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Abstract. Generative modelling and synthetic data can be a surro-
gate for real medical imaging datasets, whose scarcity and difficulty to
share can be a nuisance when delivering accurate deep learning mod-
els for healthcare applications. In recent years, there has been an in-
creased interest in using these models for data augmentation and syn-
thetic data sharing, using architectures such as generative adversarial
networks (GANs) or diffusion models (DMs). Nonetheless, the applica-
tion of synthetic data to tasks such as 3D magnetic resonance imaging
(MRI) segmentation remains limited due to the lack of labels associated
with the generated images. Moreover, many of the proposed generative
MRI models lack the ability to generate arbitrary modalities due to the
absence of explicit contrast conditioning. These limitations prevent the
user from adjusting the contrast and content of the images and obtaining
more generalisable data for training task-specific models. In this work, we
propose brainSPADE3D, a 3D generative model for brain MRI and asso-
ciated segmentations, where the user can condition on specific patholog-
ical phenotypes and contrasts. The proposed joint imaging-segmentation
generative model is shown to generate high-fidelity synthetic images and
associated segmentations, with the ability to combine pathologies. We
demonstrate how the model can alleviate issues with segmentation model
performance when unexpected pathologies are present in the data.

1 Introduction

In the past decade, it has been shown that deep learning (DL) has the potential
to ease the work of clinicians in tasks such as imaging segmentation [10], an oth-
erwise time-consuming task that requires expertise in the imaging modality and
anatomy. Nonetheless, the performance and generalisability of DL algorithms is
linked to how extensive and unbiased the training dataset is [14]. While large
image datasets in computer vision are widely available [9], this is not the case
for medical imaging because images are harder to acquire and share, as they
are subject to tight data regulations [23]. In addition, most state-of-the-art seg-
mentation algorithms are supervised and require labels as well as images, and
because obtaining these requires substantial time and expertise, they tend to
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focus on a specific region of interest, making dataset harmonisation harder. In
brain MRI, where studies are tailored to a pathology and population of inter-
est, obtaining a large, annotated, multi-modal and multi-pathological dataset
is challenging. An option to overcome this is to resort to domain randomisa-
tion methods such as SynthSeg [5], but their performance in the presence of
highly variable pathologies such as tumours has not been tackled. Alternatively,
data augmentation via deep generative modelling, an unsupervised DL branch
that learns the input data distribution, has been applied in recent years to en-
rich existing medical datasets, producing realistic, usable synthetic data with
the potential to complement [3] or even replace [11] real datasets, using archi-
tectures such as generative adversarial networks (GANs) and the more recent
diffusion models (DMs) [26,21]. One of the major roadblocks, though, when it
comes to applying synthetic data to segmentation tasks is that of producing
labelled data. Conditioning can give the user some control over the generated
phenotypes, such as age [21]. However, to our knowledge, only a handful of works
deliver segmentations to accompany the data. In the case of published models
generating data based on real labels [22], we must consider that labels are not
usually shared, as they are sometimes considered protected health information,
due to the risk of patient re-identification [27], and due to the above-mentioned
difficulty to produce. Therefore, it may be beneficial that the labels themselves
are also algorithmically generated from a stochastic process. Few works in the
literature provide synthetic segmentations [4,12,11], especially enclosing healthy
and multiple diseased regions. Among the latter, these models are limited to
2D, and they hardly allow the user to modulate their content (e.g., selecting the
subject’s pathology or age), limiting their applicability.

Contributions: in this work, we propose a 3D generative model of the brain
that provides multi-modal brain MR images and corresponding semantic maps
generated by giving the user the power to condition on the pathological pheno-
type of the synthetic subject. We showcase the benefits of using these synthetic
datasets on a downstream white matter hyperintensity (WMH) segmentation
task when the test dataset contains also contains tumours.

