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Abstract

Player synergies are a salient feature of team sports. In the team game of cricket,

player synergies may be reflected in batting partnerships. Batting partnerships

have been analysed extensively. In this paper, we introduce and precisely define

bowling partnerships. We explain their importance, and analyse ball-by-ball

data from three formats of the game: 2,034 one-day international matches, 634

Test matches and 1,432 Twenty-20 international matches, in order to find such

bowling partnerships (“bowlerships”). We find that bowlerships exist. Further,

we construct bowlership networks based on these pairwise synergies. We assert

that these bowlership networks can be analysed for team selection before a

match, and making bowling changes during the match. We present Algorithm

bowler-select that selects a team based on bowlerships.

Keywords: Sports Analytics, Cricket, Social Network Analysis

1. Introduction

Team sports are all about player synergies; deciding when to let your partner

take the shot in Tennis doubles or anticipating the next pass in Football. This

is why often the best single’s champions are not necessarily the best doubles’
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champions in Tennis, and the team with more star players does not necessarily

win the Football match.

Cricket is a team sport played in most Commonwealth countries. There

are various formats of the game varying from five-day long matches to 3-hour

matches. Batsmen and Bowlers in Cricket are traditionally ranked according

to their batting and bowling averages respectively [1]. Batsmen bat in pairs,

and the pair is known as a partnership. A partnership continues batting until

one of the batsmen is dismissed. It has long been believed that synergies exist

between effective batting partners. Some batting pairs are part of legend. For

example, Matthew Hayden and Justin Langer of Australia and Desmond Haynes

and Gordon Greenidge of the West Indies are mentioned by Wisden [2]. In their

paper [3], the authors investigate the importance of batting partnerships in Test

and one-day cricket with respect to improved performance. However, based

on their statistical analyses, the authors conclude that synergies in opening

partnerships may be considered a sporting myth.

In this paper, we investigate bowler pairs. We introduce and precisely define

a bowling partnership. Bowlers bowl in pairs from opposite ends of the field

alternately. It is often the case that a pair of bowlers bowl several consecutive

overs alternately. We define such pairs of bowlers a bowling pair. Are some

bowling pairs more effective than others? Are they effective in terms of saving

runs or taking wickets?

Wisden also lists famous bowling partnerships [4]. However, the bowling

partnership list contains pairs of bowlers who bowled in the same match (but

not necessarily together).

Bowlers have two goals: saving runs and taking wickets. Commentators

sometimes anecdotally observe that when one of the bowlers is economical (sav-

ing runs), the other bowler is targeted by the batsmen leading them to make

errors and give away wickets. This raises the question whether two bowlers

are more effective as a pair with each other – whether in saving runs or taking

wickets or both.
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Definition 1. A bowler’s economy rate is the average number of runs he/she

has conceded per over bowled. The lower the economy rate is, the better the

bowler is performing.

Definition 2. A bowler’s hitrate is defined as the average number of wickets

he/she has taken per over bowled. The higher the hitrate, the better the bowler

is performing.

Deciding which bowler should bowl from which end and when is a crucial

decision to be made by the captain. As with other things, bowler (team) selec-

tion (before the match) and deciding bowling changes (during the match) takes

skill and experience. Such decisions depend upon a number of complex factors

including pitch conditions and assessing the competitor team’s strengths and

weaknesses. If effective bowling partnerships do in fact exist, then this could

inform the strategies for team selection as well as bowling changes.

Bowlers are typically assessed on two aspects – the wickets they take (the

more the better) and the runs they concede (the less the better). While the

former matters the most in Test cricket (5-day matches), in the limited overs

versions (one-day internationals and T20 matches) the latter matters too. The

Bowling strike rate is defined for a bowler as the average number of balls bowled

per wicket taken [5], and the economy rate is the average number of runs they

have conceded per over bowled [6]. Therefore a bowling pair can be deemed

effective (synergistic) if the pair together saves more runs and/or takes more

wickets. This could happen in three ways: (i) both the bowlers have improved

economies, (ii) both the bowlers take more wickets, (iii) one of them has an

improved economy while the other gets more wickets.

