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Abstract. In this work, we present an integrated system for spatiotem-
poral summarization of 360-degrees videos. The video summary produc-
tion mainly involves the detection of salient events and their synopsis into
a concise summary. The analysis relies on state-of-the-art methods for
saliency detection in 360-degrees video (ATSal and SST-Sal) and video
summarization (CA-SUM). It also contains a mechanism that classifies
a 360-degrees video based on the use of static or moving camera during
recording and decides which saliency detection method will be used, as
well as a 2D video production component that is responsible to create
a conventional 2D video containing the salient events in the 360-degrees
video. Quantitative evaluations using two datasets for 360-degrees video
saliency detection (VR-EyeTracking, Sports-360) show the accuracy and
positive impact of the developed decision mechanism, and justify our
choice to use two different methods for detecting the salient events. A
qualitative analysis using content from these datasets, gives further in-
sights about the functionality of the decision mechanism, shows the pros
and cons of each used saliency detection method and demonstrates the
advanced performance of the trained summarization method against a
more conventional approach.

Keywords: 360-degrees video · saliency detection · video summariza-
tion · equirectangular projection · cubemap projection

1 Introduction

Over the last years, we are experiencing a rapid growth of 360◦ videos. This
growth is mainly fueled by the increasing engagement of users with advanced
360◦ video recording devices, such as GoPro and GearVR, the ability to share
such content via video sharing platforms (such as YouTube and Vimeo) and
social networks (such as Facebook), as well as the emergence of extended reality
technologies. The rapid growth of 360◦ video content comes with an increasing

⋆ This work was supported by the EU Horizon Europe and Horizon 2020 programmes
under grant agreements 101070109 TransMIXR and 951911 AI4Media, respectively.
Code is publicly-available at: https://github.com/IDT-ITI/CA-SUM-360.
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need for technologies that would allow the creation of a short summary that
conveys information about the salient events of the video. Such technologies
would allow users to quickly get a grasp about the content of the 360◦ video,
thus significantly facilitating their browsing and navigation in large collections.

Despite the increasing popularity of 360◦ video content, the research on the
summarization of this content is still limited. A few methods focus on piloting the
viewer through the unlimited field of view of the 360◦ video, by controlling the
position and the field of view of the camera and generating an optimal camera
trajectory [19,18,8,13,9]. These methods perform a spatial summarization on the
360◦ video by focusing on the most salient regions and ignoring areas of the 360◦

video that are less interesting. Nevertheless, the produced normal Field-Of-View
(NFOV) video might contain redundant information as it presents the detected
salient events in their full duration; thus it cannot be seen as a condensed sum-
mary of the video content. A couple of recent methods target both spatial and
temporal summarization of 360◦ videos [22,11]. However, both methods assume
the existence of a single important event [22] or narrative [11] in order to create
a video highlight and a story-based video summary, respectively.

In this paper, we propose an approach that considers both the spatial and the
temporal dimension of the 360◦ video (contrary to [19,18,8,13]) and takes into
account several different events that might take place in parallel (differently to
[22,11]), in order to form a summary of the video content. The developed system
is compatible with 360◦ videos captured using either static or moving camera.
Moreover, the duration of the output video summary can be adjusted according
to the users’ needs, thus facilitating the production of different summaries for a
given 360◦ video. Our main contributions are as follows:

– We propose a new approach for spatiotemporal summarization of 360◦ videos,
that relies on a combination of state-of-the-art deep learning methods for
saliency detection and video summarization.

– We develop a mechanism that classifies a 360◦ video according to the use
of a static or moving camera, and a method that forms a conventional 2D
video showing the detected salient events in the 360◦ video.

– We build an integrated system that performs spatiotemporal summarization
of 360◦ video in an end-to-end manner.

