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Abstract. It is common to use the projection of a bipartite network
to measure a unipartite network of interest. For example, scientific col-
laboration networks are often measured using a co-authorship network,
which is the projection of a bipartite author-paper network. Caution is
required when interpreting the edge weights that appear in such projec-
tions. However, backbone models offer a solution by providing a formal
statistical method for evaluating when an edge in a projection is sta-
tistically significantly strong. In this paper, we propose an extension to
the existing Stochastic Degree Sequence Model (SDSM) that allows the
null model to include edge constraints (EC) such as prohibited edges.
We demonstrate the new SDSM-EC in toy data and empirical data on
young children’s’ play interactions, illustrating how it correctly omits
noisy edges from the backbone.
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1 Introduction

It is common to use the projection of a bipartite network to measure a unipar-
tite network of interest. For example, scientific collaboration networks are often
measured using a co-authorship network, which is the projection of a bipartite
author-paper network [12]. Similarly, corporate networks are often measured us-
ing a board co-membership or ‘interlocking directorate’ network, which is the
projection of a bipartite executive-board network [1]. The edges in a bipartite
projection are weighted (e.g., number of co-authored papers, number of shared
boards), but these weights do not provide an unbiased indicator the strength of
the connection between vertices [5,9]. To overcome this bias, backbone extrac-
tion identifies the edges that are stronger than expected under a relevant null
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model, retaining only these edges to yield a simpler unweighted network (i.e.,
the backbone) that is more suitable for visualization and analysis.

Many null models exist for extracting the backbone of bipartite networks,
with each model specifying different constraints on the random networks against
which an observed network is compared. However, none of the existing models
permit constraints on specific edges. In this paper, we extend the fastest and
most robust existing backbone model – the stochastic degree sequence model
(SDSM) [11] – to accommodate one type of edge constraint: prohibited edges.
Prohibited edges are edges that in principle cannot occur in the network, and
can arise in many contexts. For example, in a bipartite author-paper network,
an author cannot write a paper before their birth, and in a bipartite executive-
board network, anti-trust laws prevent executives from serving on the boards of
competitors. We illustrate the new stochastic degree sequence model with edge
constraints (SDSM-EC) first in toy data, then in empirical data recording young
childrens’ membership in play groups.

1.1 Preliminaries

A bipartite network’s vertices can be partitioned into two sets such that edges
exist between, but not within, sets. In this work, we focus on a special case
of a bipartite network – a two-mode network – where the two sets of vertices
represent distinctly different entities that we call ‘agents’ and ‘artifacts’ (e.g.
authors and papers, or executives and corporate boards).

To facilitate notation, we represent networks as matrices. First, we represent
a bipartite network containing r ‘agents’ and c ‘artifacts’ as an r × c binary
incidence matrix B, where Bik = 1 if agent i is connected to artifact k (e.g.,
author i wrote paper k), and otherwise is 0. The row sums R = r1...rc of B
contain the degree sequence of the agents (e.g., the number of papers written by
each author), while the column sums C = c1...cr ofB contain the degree sequence
of the artifacts (e.g., the number of authors on each paper). A prohibited edge
in a bipartite network is represented by constraining a cell to equal zero, and
therefore is sometimes called a ‘structural zero’ [13]. Second, we represent the
projection of a bipartite network as an r × r weighted adjacency matrix P =
BBT , where BT represents the transpose of B. In P, Pij equals the number of
artifacts k that are adjacent to both agent i and agent j (e.g., the number of
papers co-authored by authors i and j). Finally, we represent the backbone of
a projection P′ as an r × r binary adjacency matrix, where P ′

ij = 1 if agent i is
connected to agent j in the backbone, and otherwise is 0.

Let B be an ensemble of r × c binary incidence matrices, which can be con-
strained to have certain features present in B. Let P ∗

ij be a random variable equal

to (B∗B∗T )ij for B∗ ∈ B. Decisions about which edges appear in a backbone
extracted at the statistical significance level α are made by comparing Pij to
P ∗

ij :

P ′

ij =

{

1 if Pr(P ∗

ij ≥ Pij) <
α
2
,

0 otherwise.
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This test includes edge P ′

ij in the backbone if its weight in the observed projection
Pij is uncommonly large compared to its weight in projections of members of
the ensemble P ∗

ij .