2 Methods

2.1 Data

For training, we used the SABREv3 dataset consisting of 630 T1, FLAIR and
T2 images [17], a subset of 66 T1 and FLAIR volumes from ADNI2 [16], and 103
T1, FLAIR and T2 volumes from a set of sites from BRATS [1,2,19]. Due to the
large computational costs associated with training generative models, it is not
tenable to train them using full resolution, full size 3D images: we circumvented
this issue by, on one hand, mapping images to a 2mm isotropic MNI space,
resulting in volumes of dimensions 96 × 128 × 96, and on the other hand, by
operating with patches, taken from 1mm data of dimensions 146 × 176 × 112.
Bronze-standard partial volume (PV) maps of the cerebrospinal fluid (CSF), grey
matter (GM), white matter (WM), deep grey matter (DGM) and brainstem were
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obtained using GIF [6], masking out tumours for BRATS. These healthy labels
were overlaid with manual lesion labels provided with the datasets: WMH for
the first two; and gadolinium-enhancing (GDE), non-enhancing (nGDE) tumour
and edema for BRATS.

2.2 Algorithm

Our pipeline consists of a conditional generator of semantic maps and an image
generator, depicted in Fig. 1. It is based on the generative model proposed in
[11]: a label generator, consisting of a latent diffusion model (LDM), is trained
on the healthy tissue and lesion segmentations. Independently, a SPADE-like
[20] network is trained on the PV maps and the multi-modal images. For the
1mm3 data, patches of 146× 176× 64 had to be used for the image generator.

Label generator: The proposed label generator is based on a latent diffu-
sion model (LDM), made up of a spatial variational auto-encoder (VAE) and
a diffusion model (DM) operating in its latent space. The VAE of the 2mm3

resolution model had 3 downsamplings, and the 1mm3 had 4, resulting in latent
spaces of shapes 32× 24× 32 and 24× 24× 16, respectively. The VAE is trained
using focal loss (γ = 3), Kullback-Leibler distance (KLD) loss to stabilise the
latent space, Patch-GAN adversarial loss and a perceptual loss based on the fea-
tures of MED3D [7], implemented using MONAI [8]. For the diffusion model, we
predict the velocity using the v-parametrization approach from [24] and optimise
it via an l2 loss. We used T=1000 timesteps. We used a PNDM [18] scheduler to
sample data, predicting only 150 timesteps. In addition, disease conditioning dc
was applied using a cross-attention mechanism. For each subject j and disease
type l, we have a label map Mjl, from which we produce a conditioning value
dcjl reflecting the voxels labelled as l in the map, normalised by the maximum

Fig. 1. Architecture of our two-stage model: the left block corresponds to the label
generator, and the right block to the image generator. Training and inference pathways
are differentiated with black, red and dashed arrows.



4 Fernandez et al.

number of l voxels across the dataset, i.e.:

dcjl =

∑N
n=1 Mjl

maxj

∑N
n=1 Mjl

, (1)

where the sum is across all voxels in the map. We trained the VAE for 250 epochs
and the DM for 400, on an NVIDIA A100 DGX node.

Image generator: We modified the SPADE model used in [11] to extend the
2D generator and multi-scale discriminator to 3D. The encoder, which should
only convert the contrast of the input image to a style vector, was kept as a
2D network, as it was found to work well while being parsimonious. To ensure
that the most relevant brain regions informed the style, we used sagittal slices
instead of axial ones as done in [11], selecting them randomly from the central
20 slices of each input volume. We kept the original losses from [20] to optimise
the network. We replaced the network on which the perceptual loss is calculated
with MED3D [7], as its features are also in 3D and fine-tuned on medical images,
which are more domain-pertinent. We ran a full ablation study on the losses
introduced in [11]; we dropped the modality-dataset discriminator loss, as it did
not lead to major improvements but kept the slice consistency loss. To train
the 1mm3 model, we used random patches of size 64 along the axial dimension.
During inference, we used a sliding-window approach with a 5-slice overlap.
We trained the networks for 350 epochs on an NVIDIA A100 GPU. Further
details are provided in the supplementary materials. Code is available at https:
//github.com/virginiafdez/brainSPADE3D_rel.git.

2.3 Downstream segmentation task

To compare the performance in segmentation tasks of our synthetic datasets,
we performed several experiments using nnUNetv2 [15] as a strong baseline ar-
chitecture, adjusting only the number of epochs until convergence. The partial
volume maps were converted to categorical labels via an argmax operator.