2 Related Work

One of the early attempts to offer a more natural-looking NFOV video that fo-
cuses on the interesting areas/events of a panoramic 360◦ video, was made by
Su et al. (2016) [19]. Their method, called AutoCam, learns a discriminative
model of human-captured NFOV Web videos and utilizes this model to iden-
tify candidate view-points and events of interest in a 360◦ video. Then, it uses
dynamic programming to stitch them together through optimal human-like cam-
era motions and create a new NFOV presentation of the 360◦ video content. In
their following work, Su et al. (2017) [18], generalized the problem by allowing
the method to control the field of view of the camera dynamically (instead of
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keeping it fixed), applied a coarse-to-fine optimization approach that iteratively
refines and makes it tractable, and integrated a mechanism to encourage diver-
sity to the NFOV videos. Hu et al. (2017) [8], formulated the selection of the most
interesting parts of a 360◦ video as a 360◦ viewer piloting task and described a
deep-learning-based agent which uses an object detector [14] to extract a set of
candidate objects of interest from each frame, and a trainable RNN to select the
main object. Given the selected main object and the previously selected viewing
angles, the agent shifts the current viewing angle to the next preferred one. The
training process rewards the selection of the correct main object, aims to min-
imize the distance between the selected and ground-truth viewing angles, and
tries to maximize the smoothness when transitioning between different viewing
angles. On a similar direction, Qiao et al. (2017) [13], presented the multi-task
DNN (MT-DNN) method that predicts viewport-dependent saliency over 360◦

videos based on both video content and viewport location (the fraction of a 360◦

scene that can be viewed by an observer). Each different task is associated with
a different viewport, and for each task MT-DNN uses a combination of CNN and
ConvLSTM for modeling both spatial and temporal features at specific viewport
locations. The output of all tasks is fused by the overall MT-DNN that makes
estimates about the saliency at any viewport location. Yu et al. (2018) [22],
addressed the problem of 360◦ video highlight detection. After defining NFOV
segments, their method uses a trainable deep ranking model which produces a
spherical score map of composition per video segment and determines which view
can be considered as a highlight via a sliding window kernel. Based on the com-
position score map, their method performs spatial summarization by finding out
the best NFOV subshot per 360◦ video segment, and temporal summarization
by selecting the N top-ranked NFOV subshots as a highlight for the entire 360◦

video. A similar approach was proposed by Lee et al. (2018) [11], for story-based
summarization of 360◦ videos. It uses a trainable deep ranking network to score
NFOV region proposals cropped from the input 360◦ video. Then, it performs
temporal summarization using a memory network that models the correlation
between past and future information (video subshots), based on the assumption
that the parts of a story-based summary share a common story-line. Finally,
Kang et al. (2019) [9] presented an interactive 360◦ video navigation system
which applies optical flow and saliency detection to find a virtual camera path
with the most salient events in the video, and generate a NFOV video.

3 Proposed Approach

An overview of the proposed approach is given in Fig. 1. The input 360◦ video
is initially subjected to equirectangular projection (ERP) to form a set of om-
nidirectional planar frames (called ERP frames in the following). This set of
frames is then analysed by a mechanism that makes a decision on whether the
360◦ video has been captured by a static or a moving camera. The use of such
a decision mechanism in combination with two different methods for saliency
detection was based on our study of the relevant literature and the observation
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Fig. 1. An overview of the proposed approach for 360◦ video summarization. Dashed
lines indicate alternative paths of the processing pipeline.

that most methods either deal with or are more effective on 360◦ videos that
have been captured by one of the aforementioned video recording conditions. So,
based on the output of the decision mechanism the ERP frames are subsequently
forwarded to one of the integrated methods for saliency detection, which produce
a set of frame-level saliency maps. The ERP frames and the extracted saliency
maps are then given as input to a component that forms a 2D video containing
the detected salient events in the 360◦ video. Finally, the produced 2D video
is processed by a video summarization method which makes estimates about
the importance of each frame of the video and forms the video summary. More
details about each processing component are given in the following subsections.

3.1 Decision Mechanism

As noted in [10], the main action zones on ERP frames are most commonly
near the equator. Taking this into account, the decision on whether the 360◦

video was captured by a static or moving camera is based on the analysis of
the north and south regions of the ERP frames, as depicted in Fig. 2. Such
regions should exhibit limited variation across a sequence of frames when the
360◦ video is captured by a static camera. So, given the ERP frames of the input
video, the decision mechanism focuses on the aforementioned frame regions and
computes the phase correlation [6]. If the computed scores frequently exceed an
experimentally defined threshold t0, the mechanism declares the use of a moving
camera; otherwise, it indicates the use of a static one.