Our analysis involves a comparison of the performance of a bowler together

with his partners to investigate if the performance of the bowler with a given

partner is statistically superior to his performance with the rest. The findings

of such analysis can inform bowler selection and bowling changes.

We analysed data across all formats of the game — Test Cricket, ODIs and

T20Is. In Section 2, we define and explore these bowling partnerships, and
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investigate if there are any statistically significant partnerships. In section 3,

we present results from the 3 formats of the game and compare them. Some

discussion and concluding remarks are then provided in Section 4.

2. Methodology

We acquired ball-by-ball data of Men’s Test Matches, One-day internation-

als and T20 Internationals in separate files in the YAML format from cric-

sheet.org [7]. These include metadata like venue, date, participating teams, toss

details including striker, non-striker, bowler, runs scored on each ball, wickets

taken (if any), type of dismissal, extras information and outcome of the game.

We analysed 2,034 ODIs, 634 Test matches and 1,432 T20Is. There were a

total of 1148 ODI bowlers, 495 test bowlers and 1518 T20I bowlers. Figure 1

shows the number of overs with the number of wickets taken across all formats.

Note that most overs in all formats did not see any player getting out. In

general, the falling of a wicket is a rare event. This is quite unlike scoring runs.

Figure 2 shows the distribution of runs conceded by all bowlers across all

overs. Notice that conceding runs appears to be a normal curve. It is uncommon

to concede too few or too many runs in an over. Figures 3 to 5 shows the

Economy v Hitrate plots indicating the trends of all the bowlers in each format.

Statistical Test
ODIs Tests T20Is

(Normality) Fail Pass Fail Pass Fail Pass

Chi-square
578 393 295 129 232 609

(60%) (40%) (70%) (30%) (28%) (72%)

Shapiro-Wilk
674 297 360 64 316 525

(71%) (29%) (85%) (15%) (38%) (62%)

Anderson-Darling
785 186 390 34 463 378

(81%) (19%) (92%) (8%) (55%) (45%)

Table 1: The results of 3 statistical tests of Normality. Note that the test of normality failed

several data points.
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(a) ODI wickets (b) Test wickets

(c) T20I wickets

Figure 1: This figure shows that no wicket falls in most overs across all formats. The falling

of a wicket is a rare event. Taking more than one wicket in an over is extremely uncommon.
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(a) ODI Economy (b) Test Economy

(c) T20I Economy

Figure 2: This figure shows the frequency distribution of runs conceded per over for all matches

for ODIs(a), Test Matches(b) and T20Is(c). In ODIs and T20Is, It is uncommon to concede

too few or too many runs in an over. In test matches, the number of low scoring overs is much

higher. The shorter the format, the higher the likelihood of conceding more runs in an over.
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Figure 3: ODI Hitrate vs. Economy: This scatter plot show the economy on the X-axis along

with their respective hitrates on the Y-axis for all the bowlers. Bowlers to the top left are

good at both traits – conceding fewer runs and taking more wickets whereas bowlers to the

bottom right are conceding the most runs and taking the fewest wickets per over.
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Figure 4: Test Hitrate vs. Economy: This scatter plot show the economy on the X-axis along

with their respective hitrates on the Y-axis for all the bowlers. Bowlers to the top left are

good at both traits – conceding fewer runs and taking more wickets whereas bowlers to the

bottom right are conceding the most runs and taking the fewest wickets per over.
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Figure 5: T20I Hitrate vs. Economy:This scatter plot show the economy on the X-axis along

with their respective hitrates on the Y-axis for all the bowlers. Bowlers to the top left are

good at both traits – conceding fewer runs and taking more wickets whereas bowlers to the

bottom right are conceding the most runs and taking the fewest wickets per over.
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To measure a bowler’s performance, Croucher [8] defines the bowling index

as:

Bowling Index = Bowling average× Bowling Strikerate

where, bowling average is the the number of runs conceded by a bowler per

wicket taken and bowling strikerate is the average number of balls bowled for

every wicket taken. However, a bowler may be considered successful if he takes

wickets and/or gives away few runs and hence we prefer to keep the Economy

and the Hitrate separate.

