subset of the C language. Programs that use loops, function
calls, cast between various types, pointer arithmetic, structures, and recursion
are supported, but references to local variables, "goto" and "switch" expressions,
unions, floating point arithmetic operations or the use of pointers to functions are
not supported. The example in [4] shows how one can go from the implementation
in C of a simple function to the C-to-Isabelle parser output (with which it is
quite difficult to work) and then to the final form after running the AutoCorres
tool. In essence, the purpose of the AutoCorres tool is to abstract the low-level
representation from the C-to-Isabelle parser into a high-level one by:

– performing the conversion between the deeply embedded representation to
the shallowly embedded one (as described below)

– abstracting the arithmetic operations at 32-bit machine word level into op-
erations on the whole set of integers and natural numbers

– abstracting the heap memory at byte level into separate data-type areas
using the Burstall-Bornat model [2]

– simplifying the code and translating the variable types from the Simpl rep-
resentation into a form that is easy to reason in Isabelle.

Deeply vs shalowly embedded representations. Before we can begin to
formally reason about a program, we must first translate it into the logic used
by our theorem demonstrator. To bring the C code into Isabelle, it is necessary
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to decide which aspects of the code will be translated into the demonstrator
logic. If the emphasis is on the C program structure and its preservation in
Isabelle, we say that deeply embedded representation is used. If the semantics of
the program are important in the translation process, then we have a shallowly
embedded representation of the source code in Isabelle logic. AutoCorres has the
role of conversion between the structural representation of the C language given
by the C-to-Isabelle parser into the semantic representation on which reasoning
will be performed.

An example from [4] tries to explain the difference between the two forms of
code representation starting from: 2 + 2 = 4. If we want to prove that the left
side is equal to the right side, we perform the addition (treating the expression
as shallowly embedded) and state that the proposition is true. If we look at the
structure of the equation (deeply embedded), on the left we have 3 characters
and on the right only one. Thus we can say that the two parts are not equal
because we did not give any semantics to the assembly operation and its terms.
Structural treatment is not helpful if we want to prove certain statements about
a program. For this reason, the semantic representation of the C code is an
important contribution in the verification of the seL4 kernel, and this is done
through the AutoCorres tool.

The semantic representation obtained with AutoCorres aims to capture the
behavior of C programs where the representation in Isabelle can show that the
program might change the overall state of the system, might contain loops which
may not end, might have exceptions or other errors and so on. These require-
ments are covered by the extensive use of existing monads in Simpl (Skip, Basic,
Cond, Guard, etc.) and the addition of new constructs such as gets, return,
whileLoop. The later provides a great similarity between the imperative language
of the source and the functional one in which it is modeled.

3.3 C subset limitations

In our work we needed to tackle the C-language constraints mentioned above, so
we used only a subset of the C99 standard specifications [7]. The most relevant
restriction is that pointers to functions are not supported. Pointer data types are
defined as functions that return data stored at those addresses. If the pointers
refer to the address of a function, there is no guarantee that the reference cannot
be circular and that the address of the function must also be resolved. Other
issues that we ran into include control flow sequences such as code jumps using
"goto" or "switch" which are not supported and compiler optimization for data
positioning in memory when dealing with unions or bit fields.

Calling function pointers. The limitation of not being able to call func-
tions that were set via their address to a function pointer was a major drawback
in the integration of the OpenBSD driver because we needed to address pro-
grammable tasks to be executed in the future. The tasks may come from the
device driver, the timer or other sources. The main loop can only call the cor-
responding function that was set via its pointer. Below we depict a simplified
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program to showcase the issue where the C-to-Isabelle parser fails to translate
the last function because the call to foo() is done via the function pointer p_fun.

static int counter;
void foo(void) { counter++; }
void (*p_fun)(void);
void set_function(void) { p_fun = foo; }
void call_function(void) {

if(p_fun) p_fun();
}

Workarounds cannot provide the full proof, they only skip certain parts of the
program or proofs in order to provide a translation avoiding the part were the
function pointer is used. We list here a few options:

– skip parsing call_function by adding the DONT_TRANSLATE annotation, we
used this in the proof because the other translations were not affected, we
only had to avoid proving some properties that involved the function pointer;

– add the following adnotations before parsing the C file, this will assert those
theorems as axioms rather than try to prove them:

declare [[quick_and_dirty = true]]
declare [[sorry_modifies_proofs = true]]

– add annotations before parsing the C file, this will not try to prove the
theorem that involves function pointers

[[calculate_modifies_proofs = false]]

4 Driver verification3

Drivers are pieces of software that are part of a monolithic kernel (but can also
run is userspace), whose purpose is to interact with hardware devices or buses
and to provide a interface between the kernel and those components. We choose
to verify drivers as a further development of seL4 verification because drivers
are independent enough from the kernel structure, thus the verification process
does not need to take into consideration the particularities of the kernel where
the driver came from.