3 Experiments

3.1 Quality of the generated images and labels pairs

Without established baselines for paired 3D healthy and pathological labels and
image pairs, we assess our synthetic data by comparing them to real data and
showing how they can be applied to downstream segmentation tasks. Examples
of generated labels and images are depicted in Fig. 2. In one case, we used a
conditioning unseen by the model during training, WMH + all tumour layers:
both 1mm3 and 2mm3 label generators show the capability of handling this un-
seen combination, resulting in both lesions being present in the resulting images.
However, we observed a lower ability of extrapolating to unseen phenotypes in
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the 1mm3 model, with only about 37% of the labels inferred using such condi-
tioning resulting in the desired phenotype being met, as opposed to the 2mm3

model which manifested both lesion types in 100% of the generated samples.

Quality of the labels: As the label generator is stochastic, we cannot compute
paired similarity metrics. Instead, we compare the number Vi,j , for image i and
region j, of CSF, GM, WM, DGM and brainstem voxels across subjects between
a synthetic dataset of 500 volumes and a subset of the training dataset of the
same size, excluding tumour images, but allowing for low WMH values as these
don’t disrupt the anatomy of the brain. The number of voxels Vi,j is calculated
as: Vi,j =

∑N
n=1(in==j) , where N is the number of pixels in the image. Table

1 reports mean values and standard deviations, demonstrating that our model
generates labels with mean volumes similar to real data. By comparing the labels,
we saw that the considerable discrepancy between Vi,CSF at 1mm3 is due to a
loss of details in the subarachnoid CSF, which is very thin, likely due to the
high number of VAE downsamplings at 1mm3 (visual comparison is available in
supplementary Fig. 1). However, we observe a lower standard deviation in the
tissue volumes, indicating that the label generator does not capture the natural
variability of brain tissues.

Fig. 2. Example synthetic 1mm3 and 2mm3 isotropic labels and images generated
using tumour+WMH (left) and WMH (right) conditioning. The augmented frame in
the top left images shows the small WMH lesions near the ventricles.
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Table 1. Mean number of voxels and standard deviation of brain regions across real
and synthetic datasets. Every value has been multiplied by 10−4.

Dataset CSF GM WM DGM Brainstem
Real (1mm3) 20.3422.830 37.6341.747 44.8722.270 4.3010.581 1.2380.269

Synthetic (1mm3) 14.1410.964 43.5830.735 42.0291.728 6.7130.592 1.0660.102

Real (2mm3) 4.7900.573 9.8790.585 7.4360.512 0.4530.080 0.3630.036
Synthetic (2mm3) 4.6410.163 8.5640.297 7.0080.198 0.5870.978 0.3430.013

Quality of the generated images: To assess the performance of our image
generator, we use a hold-out test set of PV maps and corresponding T1, FLAIR
and T2 images, to compute the structural similarity index (SSIM) between the
ground truth images and the image generated when the real PV map and a
slice from the ground truth were used as inputs to the models. The mean SSIMs
obtained are summarised in table 2, showing that the model performs similarly
across different contrasts. Discrepancies between real and synthetic images can
be explained by the stochasticity of the style encoder.
Synthetic data for healthy region segmentation: We assess the perfor-
mance of our generated pairs on a CSF, GM, WM, DGM and brainstem seg-
mentation task. We train an nnU-Net model, Mhealthy on the T1 volumes of the
real subset of 500 subjects mentioned earlier, and M ′

healthy on the 500 synthetic
T1 and label pairs, then test both models on a hold-out test set of 30 subjects
from the SABRE. The Dice scores on all regions are reported in table 3. Although
Mhealthy performs better in all regions, the M ′

healthy trained on purely synthetic
data demonstrated a competitive performance for all regions except the DGM.
DGM is a complex anatomical region comprising several small structures with
intensities ranging between those typical for GM and WM. Thus, the PV map
value for a voxel in this region will split its probability between DGM, WM and
GM rather than favouring just one class, which is problematic for nnU-Net, as
it requires categorical inputs to train the model, resulting in noisy ground truth
labels that cause a larger distribution shift for the region. Examples of these
noisy training and test labels are showcased in supplementary Fig. 2.

3.2 WMH segmentation in the presence of tumour lesions

Aim: The main aim of this work is to show how synthetic data can increase the
performance of segmentation models when training datasets are biased towards
a specific phenotype. We focus on WMH segmentation. Our target dataset is a

Table 2. SSIM values obtained between real and synthetic images for T1, FLAIR and
T2 contrasts for both models, generated using real PV maps.