We need to analyse an individual bowler’s economy as well as hitrate. For

each bowler, we plotted the runs conceded per over and checked if these distri-

butions were normal. Table 1 summarises the results. We conducted three nor-

mality tests: Chi-square test [9], Shapiro-Wilk test [10] and Anderson-Darling

test [11]. Except in the case of T20Is for the former two tests, more bowlers fail

than pass the test. Therefore, for most bowlers, the distribution is not normal.

Since the falling of a wicket is a rare event, the distribution of wickets per over

for each bowler is not normal either.

Definition 3. A pair of bowlers constitute a bowling pair at individual thresh-

old ti and pairing-threshold tp iff: (a) each bowler has bowled at least ti overs

in his career, and (b) together they bowl at least tp consecutive overs alternately

over all the matches.

In order to exclude trivial bowling pairs, we set the following conditions:

T1. (for ti) The individual bowlers in a bowling pair should have bowled at

least 300 overs (in Tests), 300 overs (in ODIs) and 80 overs (in T20Is)

throughout the span of their careers.

T2. (for tp) In order for a pair of bowlers to be considered a bowling pair, we set

the pairing-threshold – the number of consecutive overs that they should

have bowled alternately – to 60 (in Tests), 60 (in ODIs) and 16 (in T20Is).

Based on condition T1, we found:
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• 64 Test bowlers (out of 495) who have bowled at least 300 overs.

• 80 ODI bowlers (out of 1148) who have bowled at least 300 overs.

• 45 T20I bowlers (out of 1518) who have bowled at least 80 overs.

Among the bowlers who individually satisfied T1, based on the additional

condition T2, we got:

• 81 Test bowler pairs who have together bowled at least 60 overs.

• 41 ODI bowler pairs who have together bowled at least 60 overs.

• 18 T20I bowler pairs who have together bowled at least 16 overs.

While these numbers appear to have been arbitrarily chosen, the basic ra-

tionale is to ensure that an individual bowler has bowled enough overs and

the choice of the pairing-threshold is such that it allows a bowler to have a

few potential bowling pairs (5 with the above values). The analysis detailed

in this section could easily be conducted by choosing other values to obtain

corresponding results. We discuss this further in Section 5.

We need to compare the performance of an individual bowler with the bowl-

ing pairs that the bowler is a part of. Since the individual distributions are not

normal, we will use a non-parametric test, the Mann-Whitney test to do the

comparisons.

2.1. Mann-Whitney U Test

The Mann-Whitney U test is a nonparametric test of the null hypothesis

that, for randomly selected values X and Y from two populations, the probability

of X being greater than Y is equal to the probability of Y being greater than

X [12]. Since not all bowlers’ economy rates or wickets per over follow a normal

distribution, we use this test to compare an individual bowler’s performance

with a paired performance of the same bowler with a partner.

We consider the set of all the overs that bowler A bowls with a particular

partner B (bowlership set) and the set of all the overs bowled by the bowler
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A (individual set). The number of runs conceded in each over is considered for

the Mann-Whitney U test. We conduct three tests:

1. “greater” test:

H0: Individual Economy better than or same as the Bowlership Economy.

2. “two-sided” test:

H0: Individual Economy is same as the Bowlership Economy.

3. “less” test:

H0: Individual Economy worse or same as the Bowlership Economy.

If the first two tests fail, then the two null hypotheses can be rejected and we

can conclude that the bowlership pair performs better than the individual. In

this case, we say that a positive bowlership exists from A to B. This relationship

is not symmetric. Bowler A may bowl better with a Bowler B, while the opposite

need not be true. If the last two tests fail, then the two null hypotheses can be

rejected and we can conclude that the bowlership pair performs worse than the

individual. In this case, we say that a negative bowlership exists from A to B.

We conduct similar tests for Bowlership Hitrates.

2.2. Bowlership Networks

We can construct a directed signed graph Gd = (V,
−→
E ) where V is the set of

bowlers, and we draw a positive directed edge from a bowler A to B if A bowls

better with B and a negative directed edge if A bowls worse with B. Figure 6a

indicates the various cases between a pair of bowlers.