The main objective of driver modeling in Isabelle is to generalize the verifi-
cation of kernel drivers and make it OS-agnostic. We started from an OpenBSD
driver which suffered adaptations meant to decouple its dependency on the ker-
nel mid-layer. This simulation comes at a cost, we have to assume that the rest
of the system works correctly because the verification will cover only the driver
functionality. We applied this assumption to hardware related components like
bus communication and reading/writing form device registers. We assume that
the bus works correctly and the register behavior matches the datasheet specifi-
cations. In general, this separation between the software driver and the hardware
components is helpful for identifying the source of defective device behavior.

3 Theorems, code and data available at https://gitlab.com/system.verification

https://gitlab.com/system.verification
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4.1 OpenBSD octrng driver

The driver used for prototyping seL4 verification is a hardware random number
generator for Octeon boards.We choose this driver because it has a small con-
figuration sequence and it is pretty isolated from the OpenBSD kernel (there
are no major dependencies from other drivers or kernel components). The driver
structure is very simple, it has two important functions. First the driver initial-
ization routine, octrng_attach whose purpose is to configure the hardware in
order to start generating random values. To do this it maps the registers of the
device in the main address space and sets bits 62 and 63 (OCTRNG_ENABLE_OUTPUT,
OCTRNG_ENABLE_ENTROPY) of register 0x1180040000000 (OCTRNG_CONTROL_ADDR). The
device starts generating random values. Afterwards, octrng_rnd, the second func-
tion, is called periodically to retrieve the random value generated by the device
from register 0x1400000000000 (OCTEON_RNG_BASE + OCTRNG_ENTROPY_REG). The
random value is be added to the entropy pool on each call.

4.2 Mid-layer decoupling

Before parsing the C driver implementation into Isabelle, some OpenBSD kernel
mid-layer particularities had to be decoupled and implemented separately so
that the driver can stand on its own. We mimicked:

Bus communication. The original driver accesses the bus via bus_space_x()

functions, where x can refer to register mapping, reading or writing on the bus.
In our case, we replace the bus access with simple reading or writing to local
memory. This way, bus behavior is copied for read/write commands except for
the timing (a bus write may need more time than writing to a local variable).
In our case timing is not relevant because all actions are done sequentially.

Device registers. Because the bus communication is simulated, we imple-
ment and express register behavior using local memory with a static structure
containing only the required fields from the registers. For octrng driver, we only
need the control register, so we had a static structure rng_regs with only one
member control_addr which will be the absolute address of the control register.

Reading and writing the device register is done by mapping the physical
registers in memory. This involves communication with the device via the bus
on which it is located. For our model however, the device is just a representation
of the actual one, so there are no physical registers and our bus transfers are
simply read-write operations from the device register structure.

Our model resembles as much as possible the internal register behavior.
For the octrng driver, only some registers are important and so we have to
cover only these cases: enabling the output bit, the entropy bit and reading the
control value. We implement this with two helper functions set_register and
get_register. The first function modifies the required register with a given value
while the second one reads the control register or returns the value of the current
timer if both output and entropy flags are set.
Global timer. In our model the timer serves two purposes. The first is inher-
ited from the original driver: scheduling a call to the random function every
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10 milliseconds. The other has been added for verification purposes and is not
present on the actual hardware device: mimicking the random value by returning
the timer value instead of the random value from the device register. Note that
because we do not have access to an actual timer, we will simply use a global
variable that will be incremented by the idle() function each time the main loop
schedules a task (see below).

Task scheduling. The initialization call to the attach function of the driver
is done from a separate file whose purpose is to simulate a very simple scheduler.
The scheduler is a loop guarded by a timeout where we check for tasks waiting
to be scheduled during each iteration. This loop also calls the idle function to
increase the global timer. Tasks are stored into a static structure array whose
members are the timeout, the start (or arrival) time and the timeout_fun call-
back. Scheduling a task to run function foo() after 3 time units in the future
implies adding a new task in the task queue with timeout set to 3, start set to
the current time value and timeout_fun pointing to the foo() function. The task
queue is a circular buffer, each task addition increments the index of the newest
task added. Tasks are removed from the buffer after completion.

