
Improving Reinforcement Learning Efficiency
with Auxiliary Tasks in Non-Visual

Environments: A Comparison ⋆

Moritz Lange1[0000−0001−7109−7813], Noah Krystiniak1, Raphael C.
Engelhardt2[0000−0003−1463−2706], Wolfgang Konen2[0000−0002−1343−4209], and

Laurenz Wiskott1[0000−0001−6237−740X]

1 Institute for Neural Computation, Faculty of Computer Science, Ruhr-University
Bochum, Bochum, Germany

{moritz.lange, noah.krystiniak, laurenz.wiskott}@ini.rub.de
2 Cologne Institute of Computer Science, Faculty of Computer Science and

Engineering Science, TH Köln, Gummersbach, Germany
{raphael.engelhardt, wolfgang.konen}@th-koeln.de

Abstract. Real-world reinforcement learning (RL) environments, whether
in robotics or industrial settings, often involve non-visual observations
and require not only efficient but also reliable and thus interpretable and
flexible RL approaches. To improve efficiency, agents that perform state
representation learning with auxiliary tasks have been widely studied in
visual observation contexts. However, for real-world problems, dedicated
representation learning modules that are decoupled from RL agents are
more suited to meet requirements. This study compares common aux-
iliary tasks based on, to the best of our knowledge, the only decoupled
representation learning method for low-dimensional non-visual observa-
tions. We evaluate potential improvements in sample efficiency and re-
turns for environments ranging from a simple pendulum to a complex
simulated robotics task. Our findings show that representation learning
with auxiliary tasks only provides performance gains in sufficiently com-
plex environments and that learning environment dynamics is preferable
to predicting rewards. These insights can inform future development of
interpretable representation learning approaches for non-visual observa-
tions and advance the use of RL solutions in real-world scenarios.

Keywords: Representation learning · Auxiliary tasks · Reinforcement
learning.

1 Introduction

In reinforcement learning (RL), the complex interplay of observations, actions,
and rewards means that algorithms are often sample-inefficient or cannot solve

⋆ Supported by the research training group “Dataninja” (Trustworthy AI for Seamless
Problem Solving: Next Generation Intelligence Joins Robust Data Analysis) funded
by the German federal state of North Rhine-Westphalia.

ar
X

iv
:2

31
0.

04
24

1v
2

 [
cs

.L
G

]
 9

 O
ct

 2
02

3

2 M. Lange et al.

problems altogether. State representation learning tackles this issue by making
information encoded in observations, and possibly actions, more accessible. Mnih
et al. [17] were the first to introduce deep RL to extract information from the
high-dimensional observations provided by Atari games. The neural networks
of deep RL agents make it possible to implicitly extract representations of the
input and thus enables the agent to find a good policy.

Munk et al. [18] additionally introduced predictive priors, learning targets
that differ from the RL task but are also based on data generated by the en-
vironment. Other authors such as Legenstein et al. [13], Wahlstrom et al. [27],
Anderson et al. [1], and Schelhamer et al. [25] have proposed further learning
targets and started to call these auxiliary tasks.

Both Munk et al. [18] and Stooke et al. [26] argue for decoupling representa-
tion learning with auxiliary tasks from solving the RL task of maximizing cumu-
lative rewards. Approaches with separate representation learning modules are
versatile as representations can replace raw observations and actions as inputs
to arbitrary RL algorithms. The individual parts of such agents have distinct
purposes; auxiliary tasks and RL task do not interfere with each other and rep-
resentations are agnostic to the RL task. Segmenting systems into such distinct
parts provides flexibility and aids interpretability as representations used as in-
puts become explicit rather than being hidden within layers inside networks.
The distinction of integrated and decoupled representation learning however is
not always easy, e.g. when a deep RL agent is simply furnished with additional
prediction heads to enhance internal representations within its neural networks.

Few works in RL learn interpretable representations (an exception is e.g.
[13]) and methods such as autoencoders, which can supposedly learn semanti-
cally meaningful representations (used for RL in [10,27]), have been shown to be
unreliable in this regard [16]. Another shortcoming of the field is that these and
most other works study complex, visual environments such as Arcade games [25]
or race tracks [4]. Many RL problems, however, provide non-visual observations
that are often of lower dimensionality and do not have the same properties as vi-
sual data. Observations are thus not necessarily suited for methods designed for
visual data, such as CNN-based autoencoders, and are also not as easily inter-
preted. In real-world applications, e.g. control problems such as system control
in factory production lines, RL is underrepresented due to concerns about relia-
bility and sample efficiency [5]. We believe that new methods for interpretable,
modular representation learning will be required to change this.

To the best of our knowledge, OFENet by Ota et al. [20] is to date the only
available method for decoupled representation learning with auxiliary tasks that
works also with low-dimensional observations and has been used on non-visual
environments. We use it in this paper to learn representations on different auxil-
iary tasks and compare them on non-visual environments of different complexity.
Despite the fact that OFENet as a method does not produce interpretable repre-
sentations, we are confident that our findings concerning auxiliary tasks will help
researchers in developing new, interpretable methods for representation learning
in RL.