We can analyse these graphs to suggest bowling changes during the match

as well as team (bowler) selection before the match. The basic idea is to select

a set of bowlers with as many positive bowlership pairs as possible to give the

captain maximum flexibility in making bowling changes during the match.

Towards this, we first convert the directed signed graph Gd into an undi-

rected weighted graph Gu. Each signed directed edge is replaced by an undi-

rected weighted edge as depicted in the exhaustive combinations shown in Fig-

ure 6. In particular, note that while the directed version for nodes C,D as well
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(a) Examples of directed signed graphs on a pair of vertices.

(b) Corresponding weighted undirected versions.

Figure 6: Conversion of directed signed graph into a weighted undirected graph.
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as nodes I, J are different, they result in the same weighted undirected graph.

This is because a negative edge from A to B nullifies the effect of a positive

edge from B to A, since A and B are essentially incompatible. After this trans-

formation, the weight of an edge indicates the strength of bowlership between

the endpoints.

Definition 4. A subgraph S of the undirected weighted graph Gu (which may

contain negative edges), has an associated average weighted degree

W (S) =

∑
w(S)

|S|

where w(S) is the sum of weights of all edges induced by S and |S| is the number

of vertices in S.

Algorithm create-weighted-graph

Input: directed signed graph Gd

Output: undirected weighted graph Gu

1: For any given pair of vertices A,B in Gd, given the directed signed edges

between them, replace them with their corresponding undirected signed

weighted version depicted in Figure 6. This results in Gu, the undirected

weighted version of the graph. Gu may have negative edges.

The higher the average weighted degree of a subgraph, the more the bowler-

ship synergy among the corresponding bowlers. Maximising the average weighted

degree of the subgraph of the selected bowlers during team (bowler) selection

before the match increases the flexibility of bowling changes during the match

for the captain.

Algorithm bowler-select takes as input Gu and a number k of bowlers to

be selected and returns a set of bowlers such that the average weighted degree

of the selected bowlers is greedily maximised. Steps 2– 6 computes the average

weighted degree for each connected subgraph of size ≤ k, the required number of

bowlers. Step 8 outputs a subgraph Smax with the maximum average weighted

degree. If the size of this subgraph equals k, then we are done. Otherwise,
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Algorithm bowler-select

Input: undirected weighted graph Gu, required bowlers k // (k = 5 or 6.)

Output: k bowlers maximising positive bowlerships

1: Let C be the set of disconnected components of Gu.

2: for each component c in C do

3: for i ∈ {2, . . . , k} do

4: Find all subgraphs Si = {Si1, . . . , Sip} of size i.

5: For each subgraph, calculate W (Sij) =
∑

w(Sij)
|Sij | ,

where w(S) is the sum of the edge weights induced by S.

6: end for

7: end for

8: Output subgraph Smax with maximum W (Sij).

9: for |Sij | ∈ {1, . . . , (k − |Smax|)} do

10: Let Xij be the set of cross edges connecting Sij and Smax, and w(Xij)

be the sum of the weights of such edges.

11: WT (Sij)← (W (Sij) + w(Xij))

12: end for

13: remain ← (k − |Smax|).

14: size ← remain.

15: while remain 6= 0 do

16: if size > remain then

17: size ← remain

18: end if

19: Select Sij with |Sij | = size with maximum WT (Sij).

20: if no such Sij exists, then

21: size ← size - 1.

22: continue

23: end if

24: Output Sij .

25: remain ← remain− |Sij |.

26: end while
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we need to find another subgraph to fulfill the k bowler requirement. For this,

we need to take into account not just the weight of a candidate subgraph in

consideration, but also the weight of its connectivity with Smax. This total

weight is calculated in Steps 9– 12. The actual selection of any remaining

bowlers is done in Steps 13– 26, until the required number of bowlers k is

reached. While there are other algorithms in literature [13, 14, 15], some of

them supporting negative edge weights, none of them fit our needs exactly.

Further, since the number k of required bowlers in our setting is small, the

exhaustive computation in steps 2– 6 is practical.

