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Abstract. A social interaction (so-called higher-order event/interaction)
can be regarded as the activation of the hyperlink among the correspond-
ing individuals. Social interactions can be, thus, represented as higher-
order temporal networks, that record the higher-order events occurring
at each time step over time. The prediction of higher-order interactions is
usually overlooked in traditional temporal network prediction methods,
where a higher-order interaction is regarded as a set of pairwise interac-
tions. We propose a memory-based model that predicts the higher-order
temporal network (or events) one step ahead, based on the network ob-
served in the past and a baseline utilizing pair-wise temporal network
prediction method. In eight real-world networks, we find that our model
consistently outperforms the baseline. Importantly, our model reveals
how past interactions of the target hyperlink and different types of hyper-
links that overlap with the target hyperlinks contribute to the prediction
of the activation of the target link in the future.

Keywords: higher-order network, temporal network, network predic-
tion, network memory

1 Introduction

Temporal networks have been used to represent complex systems with time-
varying network topology, where each link between two nodes is activated only
when the node pair interacts [13,20]. This classic temporal network presenta-
tion assumes interactions to be pairwise. Social contacts/interactions have been
mostly studied as pairwise temporal networks. However, contacts/interactions
could be beyond pairwise [3][2]. Individuals may interact in groups [22]. A col-
laboration in scientific paper may engage more than two authors. Such inter-
actions that involve an arbitrary number of nodes are called higher-order in-
teractions/events. Social contacts are thus better represented by higher-order
temporal networks.

The classic temporal network prediction problem consists of predicting pair-
wise contacts one time step ahead based on the temporal network observed in
the past. Predicting a temporal network in the future enables better forecast
and mitigation of the spread of epidemics or misinformation on the network.
The temporal network prediction problem is also equivalent to problems in rec-
ommender systems: e.g., predicting which user will purchase which product, or
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which individuals will become acquaintances at the next time step [18,1]. Differ-
ent methods have been proposed for pairwise temporal network prediction. Some
rely on network embeddings: nodes are represented as points in a low dimen-
sional space where connected nodes are supposed to be closer in this embedding
space [26]. Alternatively, deep learning methods have also been proposed [15], for
instance, using LSTM methods [10] or adversarial networks [9]. However, these
methods are at the expense of high computational costs and are limited in pro-
viding insights regarding which network mechanisms enable network prediction.
Methods have also been proposed to predict whether a set of nodes will have
at least one group interaction in the future [4,16,21] and when the first group
interaction among these nodes occurs [17].

In this paper, we aim to predict higher-order temporal networks, i.e., higher-
order interactions, one time step ahead, based on the higher-order temporal
network observed in the past of a duration L, and to understand what network
properties and which types of previous interactions enable the prediction. Firstly,
we explore the memory property of higher-order temporal networks, i.e., to what
extent the network topology remains similar over time. Furthermore, we propose
a memory-based model to solve the prediction problem utilizing the memory
property observed. This model is a generalization to higher-order of the pairwise
model proposed in [27]. Our model assumes that the activity (interacting or
not) of a group at the next time step is influenced by the past activity of this
target group and of other groups that form a subset or a superset of the target
group. Furthermore, the influence of recent events is considered more impactful
than the influence of older events. In the prediction problem, we assume the total
number of events of each group size (order) at the prediction time step is known,
and the groups, each of which interact at least once in the network (in the past
or future), are known. These assumptions aim to simplify the problem. Beyond,
the total number of interactions of each order could be influenced by factors like
weather and holiday other than the network observed in the past. The latter
assumption means that group friendship is known and we confine ourselves to
the prediction of which groups with group friendship interact at the next time
step.

We also propose a baseline model that uses a memory-based pairwise tem-
poral network prediction method [27]: it considers the higher-order temporal
network observed in the past as a pairwise temporal network, predicts pairwise
temporal network in the next time step and deduce higher-order interactions
from the predicted pairwise interactions at the same prediction time step.

Our model consistently outperforms this baseline in network prediction, as
evaluated in eight real-world physical contact datasets. We find that the past
activity of the target group is the most important factor for the prediction.
Moreover, the past activity of groups of a large size has, in general, a lower
impact on the prediction of events of the target group than groups of a small
size.