1mm3 2mm3

T1 FLAIR T2 T1 FLAIR T2
0.8420.083 0.7980.082 0.7940.075 0.9220.010 0.9100.030 0.9090.025
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Table 3. Mean Dice score and standard deviation obtained for the models trained on
real and synthetic data. Asterisks denote significantly better performance.

Resolution Model CSF GM WM DGM Brainstem
1mm3 Mhealthy 0.9570.005* 0.9590.003* 0.9710.003* 0.8750.015* 0.9580.021*
1mm3 M ′

healthy 0.8840.014 0.9120.009 0.9360.005 0.6840.034 0.8740.036
2mm3 Mhealthy 0.9470.057* 0.9580.046* 0.9680.039* 0.8870.065* 0.9620.024*
2mm3 M ′

healthy 0.8690.057 0.8950.052 0.9310.047 0.7030.100 0.9050.025

subset of 30 unseen volumes from BRATS (a different set of sites from those seen
by the generative model) containing WMH lesions and tumours. We hypothesise
that a WMH segmentation model trained on images that do not contain tumours
will label these as WMH, as tumours and WMH share some intensity similarities
in the FLAIR contrast typically used to segment WMH [25]. With the proposed
generative model, we can generate synthetic data containing subjects with both
tumours and WMH, which should make the training model robust to cases where
both diseases are present, therefore reducing false positives.

We ran this experiment with 2mm3 isotropic data, as the phenotype condi-
tioning worked better (see 3.1) in this model. From a stack of 500 real FLAIR
volumes from the SABRE dataset, and a stack of 500 FLAIR synthetic volumes
generated from synthetic labels conditioned on both tumours and WMH, we
train several models MRPRSPS

, varying the % proportions PR and PS of real
and synthetic data respectively. In addition, even if the premise of this work is
that users do not have access to real data containing tumours, we train model
MRWMHRtum on the real FLAIR volumes from the SABRE dataset, and the
BRATS tumour volumes used to train the synthetic model, leaving the training
labels empty, as no prior WMH segmentations are available for BRATS. We
calculate the Dice score on WMH on a hold-out test set of 30 subjects from the
SABRE dataset. As we do not have WMH ground truth labels for our test set
from BRATS, but we have tumour labels, we compute the proportion of tumour
pixels incorrectly labelled as WMH and note this metric FPtum.

Table 4. Mean Dice score, precision and recall obtained on the SABRE test dataset
by all the WMH segmentation models we trained, and FPtum ratio on the BRATS
holdout dataset. Asterisks indicate statistical significance.

Model Dice (PD) ↑ precision (PD) ↑ recall (PD) ↑ FPtum (BRATS) ↓
MR100S0 0.7280.281* 0.7610.236 0.7510.132* 0.3250.232
MR75S25 0.7130.208 0.7450.231 0.7430.137 0.9020.187
MR50S50 0.7160.211* 0.7420.227 0.7540.132* 0.1080.209
MR25S75 0.7220.210 0.7550.225 0.7220.138 0.0790.171
MR5S95 0.6420.210 0.7160.243 0.6280.146 0.0230.078
MR0S100 0.3620.147 0.7260.294 0.2630.104 0.0010.002*

MRWMHRtum 0.7100.233 0.7420.250 0.7410.131 0.0260.140*
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Fig. 3. Sample WMH predictions on the BRATS dataset (top) and the SABRE test
set (bottom) for all our models, in red. The leftmost column shows the tumour mask
for the BRATS dataset (in blue) and the ground truth WMH for SABRE.

Results: Results are reported in table 4. Example segmentations and pre-
dicted WMH masks on both test sets are depicted in Fig. 3. MR100S0

achieved
the top Dice on WMH for its in-domain test set, but it has one of the worse
FPtum scores on the BRATS set. While MR0S100

achieved a low Dice on the
SABRE test set, it had a FPtum score that is significantly lower than that of
Mtum−real. All the models trained on a combination of real and synthetic data
achieve a competitive FPtum without compromising the WMH Dice. While all
models have a comparable precision, MR0S100

has low recall; caused by an un-
derestimation of WMH, as seen in Fig. 3. Interestingly, besides MR0S100

and
MR5S95

, the edematous area of the tumours still gets partially segmented as
WMH. MRWMHRtum achieves very good Dice, precision, recall and FPtum met-
rics; but, while examining the WMH segmentations on the BRATS dataset, all
the segmentations were empty, as shown in Fig. 3, which indicates that, because
the WMH training labels for BRATS were empty, the model has mapped the
appearance and/or phenotype of the BRATS dataset to an absence of WMH.

