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Abstract

We propose a model for network community detection using topological data analysis, a branch of modern
data science that leverages theory from algebraic topology to statistical analysis and machine learning.
Specifically, we use cellular sheaves, which relate local to global properties of various algebraic topological
constructions, to propose three new algorithms for vertex clustering over networks to detect communities.
We apply our algorithms to real social network data in numerical experiments and obtain near optimal results
in terms of modularity. Our work is the first implementation of sheaves on real social network data and
provides a solid proof-of-concept for future work using sheaves as tools to study complex systems captured
by networks and simplicial complexes.

Keywords: Cellular sheaves; community detection; modularity; opinion dynamics; topological data ana-
lysis.

1 Introduction

Networks are used to describe, study, and understand complex systems in many scientific disciplines. One
of the most important features in complex systems that networks are able to capture is the presence of
communities. In networks, communities can be seen as partitioning a graph into clusters, which are subsets of
vertices with many edges connecting the vertices within the subset, and comparatively fewer edges connecting
to different subsets in the rest of the network. These clusters or communities can be considered as relatively
independent components of a graph. The problem of community detection is to locate those clusters in
networks which are more strongly connected than the whole network is, on average. Community detection
is a challenging and active area of research in network science: a key aspect that makes the problem difficult
is that there is no single, universally accepted definition of a community within a network and it is largely
dependent on context or the specific system being studied.

Topological data analysis (TDA) is a recently-emerged approach to data science that uses principles from
pure mathematics to extract meaningful information from large and complex datasets that may not possess
a rigorous metric or vector space structure which is often required in classical data analysis. In our work, we
focus on sheaves, which are a tool that relates local to global properties of various constructions in algebraic
topology and have been used to reinterpret and generalize many significant results in classical geometry and
algebraic topology. Sheaves allow for information to be assigned to subsets of topological spaces; when the
topological space is a network and the information is vector space-valued, a computational framework for
sheaves becomes available similar to that of persistent homology, which is a well-developed and the most
widely-used tool in TDA; see Curry (2014) for complete details.

In this paper, we propose a topological approach to community detection based on sheaves. Specifically,
we show that sheaves may be used to rigorously model the problem of community detection on a network and
propose three novel, sheaf-based community detection algorithms. We test and compare their performance
with numerical experiments on a real-world benchmarking dataset and show that we are able to attain near
optimal community detection results.



Related Work. Particularly relevant to our work, sheaves have been previously used to model various
dynamics of opinions over social networks, including bounded confidence models, stubbornness, and the
formation of lies Hansen & Ghrist (2020). In a similar spirit, propagation of gossip has also been theoretically
modeled using sheaves Riess & Ghrist (2022). However, it is important to note that no implementations
nor applications to real data exist of these sheaf social network models. In a non-topological setting, the
formation of opinion clusters has been investigated in the bounded confidence model Hegselmann & Krause
(2019); another contrast to our work is that they use dynamics with discrete time steps and sharp confidence
bounds. Very recently, the only other TDA approach to community detection that we are aware of was
proposed Schindler & Barahona (2023), however, it is based on persistent homology, rather than sheaves, as
in our work.

2 Background: Sheaves and Social Networks

In this section, we define sheaves and present sheaf-theoretic notions in the context of social networks that
will be used in our proposed community detection algorithms.

2.1 Sheaves and Sheaf Cohomology

Sheaves assign data to open subsets of topological spaces X in a consistent manner. This compatibility is what
enables them to relate local (i.e., the pure data) and global (i.e., having an assignment of compatible data)
properties of X. Cellular sheaves are a special case where X is a cellular complex (which is a generalization
of a simplicial complex) and the data are vector spaces. In this paper, we will further restrict to the case
that the cellular complex is a graph G = (V, E); we consider undirected graphs without loops or multiple
edges. We write edges as ordered tuples e = (v1,v3), ordered arbitrarily. Under these restrictions to graphs,
we now outline how important concepts from graph theory generalize to the topological setting of sheaves
which will be relevant to our work further on.

The graph G becomes a topological space when exploiting the fact that the subface relation allows G to
be viewed as a partially ordered set and to be equipped with the Alexandrov topology. A sheaf on G turns
out to be uniquely determined by the following data Curry (2014).