4.3 Proving driver function correctness in Isabelle

We translate our driver model into Isabelle/HOL by applying successively the
C-to-Isabelle parser and then the AutoCorres tool. A limitation of these tools is
that we can only parse one .c file at a time and provide one corresponding .thy
file. In seL4, some of the .c files have produced isolated theory files and these
theories are then included where needed. However, there is a starting point to
parse all the other files and this is the kernel_C preprocessor output file. We used
the same approach by including the octrng driver and the timer implementation
inside the .c file containing the main loop. The theory file contains the import
statements that include AutoCorres theories and all the helper theories. The
C-to-Isabelle parser is applied by declaring the input preprocessed file. After
this step we have all the C functions translated into Simpl theorems. In order to
obtain the final representation of these theorems, the AutoCorres tool is applied
on the target file. Inside the main context of this theory we can start defining
new terms, functions or proving new lemmas about the translated C functions.

After the translation into Isabelle, we can access the functions from C as
theorems in Isabelle. For example, C function foo is represented as a theorem
named foo’_def. All additional functions implemented in all the included files
will be translated. We analyze only the two functions related to the octrng driver:
octrng_attach and octrng_rnd. Any constants need to be redefined if we want
to use the same names through the new theorems or lemmas. The C constants
have been translated directly into their values, but we can give a name to the
same values as Isabelle definitions (for example the enable output flag will be
defined in Isabelle as definition “OCTRNG_ENABLE_OUTPUT ≡ (1 << 1) :: word32“).

The attach function. This is where the device configuration takes place
and also the task of periodically checking the value is programmed. The resulting
Isabelle translation of the associated modeled driver C code is:
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Original:
void octrng_attach(void) {
unsigned long control_reg;

control_reg = get_register(OCTRNG_CONTROL_ADDR);
control_reg |= OCTRNG_ENABLE_OUTPUT;
control_reg |= OCTRNG_ENABLE_ENTROPY;
set_register(OCTRNG_CONTROL_ADDR,control_reg);

add_task(octrng_rnd, 5);
}

Isabelle:
do ret’ ← get_register’ 0x0001180040000000;
set_register’ 0x0001180040000000 (ret’ || 3);
add_task’ (PTR(unit) (symbol_table ’’octrng_rnd’’)) 5

od

We now want to verify that after the execution of octrng_attach the device state
is ready for generating random values, i.e. the control register is set corectly.
We model this inside a lemma in the form of a Hoare triple {P}C{Q}, where P

and Q are the precondition and respectively the postcondition, C is the executed
program. In our case, we want to verify that running the octrng_attach program
function in any program state, will result in the control register having set to 1
the enable output and entropy flags. So the precondition is always True because
there are no requirements and in the postcondition we check the bits of the flags.

lemma octrng_attach : "{| λs. True |}
octrng_attach’

{| λ_s.
control_addr_C (rng_regs_’’ s) && OCTRNG_ENABLE_OUTPUT 6= 0 ∧
control_addr_C (rng_regs_’’ s) && OCTRNG_ENABLE_ENTROPY 6= 0 |} "

This proof is straightforward, we only need to use unfolding to apply all the
functions and definitions needed. The weakest precondition tool (wp command)
computes the necessary precondition that we have to prove further. All the pro-
vided goals can be derived automatically from the function definition. Except for
the bit operations where we need to explicitly apply the word_bitwise theorems.

The periodic “rng” function. This function should constantly retrieve the
“random” value and add it to the pool. Because we only have the driver part
and not the rest of the OpenBSD kernel, this value will be the timer value and
the randomness pool will be just a global variable which will be updated by call-
ing this function. The modeled C implementation just reads the value from the
output register and saves it into the rand_value global variable, then it sched-
ules another function execution after 10 time units. The Isabelle representation
matches the same behavior, the only difference is that all the global variables
from the C program are now represented as Isabelle terms, for example the inte-
ger rand_value is translated in Isabelle as rand_value_” a term of type sword32
(signed word on 32 bits).