4 Discussion & Conclusion

This work presents a label and multi-contrast brain MRI 3D image genera-
tor that can supplement real datasets in segmentation tasks for healthy tis-
sues and pathologies. The synthetic data provided by our model can boost
the precision and robustness of WMH segmentation models when tumours are
present in the target dataset, showing the potential for having content and style-
disentangled generative models that can combine the phenotypes seen in their
training datasets. While disentanglement is covered in [11], 3D can help produce
data usable in scenarios where the context of neighbouring slices is meaningful,
such as segmenting small lesions. In addition, disease conditioning, which was
not implemented in [11], can be challenging in 2D, as some diseases depend on
the axial location, such as WMH. Our current set-up has, however, some limita-
tions. First, there is a caveat in using 2mm3 isotropic data or patching at 1mm3.
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Even so, diffusion models for high resolution 3D images have to operate in a la-
tent space that causes loss of semantic variability (See 3.1) and small details,
affecting the downstream segmentation task, partly because a gap appears in the
image synthesis process between synthetic and real labels. Further work should
attempt to harmonise the semantic synthetic and real domains. Although one of
the causes of this limitation is capacity, the latest advances in diffusion models
show that higher performance and resolution can be achieved [13], potentially
leading to better labels and, effectively, less domain shift between real and syn-
thetic domains. Secondly, conditioning on variables such as age or ventricle size
could also translate into more variability across the generated volumes [21], over-
coming the limitation in tissue variability observed in table 1. The method can be
scaled to more pathologies and tasks, as model sharing allows for fine-tuning on
more pathological labels, thus making segmentation models more generalisable
to the diverse phenotypes of real brain MR data.
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A Training hyperparameters and augmentations

Table 1: Label and image generator hyperparameters
Variational autoencoder

Loss weights Other parameters
Patch GAN loss 0.1 epochs 250

KLD loss 10−8 train time 4h38 min
reconstruction loss 1.0 optimiser Adam

perceptual loss 10 learning rate vae: 2 · 10−4 disc:
10−4

hardware NVIDIA DGX A100 batch size 8
Latent diffusion model

epochs 400 training time 12h
warm-up learning

rate
10−8 batch size 8

base learning rate 2.5 · 10−5 loss l1
perceptual loss 10 hardware NVIDIA DGX A100

Image generator
Epochs 350 training time 2 weeks

hardware single A100 GPU optimiser Adam
learning rate 2 · 10−4 number of

discriminator
3

Loss weights
Generator Discriminator

KLD 10−5 feature loss 0.25
perceptual loss 1.5 gen. and disc. training thresholds
slice consistency 0.5 lower (D only) 0.65
perceptual loss 10 lower (G only) 0.75

Augmentations were implemented using MONAI (https://monai.io/).

Table 2: Transformations applied to the different modules. The intensity trans-
forms, marked with (*) were only applied to images, not labels.

Augmentation VAE (ranges) DM (ranges) Image generator (ranges)
Random affine rotation: [-0.05, 0.05], shear: [0.001,

0.05], scale:[0, 0.05], probability:
0.15

rotation: [-0.1, 0.1], shear: [0.001,
0.15], scale:[0, 0.3], probability: 0.15

rotation: [-0.05, 0.05], shear:
[0.001, 0.05], scale:[0, 0.05],
probability: 0.33

Random bias field
(*)

- - intensity: (0, 0.005), probabil-
ity: 0.33

Random Gaus-
sian noise (*)

- - mean: 0.0, σ range: [0.005,
0.015], probability: 0.33

Random contrast
adjust (*)

- - γ range: [0.9, 1.15], probability:
0.33
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B Additional result figures

Fig. 1: Example CSF real and synthetic label channels for both the 1mm3 and
2mm3 models, showing the loss of detail in the subarachnoid space CSF on the
1mm3 model. All images are unpaired.

Fig. 2: From left to right: example real label from the SABRE dataset used to
train model Mhealthy (see section 3.1), synthetic healthy label generated by our
model used to train M ′

healthy, ground truth sample from the test set of the
SABRE dataset and corresponding Mhealthy and M ′

healthy outputs. Examples
shown are for the 2mm3 model.