Definition 1. A (cellular) sheaf F assigns finite-dimensional real vector spaces, called stalks, F(v) to each
vertex and F(e) to each edge of a graph, and a linear map F,c. : F(v) — F(e) (called a restriction) to each
incidence v C e.

Figure 1: Example of a cellular sheaf

Figure 1 illustrates a cellular sheaf. Other examples that can be defined for any graph G are the constant
sheaves R™ for n € N, where all stalks are R™ and all restrictions the identity map.

Algebraic topology is a field of pure mathematics that uses abstract algebra to study topological spaces;
specifically, it defines algebraic ways of counting properties of topological spaces that are left unaltered under
continuous deformations of the topological space, such as stretching or compressing. Such properties are
referred to as invariants; cohomology groups are examples of such invariants. Sheaves over topological spaces
give rise to sheaf cohomology groups. In our setting, these are obtained from a collection of vector spaces
and maps between them, called the cochain complex (Shepard, 1985, Theorem 1.4.2)
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Here, the linear coboundary map & : C°(G,F) — C*(G,F) is defined by acting linearly on stalks. On F(v),

it acts according to
Ty Z Foce Ty — Z Foce Ty-

e=(vg,v) e=(v,v;)

The sheaf cohomology groups of interest are then
H°(G,F) =ker(§) HY(G,F)=CYG,F)/im(8) = coker(s).

Example 2. The graph in Figure 1 has trivial cohomology with respect to the illustrated sheaf, even though
the classical (e.g., simplicial) cohomology is nontrivial. This shows that these two cohomology theories need
not agree.

Sheaf cohomology is in fact a generalization of classical cohomology, because for the constant sheaf R!,
the sheaf cohomology yields precisely the cellular cohomology of G. In this case, § = BT is the transpose of
the signed incidence matriz B which is defined by

1 JweV:e=(v,w),
Bye=¢-1 JweV:e=(wv),
0  otherwise.

Recall that the classical graph Laplacian can be obtained as L = BBT. This notion may be generalized to
obtain the following definition.

Definition 3. For a cellular sheaf F over G, the sheaf Laplacian is L := 6.

It can be shown that neither sheaf cohomology nor the sheaf Laplacian depend on the initially chosen
orientation.

2.2 Discourse Sheaves and Opinion Dynamics

By considering social networks G where persons are modeled by vertices and acquaintanceship is modeled
by connections, the distributions of opinions may be expressed by a discourse sheaf F (Hansen & Ghrist,
2020); see Figure 2 for an illustration.

opinion discourse opinion
—) (—
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Figure 2: Sketch of a discourse sheaf

Each person v is assigned an opinion space R™ = F(v) and opinion x, € F(v). A basis of F(v) can be
seen as collection of basic topics that v cares about and the component of z, in a basis direction expresses
the opinion about that topic (e.g., how much v supports a certain politician).

Edges stand for discourse about topics in R™ = F(e). There need not be a relation between bases of
different stalks. However, each person v projects their opinion of the discussed topics on e via F,c.. There
is consensus along e = (u,v) if Fyce Ty = Fuce Tu-

In this framework, several models have been proposed to describe how opinions expressed by such a sheaf
evolve over time Hansen & Ghrist (2020). The basic model assumes that everyone changes their opinion in

order to minimize the difference to the average opinion of their friends, i.e.,
d
%xv(t) = ze:f;rce(]:uCe Loy — vae xv)

v~YUu



e .. .. .
Here v ~ u denotes that v and u share a common edge e. Combining all opinions to one vector z, this can

d
be written as —x(t) = —Lr 2. Solutions converge exponentially to consensus on all edges (Hansen & Ghrist

(2020), Theorem 4.1).

The more realistic bounded confidence model assumes that the influence of a friend’s opinion on v decreases
if their opinions differ too much. The decay is expressed by a monotonically decreasing “bump” function
¢ : [0,00) — [0,1] that vanishes precisely whenever some threshold D is surpassed, as shown in Figure 6.
The modified dynamics are described by

d

%xv(t) = Z ¢(H]:uce Ty — Fouce xv”)]_ﬂ—ce(FuCe Ty — Foce xv)~ (1)
e

v~y

Configurations are stable if on each edge the difference is zero or at least D. In such a stable configuration,
disregarding all edges without consensus and considering the connected components of the remaining graph
provides a partition of the vertex set V' (persons in the social network).