The rest of the paper is organized as follows. We introduce in Section 2 the
representation of higher-order temporal networks and in Section 3 the datasets
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we use to design and evaluate our prediction method. Key temporal network
properties are explored in Section 4 to motivate the design of our model, which
is explained in Section 5. In Section 6, our model is evaluated and compared to
our baseline and further interpreted.

2 Network representation

A pairwise temporal network G measured at discrete times can be represented as
a sequence of network snapshots G = {G1, G2, ..., GT }, where T is the duration
of the observation window, Gt = (V,Et) is the snapshot at time step t with V
and Et being the set of nodes and interactions, respectively. If nodes a and b have
a contact at time step t, then (a, b) ∈ Et. Here, we assume all snapshots share the
same set of nodes V . The set of links in the time-aggregated network is defined
as E =

⋃t=T
t=1 Et. A pair of nodes is connected with a link in the aggregated

network if at least one contact occurs between them in the temporal network.
The temporal connection or activity of link i over time can be represented by a T -
dimension vector xi whose element is xi(t), where t ∈ [1, T ], such that xi(t) = 1
when link i has a contact at time step t and xi(t) = 0 if no contact occurs at
t. A temporal network can thus be equivalently represented by its aggregated
network, where each link i is further associated with its activity time series xi.

Social interactions, which may involve more than two individuals, can be
more accurately represented as a higher-order temporal network H, which is
a sequence of network snapshots H = {H1, ...,HT }, where Ht = (V, Et) is the
snapshot at time step t with V being the set of nodes shared by all snapshots
and Et the set of hyperlinks that are activated at time step t. The activation of
a hyperlink (u1, ..., ud) at time step t corresponds to a group interaction among
nodes u1, ..., ud at time step t. The hyperlink (u1, ..., ud) active at time step
t is called an event or interaction and its size is d. If h1 ⊂ h2, i.e., h1 is in-
cluded in h2, we call h2 a super-hyperlink of h1 and h1 a sub-hyperlink of h2.
The set of hyperlinks in the higher-order time-aggregated network is defined as
E =

⋃t=T
t=1 Et. A hyperlink belongs to E if it is activated at least once in the

temporal network. A higher-order temporal network can thus be equivalently
represented by its higher-order aggregated network, where each hyperlink i is
further associated with its activity time series xi.

3 Datasets

To design and evaluate our temporal network prediction methods, we consider
eight empirical physical contact networks from the SocioPatterns project1. They
are collections of face-to-face interactions at a distance smaller than 2 m, in sev-
eral social contexts such as study places (Highschool2012 [11], Highschool2013
[19], Primaryschool [24]), conferences (SFHH Conference [5][23], Hypertext2009
[14]), workplaces (Hospital [25], Workplace [12]) or an art gallery (Science Gallery

1 http://www.sociopatterns.org/
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Dataset Order 2 Order 3 Order 4 Order 5 Order 6+

Science Gallery 12770 1421 77 7 0

Hospital 25487 2265 81 2 0

Highschool 2012 40671 1339 91 4 0

Highschool 2013 163973 7475 576 7 0

Primaryschool 97132 9262 471 12 0

Workplace 71529 2277 14 0 0

Hypertext 2009 18120 874 31 12 4

SFHH Conference 48175 5057 617 457 199

Table 1: Number of events of every order for every dataset after preprocessing.

[14]). These face-to-face interactions are recorded as a set of pairwise interac-
tions. Based on them, group interactions are deduced by promoting every fully-
connected clique of

(
d
2

)
contacts happening at the same time step to an event

of size d occurring at this time step. Since a clique of order d contains all its
sub-cliques of order d′ < d, only the maximal clique is promoted to a higher-
order event, whereas sub-cliques are ignored. This method has been used in [6]
and [8]. The datasets are also preprocessed by removing nodes not connected to
the largest connected component in the pairwise time-aggregated network and
long periods of inactivity, when no event occurs in the network. Such periods
usually correspond, e.g., to night and weekends, and are recognized as outliers.
This corresponds to the preprocessing done in [7] and [8]. The total number of
events of each order in our datasets, after preprocessing, is shown in Table 1.