Original:
void octrng_rnd(void) {
unsigned int value;
rand_value = get_register(OCTRNG_ENTROPY_REG);
add_task(octrng_rnd, 10);
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}
Isabelle:
do ret’ ← get_register’ 0;
modify (rand_value_’’_update (λa. ret’));
add_task’ (PTR(unit) (symbol_table ’’octrng_rnd’’)) 10

od

The verification lemma for octrng_rnd has a few more preconditions than the
initialization function because we have to first make sure that the function can
be executed (the task queue is not full) and then that the driver is configured
properly (the output and entropy flags are set).

lemma octrng_rnd:
"{| λs. timer_" s = a ∧ running_tasks_" s < MAX_QUEUE ∧

current_tasks_" s < MAX_QUEUE ∧
control_addr_C (rng_regs_" s) && OCTRNG_ENABLE_OUTPUT 6= 0 ∧
control_addr_C (rng_regs_" s) && OCTRNG_ENABLE_ENTROPY 6= 0 |}

octrng_rnd’
{| λ_s. rand_value_" s=a |}! "

The additional clause λ s. timer_" s = a represents that in any given state s

the global timer variable may have a label a for its value. What we want to
prove is that the same value will be set to the global rand_value and this is
the precondition λ_s. rand_value_" s = a. The verification will be done using
the same proofs as for the previous lemma: first we apply the definition of all
functions used and then apply the weakest precondition tool. The goals obtained
this way are easy to prove by applying the auto method.

This lemma could be improved by adding other specifications like checking
that the same function will be called after 10 time units or that the function will
be always called in time. The proofs that involve task scheduling were avoided
because the translation of the function that runs the actual task is not parsed
due to the issues described in the C subset limitation section.

Main loop and other lemmas. The driver functions are bound together
inside a small program that simulates a simple scheduler. The main loop does
the initialization of the environment including the call of the octrng_attach

function, then the main loop checks for each time unit if there are tasks whose
timeout expired so their function has to be run. We can add lemmas for those
additional functions mainly because some of them might be useful in proving
other properties. For example, a simple function idle increases the global timer
after each iteration of the main loop. The lemma for this function can verify
that the timer is modified exactly by 1 after its execution in any program state.

lemma idle_increases [simp]:
"{| s. timer_" s = a |}
idle’
{| λ_s. timer_" s = a + 1 |}! "

lemma main_function:
"{| λs. timer_" s = 0 ∧ running_tasks_’’ s = 0 |}
main’
{| λ_s. timer_" s = TIMEOUT |}!"

Its proof is obvious, we only have to apply the weakest precondition tool and
then the auto method for applying the simplifications. A proof that is more



12 Adriana Nicolae, Paul Irofti, and Ioana Leus
,
tean

interesting is the one that states the main loop runs until a timeout occurs. This
is done by limiting the timer with a maximum value, if this value is reached
no other task will be called. The difference between this lemma’s proof and the
other is that here we have loops so we have to first provide a proof that those
loops ends. Because the function that actually runs the task is not parsed, we will
only prove the main loop, the one that increases the timer via the idle function
and continuously run until timeout. This aspect is specified in the main_function

lemma: if we call the main function from a state where the timer is not started
and there are no running tasks, then at the end the timer will have reached the
timeout value. In order to prove this loop we have to specify and invariant and
a measure.

The invariant is a property that has to be true before, during and after the
main loop ends - because we want to prove something about the timer value,
the invariant specifies that at any state of the loop, the timer will have a value
between 0 and the timeout limit. The measure is a value that has to decrease at
each iteration - following the same model, the measure in our case is the distance
between the timer and the timeout limit.

definition
timer_limits_inv :: "word32 ⇒ ’s lifted_globals_scheme ⇒ bool"
where
"timer_limits_inv a s ≡ a = timer_" s ∧ 0 ≤timer_" s ∧
timer_" s ≤ TIMEOUT "

definition
timer_limits_measure :: " ’a ⇒ ’s lifted_globals_scheme ⇒ word32"
where
"timer_limits_measure a s ≡ a = TIMEOUT - timer_" s "

We can apply these two definitions via the whileLoop_add_inv monad and obtain
a proof goal that can be further broken into smaller goals using the weakest
precondition tool.

5 Conclusions

In this paper we adapted and made use of the seL4 verification framework to show
that we can use the theorems and proofs of a micro-kernel operating system to
successfully verify the octrng driver of the monolithic OpenBSD kernel. Besides
that, we also provided a proof of concept regarding the verification of other mid-
layer kernel components such as the scheduler. While this is just a small part
of the large OpenBSD code base, our efforts lead to an encouraging conclusion:
that the automatic abstraction of the source code using the AutoCorres tool
reduces the complexity of the effort to demonstrate [5] the properties of any
system outside seL4.

We hope that in the future this direction could facilitate the inclusion of
verification as an important step in the development of system critical software.
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