3 Methods and Experimental Design

In this section, we outline our proposed sheaf-theoretic algorithms used for community detection. We propose
two algorithms that generate partitions of a given graph at random and one deterministic algorithm and
evaluate their ability to detect communities. For the sake of comparability, we consider partitions of the
full vertex set of a fixed graph (see Figure 3 for an example of such a partition) and evaluate how well
they represent the community structure of the graph. The common evaluation measure that we will use in
this work is modularity, which is computed in an assessment step to determine whether the division into
communities is “relatively good.”

Figure 3: “Karate club” graph partitioned into three communities.

Definition 4. Let G = (V, E) be a graph and V be subdivided into N subsets {V. | ¢=1,..., N}, with E,
being the set of edges between nodes from V.. Then the modularity @ is given by

Q= Z || (Zvevcdeg(v)> ] e [-1,1]. (2)

|E| 2|E|
Intuitively, the quantity ) captures how many more edges than the average are within the subsets V. ,
so high modularity indicates a good partitioning.

3.1 Detecting Communities with Constant Sheaves

Our first algorithm considers constant sheaves and models dynamics after the sheaf-theoretic bounded con-
fidence model previously described in Subsection 2.2.

In Step 2 of Algorithm 1, we have included a stopping criterion for time efficiency: If the evolution does
not converge after 1000 time units, the calculation is aborted. In Subsection 3.2 we explain why this is



Algorithm 1: Community Detection with Constant Sheaves R™

Input: dimension parameter n, parameter for diameter d
Initialize by picking a random opinion vector for each vertex stalk uniformly from B(0, %)
2 Evolve the system using Eq. (1) until for no edge e = (u,v), the difference ||x, — x,|| € (0.0033,1);
abort if that does not happen within 1000 time units
Obtain primary partition by grouping neighbors w,w’ together if and only if ||z, — z,| < 0.0033
if we find a single-vertex community v then
add the vertex to that adjacent community C, which has maximal
L 2|E| k¢ — deg(v) - >, cc deg(w), where k¢ is the number of neighbors of v belonging to C

-

o AW

Output: The obtained partition

necessary. We keep track of the number of abortions and take them into account in our reported results
below, when providing uncertainties.

We impose the positive value of 0.0033 for the computed difference in Steps 2 and 3 as another stopping
criterion and trade-off between precision and time-efficiency.

Step 4 resolves single-vertex clusters by adding the vertex v to the cluster of that neighbor of v which is
optimal in the sense of modularity. Proposition 5 justifies this choice by showing that each of these moves
increases modularity.

Figure 4: Sketch of a possible situation in the proof of Proposition 5 with k&1 =3, ko =1, k, =2

Proposition 5. Single vertex clusters can be removed in a way that increases modularity. The removal of
single vertex clusters implemented in Algorithm 1 is optimal in the sense of modularity.

Proof. Consider a vertex v, the clusters C, ..., ), to which its neighbors belong, and let k; be the number
of neighbors of v that are in Cj, see Figure 4. Adding v to C; increases the modularity of the given partition

by
_ kz . 2deg(v) ! Zweci deg(w)
B 4|EJ?

Notice that the value that we maximize in Step 5 is 2|E|A; (for the cluster C; considered in Step 5). We
must show that at least for one i, A; is positive. Observe that

AEPY A= 4|Elk; — 2deg(v) > Y deg(w)
i=1

i=1 i=1 wel;

A;

> 4|F|deg(v) — 2deg(v) - 2|E| > 0,

because >, ZwECl deg(w) is bounded from above by the sum of all degrees of vertices that are not v
which is 2|E| — deg(v). This completes the proof. O

3.2 Convergence of Algorithm 1: Community Detection with Constant Sheaves

The following example shows why we need the abortion criterion in Step 2 of Algorithm 1:



a(t) 1+ b(t)

b() | —[1+a()]

a(t) 14+ 0(t)

Figure 5: Example of a network in which Algorithm 1 is aborted in Step 2

Example 6. Consider the graph shown in Figure 5 and the constant sheaf R on that graph. Let

l1—-z 0<zx<1
S e

Initialize with values ag and by such that 1+ ag > by > ag, making sure that none of the connections drawn
in Figure 5 is ignored. Applying Eq. (1), we check that all vertices with value a(t) and 1+ a(t) as well as all
with b(t) and 1 + b(t) follow the same derivative. Therefore, the opinions in the network will remain in the
pattern shown in Figure 5 and the values a(t) and b(¢) evolve according to

- o db(t)
- = (0() —a®)(1+ alt) = b(t) = ——=.