3.2 Saliency Detection

Based on a literature review and experimentation with a few approaches, we
use two state-of-the-art methods for saliency detection in 360◦ videos, namely
the ATSal [4] and the SST-Sal method [2]. ATSal [4] employs two parallel mod-
els: i) an attention model that encodes global visual features from the ERP
frame, and ii) the SalEMA expert model that focuses on temporal characteris-
tics and uses cubemap projection (CMP) frames. The attention model consists of
a fine-tuned VGG16 [15] encoder-decoder with an intermediate attention mech-
anism. The SalEMA expert model extracts the temporal characteristics of the
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Fig. 2. An ERP frame and its north and south regions (highlighted by the red-coloured
bounding boxes) that are used by the developed decision mechanism.

360◦ video via CMP frames. It is composed of the SalEMA-Poles model, that is
responsible for the north and south regions of the 360◦ video, and the SalEMA-
Equator model that focused on the front, back, left and right regions of the
360◦ video. After feeding the ERP frame to the attention model and the CMP
frame to the SalEMA expert model, the final saliency map is formulated after
performing a pixel-wise multiplication between the outputs. SST-Sal [2] adopts
an encoder–decoder approach that takes into account both temporal and spatial
information at feature encoding and decoding time. The encoder is formed by a
Spherical Convolutional LSTM (ConvLSTM) and a spherical max pooling layer,
and extracts the spatio-temporal features from an input sequence of ERP frames.
The decoder is composed of a Spherical ConvLSTM and an up-sampling layer,
and leverages the latent information to predict a sequence of saliency maps. The
utilized ConvLSTMs extend the functionality of LSTMs by applying spherical
convolutions, thus allowing to account for the introduced distortion when pro-
jecting (ERP) the 360◦ frames onto a 2D plane, while extracting spatial features
from the videos.

3.3 2D Video Production

This component takes as input the ERP frames and their associated saliency
maps (extracted by the utilized saliency detection method), and produces a con-
ventional 2D video that contains the detected salient events in the 360◦ video.
As presented in Alg. 1, this procedure starts by identifying the salient regions
of each ERP frame. To form such a region in a given ERP frame, our method
focuses on points of the associated saliency map that surpass an intensity value
t1, converts their coordinates to radians and clusters them using the DBSCAN
algorithm [5] and a predefined distance t2. Following, the salient regions that are
spatially related across a sequence of frames are grouped together, thus estab-
lishing a spatial-temporally-correlated sub-volume of the 360◦ video. For this,
taking into account the entire frame sequence, our method examines whether
the salient regions of the fi frame are close enough to the salient regions of
one of the previous frames (fi−1...f1). If this distance is less than t3, then the
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Algorithm 1 2D Video Production

Require: N is the number of frames/saliency maps, R the number of salient regions,
L the number of salient regions per frame, S is the number of defined sub-volumes,
LS is the length (in frames) of each sub-volume, FS is the number of finally formed
sub-volumes, FL is the length (in frames) of the finally formed sub-volumes.

Ensure: 2D Video with the salient events of the 360◦ video
“Define the salient regions in each frame by clustering salient points with intensity
higher than t1, using DBSCAN clustering with distance (in radians) equal to t2:”

1: for i = 0 to N do
2: Salient regionsi = F1(Saliency Mapi, t1, t2)

“Define spatial-temporally-correlated 2D sub-volumes by grouping together spatially
related regions (distance less that t3) across a sequence of frames:”

3: for i = 1 to N do
4: for j = 0 to Li do
5: SubV olumesi,j = F2(Salient regionsi,j , t3)

“Mitigate abrupt changes in the visual content of sub-volumes by adding possibly
missing frames (up to t4; otherwise define a new sub-volume):”

6: for m = 0 to S do
7: for n = 0 to LSm do
8: Final SubV olumesm,n = F3(SubV olumesm,n, t4)

“Produce the 2D video by extracting the FOV for the salient regions of each finally-
formed sub-volume:”

9: for k = 0 to FS do
10: for l = 0 to FLk do
11: F4(Final SubV olumesk,l)

spatially-correlated regions over the examined sequence of frames (f1...fi) are
grouped and form a sub-volume; otherwise, it creates a new sub-volume for each
of the salient regions in the fi frame. Given the fact that a spatially-correlated
salient region can be found in non-consecutive frames (e.g., appearing in frames
ft and ft+2), the applied grouping might result in sub-volumes that are miss-
ing one or more frames. To mitigate abrupt changes in the visual content of
the formulated sub-volumes, our method adds the missing frames withing each
sub-volume. Moreover, in the case that a sub-volume contains a large sequence
of missing frames (higher in length than t4) our method splits this sub-volume
and considers that the aforementioned sequence of frames does not contain a
salient event. For each sub-volume, the developed method extracts the FOV of
the salient regions, thus creating a short spatio-temporally-coherent 2D video
fragment. Finally, the 2D video is formed by stitching the created 2D video
fragments for the different sub-volumes, in chronological order.