3. Results

3.1. Mann-Whitney Analysis

As we can see in Figures 7 to 9, the overall economy of a bowler throughout

his career in comparison with his overall economy in the bowlership has no role

in determining whether the bowlership is ‘better’ than the individual. In these

figures, the points in orange depict the bowlership economies, which however,

for a majority of bowlers, lie below their individual average economies. This

shows that merely taking averages across all overs is not enough. Figures 10

to 12 depict this by showing the difference in economies according to individual

bowlers along with their bowlerships and Figures 13 to 15 shows all positive

bowlerships with positive economies. Another point to note is that economies

play a major role mainly in ODIs and T20Is as the runflow is high unlike test

matches. Hence, these figures give us more insight about the shorter formats.

Interestingly, we weren’t able to reject the null hypotheses of the ‘two-sided’

or the ‘less’ tests for any of the formed bowler pairs for various confidence

levels. This means, we did not have any negative bowlerships. Hence, we refer

to bowlerships that aren’t positive but couldn’t be proved negative as non-

bowlerships (no edge exists between the pair of bowlers).

As depicted in Figures 16 to 18, non-bowerships also show similar trends in

economies as positive bowlerships. Similarly, we tried to do the Mann-Whitney
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Figure 7: ODI individual and bowlership economy: The X-axis contains the name of the

bowler and the Y-axis is the economy. The plot points in orange show the bowlership economy

whereas the plot points in blue depict the bowler’s economy with all other bowler partners

combined. Note that, the bowlership economy need not be better than the overall economy

for a bowlership to be positive.
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Figure 8: Test individual and bowlership economy: The X-axis contains the name of the

bowler and the Y-axis is the economy. The plot points in orange show the bowlership economy

whereas the plot points in blue depict the bowler’s economy with all other bowler partners

combined. Note that, the bowlership economy need not be better than the overall economy

for a bowlership to be positive.
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Figure 9: T20I individual and bowlership economy: The X-axis contains the name of the

bowler and the Y-axis is the economy. The plot points in orange show the bowlership economy

whereas the plot points in blue depict the bowler’s economy with all other bowler partners

combined. Note that, the bowlership economy need not be better than the overall economy

for a bowlership to be positive.
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Figure 10: ODI economy improvement in bowlership: This plot highlights the differences in

economies of positive bowlerships and individual bowlers.
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Figure 11: Test economy improvement in bowlership: This figure highlights the differences in

economies of positive bowlerships and individual bowlers.
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Figure 12: T20I economy improvement in bowlership: This figure highlights the differences

in economies of positive bowlerships and individual bowlers.
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Figure 13: ODI positive economy change: This plot shows only those points where the positive

bowlership has a better economy than that of an individual bowler.
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Figure 14: Test positive economy change: This plot shows only those points where the positive

bowlership has a better economy than that of an individual bowler.
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Figure 15: T20I positive economy change: This plot shows only those points where the positive

bowlership has a better economy than that of an individual bowler.
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Figure 16: ODI nonpositive bowlerships: This figure shows non-positive bowlership economies

in comparison with their individual economies.
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Figure 17: Test nonpositive bowlerships: This figure shows non-positive bowlership economies

in comparison with their individual economies.
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Figure 18: T20I nonpositive bowlerships: This figure shows non-positive bowlership economies

in comparison with their individual economies.
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(a) West Indies (b) England (c) Australia & New Zealand

(d) India (e) Pakistan (f) South Africa

(g) Sri Lanka

Figure 19: Test Bowlership Network.

experiments with wickets taken per over for bowlers who had bowled at least a

certain number of overs. No bowlership turned out to be positive for a range of

confidence levels and we were not able to reject any of the null hypotheses. We

believe the reason for this is that the taking of a wicket is a rare event occurring

only a few times (if at all) per match, in comparison with the number of overs

bowled. However, it is possible that bowlerships affect the falling of wickets,

but this is statistically insignificant.

3.2. Bowlership Networks

Figures 19, 20 and 21 depict the bowlerships networks for Tests, ODIs and

T20Is respectively. Some interesting points to be noted are:

• The test network is the densest and the T20 Network is sparsest. This

could be due to frequent bowling changes in the shorter formats as opposed
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(a) New Zealand (b) England (c) Bangladesh

(d) West Indies (e) India (f) Sri Lanka

(g) Australia, Afghanistan, South Africa & Pakistan

Figure 20: ODI Bowlership Network

(a) Sri Lanka (b) Ireland (c) Pakistan

(d) Afghanistan & Bangladesh

Figure 21: T20 Bowlership Network
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to tests.