That yields

1
(ao +bo — e 1 1)

b 1
ag + 0+762t+c+1

with ¢ = In (ﬁ — 1). In particular, 14+ a(t) — b(t) =1 — ﬁ < 1, but it converges to one. Thus,

the difference over the edge in the middle of Figure 5, between b(t) and 1 + a(t) will always end up in the
interval (0.0033,1) and Algorithm 1 will be aborted in Step 2.

Even though there are configurations without convergence, in our experiments we observed a convergence
within 1000 time steps for more than 95% of starting configurations for any choice of parameters.

N = N =

3.3 Detecting Communities with a Non-Constant Sheaf

We now consider a second community detection algorithm that uses the non-constant sheaf defined by setting
F(v) = RI8(") (we think of it as one copy of R for every edge that uses v), F(e) = R, and restriction maps
being the projections onto the corresponding edges.

At the vertices, there is no interaction between the directions corresponding to different edges, so each
direction can be treated separately. If for an edge e = (v, w), the difference between the initial components
ZTy,e and Ty ¢ is less than D, edge e will “survive” the evolution and otherwise not. Therefore, picking initial
values at v uniformly from [—%, %]deg(”) amounts to keeping each edge with the same probability p (which

depends only on d) and ignoring it otherwise. We thus obtain Algorithm 2.

Algorithm 2: Community Detection with a Non-Constant Sheaf

Input: probability parameter p
1 Obtain primary partition by grouping neighbors w,w’ together with probability p
2 Remove single-vertex clusters as in Algorithm 1, Step 4

Output: The obtained partition




3.4 Deterministic Sheaf Community Detection

A more general version of the bounded confidence model allows different functions ¢, for different edges. In
the case of the non-constant sheaf, this means that the probability p can depend on the edge and the local
structure of the graph.

With the idea in mind that we want to retain edges if the vertices belong to the same community, it
should be more likely for e = (u,v) to be retained if the number of common neighbors of v and v, denoted
Ny, is not too small compared to the total number of neighbors of v and v. In an extreme case, this
likelihood is either zero or one, and we arrive at Algorithm 3.

Algorithm 3: Deterministic Community Detection

Input: two parameters a € [0,1] and b € R
1 Obtain primary partition by grouping the two ends u, v of an edge e together if
a- (deg(u) + deg(v)) < b+ Ny
2 Remove single-vertex clusters as in Algorithm 1, Step 4
Output: The obtained partition

3.5 Experimental Setup

We tested the performance of Algorithm 1 by considering its dependence on d for n = 1 and the different
bump functions ¢ shown in Figure 6, as well as for n € {2,3,5,10} and ¢;. Note that for sake of comparability
we fixed D =1 to be the threshold for ignoring. On the interval [0, 1), the ¢; are given by:

pr(x)=1—x

po(z) =1 — 22

¢3(z) = (1 — )

pa(x) =1—2 —sin(27mx)/7

Algorithm 2 was run for various values of p and Algorithm 3 with different values of a and b.

All tests were performed on Zachary’s karate club graph G, shown in Figure 3, which represents a social
network of a karate club studied by sociologist Wayne Zachary from 1970 to 1972 (Zachary, 1977). The
network captures 34 members of the karate club and includes links between pairs of members who interacted
outside the club. The maximal possible modularity of a partition of G for this graph is Qmax(G) = 0.42
Costa (2014). All experiments were implemented in Python and the code is freely and publicly available at
https://github.com/ArneWolf/Bd_confidence_communities.

1 — ¢

0.5

Figure 6: The different functions ¢

4 Experimental Results

We report the results of our numerical experiments for our three proposed sheaf-theoretic community de-
tection algorithms from Section 3. We compare the performance in terms of average number of clusters and


https://github.com/ArneWolf/Bd_ confidence_communities

modularity (Definition 4).

Algorithm 1: The Constant Sheaves. To justify our stopping criterion of 0.0033 in Step 2 of Algorithm 1
and estimate the error caused, we compared the partitions to those obtained for running the evolution longer
so that for every edge ||z, — x| € (0.001,1) instead. The more precise calculations took, on average, a factor
of 100 longer. Out of 2930 runs we performed, the first stopping criterion applied 175 times and for the
remaining 2755 runs, the two obtained partitions agreed. We thus concluded that 0.0033 is small enough to
not cause a significant error.