3.4 Video Summarization

The temporal summarization of the generated 2D is performed using a variant of
the CA-SUM method [1]. This method integrates an attention mechanism that is
able to concentrate on specific parts of the attention matrix (that correspond to
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different non-overlapping video fragments of fixed length) and make better esti-
mates about their significance by incorporating knowledge about the uniqueness
and diversity of the relevant frames of the video. The utilized variant of CA-SUM
has been trained by taking into account also the estimates about the saliency
of the video frames. In particular, the produced scores by the utilized saliency
detection method (see Section 3.2) for the frames that compose the 2D video,
are used to weight the extracted representations of the visual content of these
frames. Hence, the utilized video summarization model is trained based on a set
of representations that incorporate information about both the visual content
and the saliency of each video frame. At the output, this model produces a set
of frame-level importance scores. After considering the different sub-volumes of
the 2D video as different video fragments, fragment-level importance scores are
computed by averaging the importance scores of the frames that lie within each
fragment. These fragment-level scores are then used to select the key-fragments
given a target summary length L, by solving the Knapsack problem.

4 Experiments

4.1 Datasets

For training and evaluation of ATSal and SST-Sal, we utilized the 206 videos of
the VR-EyeTracking dataset [4], that were used in [21] (two videos was excluded
due to the limited clarity in its ground-truth saliency maps). VR-EyeTracking is
composed of 147 and 59 short (up to 60 sec.) videos that have been captured by
static and moving camera, respectively. Their visual content is diverse, covering
indoor scenes, outdoor activities and music shows. To train the attention model
of ATSal, we also used the 85 high definition ERP images of the Salient360!
dataset [7] and the 22 ERP images of the Sitzman dataset [16]. These images
include diverse visual content captured in both indoor (e.g., inside a building)
and outdoor (e.g., a city square) scenes. For further evaluation, we used the
104 videos of the Sports-360 dataset [23]. 84 of them have been captured by
a static camera, while the remaining ones (18 videos) were recorded using a
moving camera. These videos last up to 60 seconds and show activities from five
different sport events (i.e., basketball, parkour, BMX biking, skateboarding and
dance). Finally, for training the utilized video summarization model we used
100 2D videos that were produced according to the method described in Section
3.3, and scored in terms of frame-level saliency using the methods in Section
3.2. These videos relate to 57 videos of the VR-EyeTracking, 37 videos of the
Sports-360, and 6 videos of the Salient360! dataset.

4.2 Implementation Details

The parameter t0 of the decision mechanism was set equal to 0.5. The attention
model of ATSal was pre-trained for 90 epochs using the Salient360! and Sitzman
datasets. The merged dataset was composed of 2140 ERP images, where 1840 of
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them were used for training and the remaining 300 for validation. Training was
performed on mini-batches of 80 images, using the Adam optimized with learning
rate equal to 10−5 and weight decay equal to 10−5. The overall ATSal was trained
using 140 videos of the VR-EyeTracking dataset, while 66 videos were used as
validation set. Training was performed on mini-batches of 10 frames, using the
Adam optimizer with learning rate equal to 10−5 and weight decay equal to
10−6. To fine-tune SalEMA-Poles and SalEMA-Equators, we ran 20 training
epochs using mini-batches of 80 and 10 frames, respectively, using the Binary
Cross Entropy optimizer from [12] with learning rate equal to 10−6. Concerning
SST-Sal, the number of hidden-layers was set equal to 9 and the number of input-
channels was set equal to 3. Training was performed for 100 epochs based on the
Adam optimizer with a starting learning rate equal to 10−3 and an adjusting
factor equal to 0.1. 92 videos of the VR-EyeTracking dataset were used as a
training set and 55 videos were used as a validation set. Concerning the 2D
video production step, the parameters t1, t2, t3 and t4, were experimentally set
equal to 150, 1.2, 100 and 100, respectively. Finally, to train the utilized variant
of the CA-SUM video summarization model, deep representations were obtained
for sampled frames of the videos (2 frames per second) using GoogleNet [20].
The block size of the concentrated attention mechanism was set equal to 20. The
learning rate and the L2 regularization factor were equal to 5 · 10−4, and 10−5,
respectively. For network initialization we used the Xavier uniform initialization
approach with gain =