• While it is an artefact of the chosen parameters (T1 and T2), two way

positive bowlerships are quite uncommon across all formats. We also

expected to see fewer disconnected components.

• For the Test Bowlership Network 19, running Algorithm bowler-select

for West Indies and k = 3, results in {J.O. Holder, S.T. Gabriel, K.A.J.

Roach} getting selected. For England and k = 4, the algorithm selects

{B.A. Stokes, J.M. Anderson, S.T. Finn} and either one of M.M. Ali and

C.T.Tremlett. These results look quite intuitive. In practice, Algorithm

bowler-select may run efficiently since the sizes of these graphs is small.

• We expected to see a few cycles of size 3 or more, but did not. This could

again be an artefact of the chosen parameters (T1 and T2).

4. Discussion

A positive bowlership does not necessarily imply better economy. In prac-

tice, we could select positive bowlerships that also have better economies. The

analysis with wickets did not yield any conclusive results, as the falling of a

wicket is a rare event.

For the threshold values chosen in the experiments, the bowlership networks

have disconnected components, with no components having more than 5 ver-

tices. Such networks can therefore be visually analysed. We also saw that

Algorithm bowler-select does give intuitive results.

The more the outgoing edges from a bowler, the more the number of bowlers

he bowls better with. The more the more incoming edges to a bowler,the more

the number of bowlers who bowl better with him. Therefore, the number of

incident edges (incoming or outgoing) is an important parameter for picking a

bowler.

For example, in Sri Lankan ODIs, selecting A.D. Mathews, N.L.T.C. Perera

and K.M.D.N. Kulasekara together and planning their bowling attacks carefully
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can prove to be helpful as Perera and Kulasekara both perform better with

Mathews and vice versa. Similarly, S.T. Finn, J.M. Anderson and S.C.J. Broad

could be picked for England ODIs.

For tests, South Africans must pick Jacques Kallis and Sri Lankans H.M.R.K.B.

Herath as they are very compatible with three other bowlers and seem to per-

form well with them. Similarly, West Indies should try and include K.A.J.

Roach in their eleven while playing tests as J.O. Holder, J.E. Taylor and S.T.

Gabriel give away fewer runs when bowling with him.

5. Conclusion

Player synergies are an integral and crucial part of team sports. Unlike

games such as football and tennis, where all the players are participating in

the same activity at the same time, cricket and baseball have one team fielding

while the other is batting. In cricket, batting partnerships have been analysed

extensively, bowling partnerships have not. We first define what constitutes

a bowling partnership, and then analyse all formats of the game in search of

effective bowler partnerships. i.e., “bowlerships”.

We analysed ball-by-ball data for 2,034 ODIs, 634 Test matches and 1,432

T20Is. There were a total of 1148 ODI bowlers, 495 test bowlers and 1518

T20I bowlers. For the analysis, we chose the following thresholds: (i) Each

individual bowler in a bowling pair should have bowled at least 300 overs (in

Tests), 300 overs (in ODIs) and 80 overs (in T20Is) throughout the span of their

careers. (ii) In order for a pair of bowlers to be considered a bowling pair, we

set the pairing-threshold – the number of consecutive overs that they should

have bowled alternately – to 60 (in Tests), 60 (in ODIs) and 16 (in T20Is).

Our analyses showed that bowlerships exist. These bowlerships can be lever-

ages both strategically (for team formation) and tactically (for bowling changes

while the match is in progress). We presented Algorithm bowler-select to

select bowlers which account for bowler synergies during team selection.

In future work, it would be very interesting to investigate the various bowler-
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ship patterns that emerge based on varying the thresholds. Is there a systematic

way to determine the thresholds? Also, we need to look deeper into the reason

why negative bowlerships were not found.

How do we compare a pair of positive bowlerships? Can we add weights to

the directed signed graph Gd? This would help us differentiate between stronger

and weaker bowlership pairs.
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