Each parameter combination was simulated N = 1000 times. Figure 8 shows the average values of X
(number of clusters, modularity) and an error bar with radius

# early stoppings e
N )
where X denotes the average and o the standard deviation.
We immediately see that a larger width d of the distribution from which the initial opinions are picked

results in more clusters. Neither the number of clusters nor the modularity depends significantly on the
choice of ¢.

Xerror =0Xx

1 :
0.5+ =
0F X x x X X x x|
| | | | |

2 3 4 5 6

Figure 7: Likelihood of most likely partition for different diameters d of the initial distribution

In the case of smaller d, however, ¢3 tends to create more clusters than the others. Intuitively, this
behavior can be explained by comparing ¢3 to linearly decaying bump functions: it is more similar to a
bump function that decays quicker than ¢, than to ¢;. Quicker decay means a smaller threshold D < 1.
That in turn corresponds to having D = 1 and a bigger d. Thus, the properties of ¢3 tend to make d appear
larger.

For large d, the influence of removing singleton clusters (compared to the primary partition) grows. This
explains why the differences in the number of clusters as well as modularity for different choices of ¢ and
d become smaller. Looking at p = 0 in Figure 10 shows that resolving singleton clusters from a collection
of only singleton clusters yields a modularity of about 0.191. This is one explanation for having higher
modularites for larger d. Another explanation is that small d are likely to result in one big cluster containing
all the points. This trivial partition has modularity 0. Figure 7 shows the likelihood of the most likely
partition for ¢, and n = 1. For d < 4, whenever there is a partition that is significantly the most likely one,
this is the trivial partition. The same qualitative behavior is observed for other ¢ and n.

If d is large enough, the number of clusters increases as n increases. This is significant for n = 10, but the
tendency can be observed in Figure 9 for smaller n as well. This can be explained by larger n corresponding
to more topics of discussion, which in turn increases the chances that persons can disagree. The modularity
for small d seems to depend on n non-monotonously: n = 10 gives the highest values, followed by n = 1 and
n = 2. If d is large, the differences become insignificant.

Algorithm 2: The Non-Constant Sheaf. For Algorithm 2, Figure 10 shows the expected decrease of
the number of clusters with increasing p. The modularity has a maximum of about 0.26 near p = 0.12. For
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Figure 8: Average number of clusters and modularity for n = 1, different bump functions ¢ and different
diameters of the initial opinion distributions

smaller p — 0, the modularity becomes 0.191 and for large p it goes to zero due to the dominance of the
trivial partition.

Algorithm 3: The Deterministic Algorithm. Due to the affine linear condition in Step 1 of Algorithm 3,
the modularity and number of clusters change along affine lines. The deterministic algorithm reaches a
maximal modularity of about 0.407, which comes close to Qumax = 0.42. However, the portion of the
parameter space that reaches this value is small—the other algorithms had broader ranges of maxima for
their modularities. The partition yielding ¢ = 0.407 consists of four clusters, just as the partition obtaining

Qmax-

5 Discussion

In this work, we showed that sheaves are a viable algebraic topological tool to model the problem of commu-
nity detection on networks. We proposed three different algorithms, two of which had random initializations
and were based on constant sheaves and a non-constant sheaf, and a third deterministic version that allows
for different bump functions for different edges of the graph. The deterministic sheaf-theoretic community
detection algorithm, in particular, performed well in terms of modularity and achieved values near the max-
imal modularity value. Ours is the first work to computationally implement sheaves on real-world social
network data and the first use of sheaves in the problem of community detection on networks. Moreover,
our work provides a proof-of-concept for future work adapting the potential of cellular sheaves to studying
complex systems captured by networks and simplicial complexes, in general.

Directions for future work involve combining various notions from the different algorithms to, for instance,
allow bump functions in Algorithm 1 or the probability p in Algorithm 2 to depend on the edge, which
may potentially improve performance. An optimization procedure may also be proposed to find optimal
parameters, and thus, optimal partitions for a network.
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Figure 11: Modularities (left) and numbers of clusters (right) for several parameter combinations for the
deterministic Algorithm 3
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