4 Network memory property

Zou et al. observed properties of time-decaying memory in pairwise temporal
networks. This means that different snapshots of the network share certain sim-
ilarities. These properties were used to better predict pairwise interactions [27].
Inspired by this, we also want to know whether higher-order temporal networks
have memory at different orders and whether this property can be used to predict
higher-order events in temporal networks.

Therefore, we examine the Jaccard similarity of the network at two different
time steps and for every order. The Jaccard similarity measures how similar two
given sets are by taking the ratio of the size of the intersection set over the size

of the union set. In our case, we compute the Jaccard similarity
|En

t1
∩En

t2
|

|En
t1

∪En
t2

| for

every order n, between the set En
t1 of n-hyperlinks (hyperlinks of order n) active

at a time step t1 and the set En
t2 of n-hyperlinks active at a time step t2, called

En
t2 . The difference t2 − t1 is called the time lag.
As shown in Figure 1, the similarity decays as the time lag increases for orders

2, 3, and 4, respectively, in all datasets. The time-decaying memory at order 5
has been observed only in SFHH, the only network that has a non-negligible
number of order 5 events, as shown in Table 1.
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(a) Order 2 (b) Order 3

(c) Order 4 (d) Order 5

Fig. 1: Jaccard similarities of a network at two time steps for each order as a
function of the time lag in eight real-world physical contact networks.

5 Models

5.1 Baseline

We propose a baseline for higher-order temporal network prediction utilizing the
following pairwise network prediction model, called Self-Driven SD model, pro-
posed in [27]. The SD model is a memory-based model that predicts a pairwise
link’s activity at the next time step based on its past activity. The SD model
estimates the tendency wj(t+ 1) for each link j to be active at time t+ 1 as:

wj(t+ 1) =
∑k=t

k=t−L+1 xj(k) exp
−τ(t−k),

where t + 1 is the prediction time step, L is the length of the past observa-
tion used for the prediction, τ is the exponential decay factor, and xj(k) is the
activation state of link j at time k: xj(k) = 1 if the link j is active at time k
and xj(k) = 0 otherwise.
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The activation tendency is computed for each link in the pairwise aggregated
network, which is given. Given the number of pairwise contacts n2

t+1 occurring
at t + 1, the n2

t+1 links with the highest activation tendency at t + 1 will be
predicted to have contacts at t+ 1.

We propose a baseline model that firstly considers the higher-order temporal
network observed in the past of duration L as pairwise temporal network, then
applies the pairwise memory-based model to predict pairwise interactions at
the prediction step, and deduces higher-order interactions from the predicted
pairwise interactions, using the same method that promotes interactions that
form a clique to a higher-order event (see Section 3). This set of higher-order
interactions is considered the prediction made by the baseline model.

5.2 Generalized model

The time-decaying memory is also observed at different orders in the higher-
order temporal networks. This motivate us to generalize the SD model for higher-
order network prediction. The essence of the generalized model is that the future
activity of a hyperlink should be dependent on its past activity. Furthermore,
it has been shown that events of different orders that occur close in time tend
to overlap in component nodes [8]. Hence, the activity of a hyperlink is also
supposed to be dependent on the past activity of its sub-hyperlinks and super-
hyperlinks. Finally, recent events should have more influence than older events,
based on the observed time-decaying memory.

Therefore, we propose the activation tendency of a hyperlink j at a predic-
tion time stept+ 1 as:

wj(t+ 1) =
∑k=t

k=t−L+1

∑
i∈Sj

cdidjxi(k) exp
−τ(t−k),

where L is the length in time of the network observed in the past used for
the prediction, τ is the exponential decay factor, Sj is the set of hyperlinks that
are either sub-hyperlinks or super-hyperlinks of j, and xi(k) is the activation
state of hyperlink i at time k. cdidj is the coefficient of cross-order influence,
for which di is the size of hyperlink i and dj is the size of hyperlink j. For in-
stance, c32 is the coefficient associated with the influence of the activation of
a 3-hyperlink on the activation of one of its sub-hyperlinks of size 2. We put
cdd = 1 for any arbitrary hyperlink size d. Different sub-models of our general
model are obtained by varying the values of the cross-order coefficients cd1d2

for
d1 ̸= d2.