√
2 and biases = 0.1. Training was performed for 400

epochs in a full-batch mode using the Adam optimizer and 80 videos of the
formed dataset; the remaining ones were used for model selection and testing.
Finally, the created summary does not exceed 15% of the 2D video’s duration.

4.3 Quantitative Results

Initially, we evaluated the accuracy of the developed decision mechanism. For
this, we used 329 videos from the VR-EyeTracking, Sports-360 and Salient360!
datasets. 232 of these videos were captured by a static camera and 97 videos
were recorder using a moving camera. The results in Table 1 show that our
mechanism correctly classifies a video in more than 88% of the cases, while its
accuracy is even higher (close to 95%) in the case of 360◦ videos recorded using
a moving camera. The slightly lower performance in the case of static camera
(approx. 86%) relates to mis-classifications due to changes in the visual content
of the north and south regions of the 360◦ video, caused by the appearance of
a visual object right above or bellow the camera (see the example in the last
row of Fig. 3); however, the latter is not a desired, and thus common, case when
recording a 360◦ video using a static camera.

Following, we assessed the performance of the ATSal and SST-Sal methods
for saliency detection. The evaluation was based on the Pearson Correlation
Coefficient (CC) and the Similarity (SIM) measures, as proposed in [3]. CC
calculates the linear correlation between the distributions in a pair of automat-
ically extracted and ground-truth saliency maps. SIM quantifies the similarity
between the aforementioned distributions after seeing them as histograms. The
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Table 1. Performance (Accuracy in
percentage) of the decision mechanism.

Static
camera

Moving
camera

Total

Number of videos 232 97 329
Correctly classified 200 92 292

Accuracy 86.21% 94.85% 88.75%

Table 2. Ablation study about the use
of the decision mechanism.

CC SIM

ATSal Only 0.290 0.241
SST-Sal Only 0.377 0.279

Decision Mechanism
& ATSal or SST-Sal

0.379 0.280

Table 3. Performance of the trained ATSal and SST-Sal models on videos of the
VR-EyeTracking (upper part) and Sports-360 (lower part) datasets.

VR-EyeTracking

Static View Videos (55) Moving View Videos (11) Total Videos (66)
CC ↑ SIM ↑ CC ↑ SIM ↑ CC ↑ SIM ↑

ATSal 0.336 0.240 0.230 0.172 0.322 0.229
SST-Sal 0.309 0.167 0.168 0.106 0.285 0.157

Sports-360

Static View Videos (86) Moving View Videos (18) Total Videos (104)
CC ↑ SIM ↑ CC ↑ SIM ↑ CC ↑ SIM ↑

ATSal 0.270 0.251 0.270 0.243 0.270 0.249
SST-Sal 0.464 0.372 0.273 0.283 0.436 0.358

results of the conducted experiments are reported in Table 3. As can be seen,
ATSal performs better on videos of the VR-EyeTracking dataset and SST-Sal
is more effective on videos of the Sports-360 dataset; so, practically we have a
tie between these two methods. However, the performance of ATSal on videos
captured by a moving camera (denoted as “moving view videos” in Table 3) is
significantly higher than the performance of SST-Sal on the VR-EyeTracking
dataset, and slightly lower but comparable with the performance of SST-Sal on
the Sports-360 dataset. The exact opposite can be observed in the case of videos
recorded using a static camera (denoted as “static view videos” in Table 3). The
SST-Sal method performs clearly better than ATSal on the Sports-360 dataset
and comparatively good on the VR-EyeTracking dataset. Based on these find-
ings, we integrate both ATSal and SST-Sal in the saliency detection component
of the system; the former is used to analyze 360◦ videos captured by a moving
camera and the later processes 360◦ videos recorded using a static camera.