2 Backbone models

2.1 The stochastic degree sequence model (SDSM)

Models for extracting the backbone of bipartite projections differ in the con-
straints they impose on B. The most stringent model – the Fixed Degree Se-
quence Model (FDSM) [17] – relies on a microcanonical ensemble that con-
strains each member of B to have exactly the same row and column sums as B.
Computing P ∗

ij under the FDSM is slow because it requires approximation via
computationally intensive Monte Carlo simulation. Despite recent advances in
the efficiency of these simulations [2], it is often more practical to use the less
stringent Stochastic Degree Sequence Model (SDSM) [9]. The SDSM relies on a
canonical ensemble that constrains each member of B to have the same row and
column sums as B on average. SDSM is fast and exact, and comparisons with
FDSM reveal that it yields similar backbones [11].

Under the SDSM, P ∗

ij follows a Poisson-binomial distribution whose pa-
rameters can be computed from the entries of probability matrix Q, where
Qik = Pr(B∗

ik = 1) for B∗ ∈ a microcanonical B. That is, Qik is the prob-
ability that B∗

ik contains a 1 in the space of all matrices with given row and
column sums. Most implementations of SDSM approximate Q using the fast
and precise Bipartite Configuration Model (BiCM) [14,15]. However, it can also
be computed with minimal loss of speed and precision [11] using a logistic regres-
sion [9], which offers more flexibility. This method estimates the β coefficients
in

Bik = β0 + β1ri + β2ck + ǫ

using maximum likelihood, then defines Qik as the predicted probability that
Bik = 1.

2.2 The stochastic degree sequence model with edge constraints
(SDSM-EC)

The constraints that SDSM imposes on B are determined by the way that Q is
defined. In the conventional SDSM, Q is defined such that Qik is the probability
thatB∗

ik contains a 1 in the space of all matrices with given row and column sums,
which only imposes constraints on the row and column sums of members of B.
To accommodate edge constraints, we define Q′ such that Q′

ik is the probability
that B∗

ik contains a 1 in the space of all matrices with given row and column
sums and no 1s in prohibited cells.

The BiCM method cannot be used to approximate Q′, however the logistic
regression method can be adapted to approximate it. If Bik is a prohibited
edge, then Qik = 0 by definition. If Bik is not a prohibited edge, then Qik



4 Zachary P. Neal et al.

is the predicted probability that Bik = 1 based on a fitted logistic regression.
Importantly, however, whereas the logistic regression used to estimate Q is fitted
over all Bik, the logistic regression used to estimate Q′ is fitted only over Bik

that are not prohibited edges.

3 Results

3.1 Estimating Q′

In general the true values of Qik are unknown. However, for small matrices
they can be computed from a complete enumeration of the space. To evaluate
the precision of Qik estimated using the SDSM-EC method described above,
we first enumerated all 4 × 4 incidence matrices with row sums {1,1,2,2} and
column sums {1,1,2,2}; there are 211. Next, we constrained this space to matrices
in which a randomly selected one or two cells always contain a zero (i.e. bipartite
networks with one or two prohibited edges). Finally, we computed the true value
of each Qik for all cells and all spaces, estimated each Qik using the logistic
regression method, and computed the absolute deviation between the two.

Figure 1A illustrates that, compared to the cardinality of the unconstrained
space (|B| = 211), the cardinalities of the spaces constrained by one or two
prohibited edges are much lower (|B| = 2 − 29, gray bars). That is, while the
SDSM evaluates whether a given edge’s weight is significant by comparing its
value to a large number of possible worlds, the SDSM-EC compares its value to
a much smaller number of possible worlds. Figure 1B illustrates the deviations
between the true value of Qik and the value estimated using the logistic regres-
sion method. It demonstrates that although SDSM-EC requires approximating
Qik, these approximations tend to be close to the true values.
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Fig. 1. (A) The cardinality of the space of matrices with row sums {1,1,2,2} and
column sums {1,1,2,2} and one or two cells constrained to zero is small compared to
the cardinality of the space without constrained cells. (B) The deviation between the
true and estimated Qik for all such constrained spaces tends to be small.
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3.2 Toy illustration

We offer a toy example to illustrate the impact of imposing edge constraints in
backbone extraction. Figure 2A illustrates a bipartite network that contains two
types of agents (open and filled circles) and two types of artifacts (open and
filled squares), such that agents are only connected to artifacts of the same type.
Such a network might arise in the context of university students joining clubs.
For example, suppose Harvard students (open circles) only join Harvard clubs
(open squares), while Yale students (filled circles) only join Yale clubs (filled
squares).