The activation tendency is computed for each hyperlink in the higher-order
aggregated network, which is given in the prediction problem. Given the number
no
t+1 of events of each order o at the prediction step t+1, the no

t+1 hyperlinks of
order o with the highest activation tendency at t+ 1 are predicted to be active.
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6 Model evaluation

6.1 Network prediction quality

We aim to predict the higher-order temporal network at time step t + 1 based
on the network observed between t − L + 1 and t. To evaluate the proposed
prediction methods, every time step within [L + 1, T ] is chosen as a possible
prediction step, i.e., t + 1 ∈ [L + 1, T ], where T is the global lifespan of each
empirical network. The prediction quality of a given model for events of an
arbitrary order is evaluated via prediction accuracy: the ratio between the total
number of true positives (correctly predicted events) over all possible prediction
steps [L+ 1, T ] for that order and the total number of events of that order that
occur within [L+ 1, T ].

6.2 Parameter choice of the generalized model

Since the events of orders higher than 4 are few in number in real-world physical
contact networks considered, we focus on the prediction of events of orders 2,
3, and 4, respectively based on the previous activities of events of orders 2,
3, and 4. For every order (e.g., order 3), we make its associated pair of cross-
order coefficients (e.g.,c23, c43) take all possible values in {0.0, 0.1, ..., 1.0} ×
{0.0, 0.1, ..., 1.0}. Cross-order coefficients larger than 1 or smaller than 0 lead to
lower prediction quality in general and are, therefore, not considered.

We choose the duration of the past network observation L = 30 for predic-
tion, which is equivalent to 600s in our real-world physical contact networks (the
duration of each time step is 20ms). This choice was found by comparing the
accuracy of the prediction for different values of L between 1 and T/2 and for
different values of τ between 0.25 and 1. Because a small L means low computa-
tional complexity, we identify L=30 as the smallest L that does not lead to an
evident drop in prediction quality compared with L = T/2.

We compared the prediction performance for different values of the decay
factor τ , where τ ∈ {0, 0.25, ..., 1.5}. When τ = 0, i.e., previous interactions con-
tribute equally in predicting the connection tendency of a hyperlink independent
of when these interactions occur, the model performs the worst in every order for
all datasets. This is in line with the time-decaying memory we have observed. In
general, the choice of τ ∈ [0.25, 1.5] has little influence in the performance. We
will focus on the performance analysis of the generalized model in comparison
with the baseline model when τ = 0.25 in this paper, since other choices of τ
lead to the same observation.

6.3 Performance Analysis

For every order 2, 3, or 4, we compute the prediction accuracy obtained by our
generalized model with any pair of cross-order coefficients in {0.0, 0.1, ..., 1.0} ×
{0.0, 0.1, ..., 1.0} and identify the best performance achieved by choosing the op-
timal coefficient pair. This best performance, referred as the prediction accuracy
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Dataset Order 2 Order 3 Order 4

Science Gallery 0.33 (0.33) 0.23 (0.16) 0.57 (0.22)

Hospital 0.53 (0.52) 0.50 (0.32) 0.72 (0.17)

Highschool2012 0.56 (0.55) 0.50 (0.38) 0.67 (0.19)

Highschool2013 0.61 (0.61) 0.40 (0.34) 0.61 (0.36)

Primaryschool 0.32 (0.32) 0.19 (0.16) 0.33 (0.09)

Workplace 0.57 (0.56) 0.49 (0.30) 0.50 (0.07)

Hypertext2009 0.50 (0.50) 0.52 (0.34) 0.68 (0.10)

SFHH Conference 0.53 (0.52) 0.45 (0.38) 0.58 (0.39)

Table 2: Prediction accuracy of the generalized model and the baseline (in paren-
theses) per order for every dataset. The prediction accuracy of the generalized
model is in bold if it is larger than that of the baseline model .

of the model is further compared with the prediction quality of the baseline.
As shown in Table 2, our generalized model performs overall better than the
baseline for the interaction prediction for any order and in each network. The
outperformance is more evident at orders 3 and 4.