Finally, to evaluate the impact of the utilized decision mechanism, we formed
a large set of test videos (by merging the 104 test videos of the Sports-360 dataset
with the 66 test videos from the VR-EyeTracking dataset) and considered three
different processing options: a) the use of ATSal only, b) the use of SST-Sal
only, and c) the use of both methods in combination with the developed decision
mechanism. The results in Table 2 document the positive impact of the decision
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Fig. 3. Examples of ERP frames from videos of the Sports-360 and VR-EyeTracking
datasets, that are used by the developed decision mechanism.

mechanism, as its use in combination with the integrated saliency detection
methods results in higher performance.

4.4 Qualitative Results

Figure 3 shows examples of ERP frames that are processed by the decision
mechanism. In the first three cases (rows a), b), and c) of Fig. 3), the mechanism
detects changes in the north and south regions of these frames, and correctly
identifies the use of a moving camera for video recording. However, for the images
in d) and e) rows of Fig. 3 our mechanism fails to make a correct decision. In
the former case (row d), despite the fact that the video was recorded from the
cockpit of a moving helicopter, the mechanism was not able to detect sufficient
motion in the regions that focuses on. In the latter case (row e), the appearance
of a horse right above the static camera led to noticeable changes in the observed
regions, thus resulting in the erroneous detection of a moving camera.



Title Suppressed Due to Excessive Length 11

Fig. 4. Qualitative comparisons between the output of the ATSal and SST-Sal methods
on frame sequences of videos from the Vr-EyeTracking dataset.

Figure 4 presents two sequences of ERP frames, the produced saliency maps
by ATSal and SST-Sal, and the ground-truth salience maps. Starting from the
top, the first frame sequence was extracted from a 360◦ video captured using a
static camera. From the associated saliency maps we can observe that SST-Sal
performs clearly better compared to ATSal and creates saliency maps that are
very close to the ground-truth; on the contrary, ATSal fails to detect several
salient points. For the second frame sequence, which was obtained from a 360◦

video recorded using a moving camera, we see the exact opposite behavior. ATSal
defines saliency maps that are very similar with the ground-truth, while the
saliency maps of SST-Sal method contain too much noise. The findings of our
qualitative analysis are aligned with our observations in the quantitative analysis,
justifying once again the use of ATSal (SST-Sal) as the best option for analysing
360◦ videos captured using a moving (static) camera.

Figure 5 gives a frame-based overview of the produced 2D video for a 360◦

video after selecting one frame per shot (shots are directly related to the defined
sub-volumes of the 360◦ video, as described in Section 3.3), and presents the pro-
duced summaries by two video summarization methods. The summary at the top
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Fig. 5. Qualitative comparisons between the output of the ATSal and SST-Sal methods
on frame sequences of videos from the VR-EyeTracking dataset.

was created by the trained saliency-aware variant of the CA-SUM method us-
ing videos of the VR-EyeTracking and Sports-360 and Salient360! datasets. The
summary at the bottom was created by a pre-trained model of CA-SUM using
conventional videos from the TVSum dataset [17] for video summarization. As
can been seen, the trained variant produces a more complete and representative
video summary after including parts of the video showing the gathered people
in a square with a Christmas tree, the persons right in front of the avenue that
take some photos, and the illuminated shopping mall behind the avenue. On
the contrary, the pre-trained CA-SUM model focuses more on fragments of the
video showing the avenue and ignores video parts presenting the shopping mall.
This example shows that taking into account the saliency of the visual content
is important when summarizing 360◦ videos, as it allows the production of more
representative and thus useful video summaries.

5 Conclusions

In this paper, we described an integrated solution for summarizing 360◦ videos.
To create a video summary, our system initially processes the 360◦ video in order
to indicate the use of a static or moving camera for its recording. Based on the
output, the 360◦ video is then forwarded to one of the integrated state-of-the-
art methods for saliency detection (ATSal and SST-Sal), which produce a set of
saliency maps. The latter are utilized to form spatiotemporally-correlated sub-
volumes of the 360◦ video that relate to different salient events, and build a con-
ventional 2D video that shows these events. Finally, a saliency-aware variant of a
state-of-the-art video summarization method (CA-SUM) analyses the produced
2D video and formulates the video summary. Quantitative and qualitative evalu-
ations using two datasets for saliency detection in 360◦ videos (VR-EyeTracking,
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Sports-360), demonstrated the performance of different components of the sys-
tem and documented their relative contribution in the 360◦ video summarization
process.
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