(A) Bipartite network (B) SDSM backbone (C) SDSM−EC backbone

Fig. 2. (A) A bipartite network containing two groups of agents and two groups of
artifacts, such that agents are connected only to their own group’s artifacts. (B) The
SDSM backbone of a projection of this bipartite graph, which assumes that an agent
could be connected to another group’s artifact, suggests within-group cohesion among
agents. (C) The SDSM-EC projection, which assumes that an agent could not be
connected to another group’s artifact, suggests none of the edges in the projection are
significant.

Figure 2B illustrates the backbone extracted from a projection of this bi-
partite network using the SDSM. Using the SDSM implies that there are no
constraints on edges in the null model. In the context of student clubs, this
means that in the null model it is possible for a Harvard student to join a Yale
club, and vice versa, and that the pattern of segregation that appears in the
bipartite network is chosen (i.e. homophily). The SDSM backbone displays a
high level of within-group cohesion (i.e. homophily). This occurs for two rea-
sons. First, agents from the same group share many artifacts (e.g., two Harvard
students belong to many of the same clubs). Second, if agents were connected to
artifacts randomly (e.g., Harvard students joined both Harvard and Yale clubs),
as the SDSM null model assumes, then agents from the same group would have
shared fewer artifacts. The presence of within-group connections in the SDSM
backbone reflects the fact that it is noteworthy that pairs of Harvard students,
or pairs of Yale students, are members of many of the same clubs because they
could have chosen otherwise.
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Figure 2C illustrates the backbone extracted using the SDSM-EC, where we
specify that edges are prohibited between an agent and artifact of a different
type. In the context of student clubs, this means that in the null model it is
not possible for a Harvard student to join a Yale club, and vice versa, and that
the pattern of segregation is enforced by university regulations. The SDSM-
EC backbone is empty. This occurs because although agents from the same
group share many artifacts, they also share many artifacts under the null model.
The absence of connections in the SDSM-EC backbone reflects the fact that
it is uninteresting that pairs of Harvard students, or pairs of Yale students,
are members of many of the same clubs because they could not have chosen
otherwise.

3.3 Empirical illustration

We offer an empirical example of the application of SDSM-EC to illustrate its
practicality and impact. It can be difficult to directly measure social networks
among very young children. One alternative is to infer these networks from obser-
vations of their play groups using bipartite backbones [8]. However, considering
edge constraints can be important because the organization of the school can
mean that it may be impossible to observe certain children playing together.

These data were collected in Spring 2013 by observing the behaviors of 53
children in a preschool in the Midwestern United States [3,6,7,8]. A scan observa-
tion method was employed whereby a randomly selected child was observed for
a period of 10 seconds. After the 10 second period had elapsed, the trained ob-
server coded the child’s predominant behavior and, if applicable, the peers with
whom they were interacting [4]. Here, we focus only on social play behaviors be-
cause they were the most common form of social behavior, and the most likely
to involve direct interaction with peers. A total of 1829 social play events were
observed during data collection. These data are organized as a bipartite network
B where Bik = 1 if child i was observed participating in a play group during
observation k. A projection of P = BBT , where Pij indicates the number of
times children i and j were observed playing together provides an indirect indi-
cator of the children’s’ social network, particularly when refined using backbone
extraction [8].

In this context, two types of prohibited edges exist in the bipartite network.
First, the school was organized into two age-based classrooms, a classroom of
3-year-olds and a classroom of 4-year-olds. Because these classrooms used differ-
ent spaces, it was not possible to observe a 3-year old and a 4-year-old together.
Therefore, edges from 3-year-olds to observations of 4-year-olds are prohibited,
and likewise edges from 4-year-olds to observations of 3-year-olds are prohibited.
Second, the children varied in their attendance status: some attended for the full
day, some attended only in the morning, and some attended only in the after-
noon. Because attendance status determines which children were present and
able to play together, it was not possible to observe an AM child and a PM child
together. Therefore, edges from AM children to observations conducted in the



Stochastic Degree Sequence Model with Edge Constraints 7

afternoon are prohibited, and likewise edges from PM children to observations
conducted in the morning are prohibited.

A SDSM backbone B SDSM−EC backbone

Fig. 3. (A) Backbone extracted using SDSM and (B) SDSM-EC from 1829 observations
of 53 preschool childrens’ play groups. Vertex shape represents age-based classrooms:
circles = 3 year old classroom, squares = 4 year old classroom. Vertex color represents
attendance status: black = full day, gray = AM only, white = PM only.