For the prediction of events of a given order, the two corresponding cross-
order coefficients of the generalized model affect the prediction accuracy, as
shown in Figure 2 and 3. We will explore which coefficient ranges tend to lead
to optimal prediction accuracy. This will enable us to understand how events of
different types of hyperlinks (super- and sub-hyperlinks) in the past contribute
to the prediction of the event of a target hyperlink.

Take the prediction of events of order 3 as an example. Figures 2 and 3
show that close to optimal prediction precision is obtained approximately when
c23 ∈ {0.1, ..., 0.4} < c33 = 1. This means the interaction of a sub-hyperlink of
order 2 in the past leads to a lower activation tendency of the target hyperlink of
order 3 compared to the interaction of the target hyperlink occurring at the same
time in the past. The influence of c43 on the prediction quality is not evident,
likely due to the small number of events of order 4. For events of order 2, the
prediction quality tends to be optimal when c32, c42 ∈ {0.1, ..., 0.4}, though their
influence on prediction quality is less evident, as partially shown in Figure 3. For
order 4 (see also Figure 3), c24 and c34 affect the prediction quality evidently and
c24 ∈ {0.1, ..., 0.4} and c34 ∈ {0.6, ..., 0.9} tend to give rise to close to optimal
prediction precision. To achieve the optimal prediction quality, c24 < c34 < c44 =
1, and c23 < c33. This means that the activation of a hyperlink that overlaps more
with the target hyperlink in nodes implies a higher activation tendency of the
target link in the future. In general, the activation of super- and sub-hyperlinks
all contribute to the activation of the target hyperlink in the future, since cross-
order coefficients zero lead to worse prediction precision. However, the choice
of the contribution of a super-hyperlink activation (i.e., cdidj

when di > dj)
in predicting the activity of target hyperlink j does not affect the prediction
quality evidently, likely because of the relatively small number of activations of
a super-hyperlink compared to the number of activations of the target link.
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Fig. 2: Precision (Ratio of true positives) of predicting events of order 3 as a
function of c23, with c43 fixed, for all datasets.

7 Conclusion and Discussion

In this paper, we proposed a network-based higher-order temporal network pre-
diction model that predicts the activity of each higher-order hyperlink at the
next time step based on the past activity of this hyperlink and of its sub- and
super-hyperlinks. The contributions of the different hyperlinks are weighted with
an exponential decay depending on how far in the past the events occurred. Our
model was shown to perform consistently better than the baseline directly de-
rived from a pairwise prediction method. Using the previous activities of the
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Fig. 3: Precision (Ratio of true positives) of predicting events of a given order as
a function of one coefficient, with the other coefficient fixed, for two datasets.

target link itself, its sub- and super-hyperlinks together enable better prediction
precision than considering only the activity of the target link itself, which is
though the most influential factor. A past event of a sub-hyperlink that overlap
more with the target hyperlink in nodes suggests a higher activation tendency of
the target link. The contributions of super-hyperlinks (when the corresponding
cross-order coefficients vary with the range [0, 1]) does not affect the predic-
tion quality evidently, likely because of the relatively small number of events of
super-hyperlinks in comparison with that of the target hyperlink.

We have focused on higher-order social contact networks that are derived
from measurement of pairwise interactions. These higher-order networks have
the property that a hyperlink and its sub-hyperlink are never activated at the
same time, a property shared by the higher-order network predicted by the base-
line model. It would be interesting to explore the proposed methods and better
methods to solve the network prediction problem in other types of higher-order
temporal networks, that may not have this property nor the memory property.
The baseline model could be improved by, e.g., using the total number of events
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of each order in the prediction step, which has already utilized by our generalized
model.
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16. Liu, B., Yang, R., Lü, L.: Higher-order link prediction via local information. arXiv
preprint arXiv:2306.08215 (2023)

17. Liu, Y., Ma, J., Li, P.: Neural predicting higher-order patterns in temporal net-
works. In: Proceedings of the ACM Web Conference 2022. pp. 1340–1351 (2022)
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