Figure 3 illustrates two backbones extracted from these data, using shape
to represent classroom (circles = 3-year-olds, squares = 4-year-olds) and color
to represent attendance status (black = full day, gray = AM only, white = PM
only). Figure 3A was extracted using the SDSM and therefore does not consider
these edge constraints, while Figure 3B was extracted using the SDSM-EC and
does consider these edge constraints. There are some similarities between the
SDSM and SDSM-EC backbones that reflect characteristics of the setting: 3-
year-olds (circles) are never connected to 4-year-olds (squares), and AM children
(gray) are never connected to PM children (white), because it was not possible to
observe such children together. However, there are also differences that highlight
the impact of incorporating edge constraints using SDSM-EC. The SDSM-EC
backbone contains many fewer edges (E = 85) than the SDSM backbone (E =
153). This occurs for similar reasons to the loss of edges in the toy example
above, although is less extreme.

A hypothetical example serves to illustrate why the SDSM-EC backbone con-
tains fewer edges in this context. Consider the case of an AM child and a Full
Day child in the 3-year-old classroom who were observed to play together a few
times. The SDSM compares this observed co-occurrence to the expected number
of co-occurrences if these two children had played with other AM or Full Day
children and with others in the 3-year-old classroom (which is possible), but also
if they had played with PM children and children in the 4-year-old classroom
(which is not possible). Under such a broad null model that includes some impos-
sible play configurations, observing these two children playing together even just
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a few times seems noteworthy, and therefore an edge between them is included in
the backbone. In contrast, the SDSM-EC compares this observed co-occurrence
to the expected number of co-occurrences if these two children had played with
other AM or Full Day children and with others in the 3-year-old classroom only,
recognizing that it was not possible for the AM child to play with PM chil-
dren or for either to play with children in the 4-year-old classroom. Under this
more constrained null model that excludes impossible play configurations, ob-
serving these two children playing together just a few times is not particularly
noteworthy, and therefore an edge between them is omitted from the backbone.
As this example illustrates, the SDSM-EC contains fewer edges because it cor-
rectly omits edges that might seem significantly strong when evaluated against a
null model that includes impossible configuration, but that are not significantly
strong when evaluated against a properly constrained null model that excludes
impossible configurations.

4 Conclusion

Although bipartite projections offer a promising way to indirectly measure uni-
partite networks of interest, caution is required when interpreting the edge
weights that appear in such projections. Backbone models offer a solution by
providing a formal statistical method for evaluating when an edge in a projec-
tion is statistically significantly strong by comparison to a bipartite null model.
However, extracting an accurate backbone using these methods requires that
the null model is properly constrained. In many cases the FDSM (slower) and
SDSM (faster) are appropriate and yield similar results [11], however these null
models only constrain the degree sequences, but cannot impose edge constraints
such as prohibited edges.

In this work, we have introduced the SDSM-EC, an extension of SDSM that
allows the user to specify edge constraints in the form of prohibited edges. Pro-
hibited edges arise in bipartite networks when a given agent cannot be connected
to a given artifact, for example, because the agent is not present or because such
a connection is legally prohibited. We have demonstrated in both a toy example
and an empirical example that the SDSM-EC performs as expected, correctly
omitting weaker edges in the backbone that are not significant when these con-
straints are considered, but that might have erroneously appeared significant
under the SDSM. Therefore, we recommend that SDSM-EC be used to extract
the backbones of bipartite projections when the bipartite network contains pro-
hibited edges. The SDSM-EC is implemented in the sdsm() function of the
backbone package for R [10].

We have focused on one common type of edge constraint: prohibited edges.
However, a second type of edge constraint is also possible: required edges. Re-
quired edges arise in bipartite networks when a given agent must always be
connected to a given artifact, for example, because the agent is the initiator of
the artifact (e.g. a paper’s lead author, a club’s founder). It is trivial to extend
the SDSM-EC to also accommodate such constraints. When Q is estimated,
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Qik = 0 for prohibited edges and Qik = 1 for required edges, then the remaining
Qik values are computed using the same logistic regression method described
above.

This work highlights the importance of using a properly constrained null
model when extracting the backbone of bipartite projections, and identifies sev-
eral avenues for future research. First, whileQ under the SDSM can be estimated
quickly and precisely using the BiCM [14,15], Q under the SDSM-EC must be
estimated using logistic regression, which is slower and less precise [11]. Future
work should investigate improved methods for estimating Q, which has the po-
tential to benefit not only the SDSM-EC, but all variants of the SDSM. Second,
while a broad class of bipartite null models exist [16] and now include edge
constraints, future work should investigate the importance and feasibility of in-
corporating other types of constraints.
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