Improving RL Efficiency with Aux. Tasks in Non-Visual Environments 3

We conduct our comparison by investigating returns and sample efficien-
cies achieved with common auxiliary tasks on five diverse environments. These
environments cover a range of observation and action dimensionalities, and vary-
ing levels of complexity in the relationship between observations, actions, and
rewards. Decoupled representations are computed with OFENet and used as in-
puts to the off-policy RL algorithms TD3 and SAC [7,8]. Since one environment,
FetchSlideDense-v1, cannot be solved with baseline TD3 or SAC, we additionally
train agents with hindsight experience replay (HER, [2]).

Our results show that representation learning with auxiliary tasks increases
both maximum returns and sample efficiency for environments that are suffi-
ciently complex and high-dimensional, but has little effect on simpler, smaller
environments. We find that learning representations based on environment dy-
namics, for instance by predicting the next observation, is superior to using
reward prediction. We discover that decoupled representation learning with an
inverse dynamics task does not work with actor critic algorithms because gradi-
ents cannot be backpropagated. Interestingly, adding representation learning to
TD3 makes it possible to train agents on the FetchSlideDense-v1 environment,
even if baseline TD3 does not learn anything at all.

2 Related Work

Many works in recent years have made use of an auxiliary task to learn state
representations. We cite multiple of these in Sect. 3. Ota et al. [20] for instance,
whose OFENet representation learning network we use here, predict the next
observation from current observation and action. There are however few papers
which compare auxiliary tasks to each other. Lesort et al. [14] have written a
thorough survey of state representation learning, which summarizes different
auxiliary tasks and includes a comprehensive list of publications. It is however a
purely theoretical discussion of methods without any empirical comparisons or
results. There are two empirical comparisons of auxiliary tasks ([25,4]), which
differ in various aspects from ours. Shelhamer et al. [25], like us, compare aux-
iliary tasks on various environments. In contrast to us, they use Atari games
with visual observations. Another difference is that they do not fully decouple
representation learning from the RL algorithm. Instead, they merely connect
a different prediction head to train the initial, convolutional part of the deep
RL algorithm on auxiliary targets. Their results generally vary across environ-
ments. An interesting feature of their paper is the comparison of individual
auxiliary tasks to a combination of several. Curiously, the combination never
clearly outperforms the respective best individual tasks. The second compari-
son, by de Bruin et al. [4], uses only one car race environment but with several
race tracks. It provides multimodal observations which again include visual data.
In contrast to the decoupled module we use, loss functions of auxiliary tasks and
RL task are linearly combined, and auxiliary tasks are investigated by remov-
ing their individual loss terms from the combination. This means representation

4 M. Lange et al.

learning is inherently integrated into the RL agent and happens implicitly, rather
than in a decoupled way such as in our work.

3 Auxiliary Tasks

In this section we present five common auxiliary tasks according to Lesort et
al. [14]. Of these five, we will empirically compare three while the last two do
not work with our setup. An overview of the tasks is presented in Fig. 1. To
discuss these tasks, we first need to briefly formalize the reinforcement learning
problem: An environment provides reward rt and observation ot at time step
t. The agent then performs an action at, which generates a reward rt+1 and
leads to the next observation ot+1. This cycle is modeled by a Markov decision
process, which means that there can be randomness in the transition from ot
to ot+1, given some at. The Markov property implies that ot+1 only depends
on ot and at which already contain all past information. It does not depend on
previous states or actions. The goal of the RL agent is to maximize cumulative
expected reward (return). Altogether, these components are the ones available
to auxiliary tasks, and various possible combinations are used.

Fig. 1. An overview of inputs and prediction targets of common auxiliary tasks.

Reward prediction (rwp) is the task of predicting rt+1 from ot and at.
Works that use rwp include [18,11,25,19,9]. With decoupled representation learn-
ing, rwp is limited in that it can only be applied to environments that provide
non-trivial rewards, i.e. rewards that are not constant or sparse. Representa-
tions learned within the model might otherwise become decoupled from ot and
at since the model output rt+1 is (nearly) independent of model inputs ot, at.
A RL algorithm trained on these representations could not learn anything at
all. It can be argued that representations based on reward prediction have an
advantage over those learned with other auxiliary tasks as they are optimized
towards the actual RL task. On the other hand, rwp is somewhat redundant to
the RL task of maximizing returns, although it only considers the immediate
next reward and is therefore less noisy [25].

Forward state prediction (fsp) is the task of predicting ot+1 from ot and
at. It is a popular task and used e.g. in [27,18,10,21,20]. In contrast to our work,
several of these deal with high-dimensional image observations and therefore try
to predict the next internal representation rather than the next observation in

Improving RL Efficiency with Aux. Tasks in Non-Visual Environments 5

time. The fsp task, as opposed to rwp, can be applied to any kind of environment
without conditions. Its task amounts to learning environment dynamics similar
to e.g. in model-based RL. The fsp task can thus be considered model-based RL,
although we combine it with model-free RL algorithms.

Forward state difference prediction (fsdp) describes the task of pre-
dicting (ot+1 − ot) from ot and at. The papers [1,11] use fsdp. Conceptually, it
is very similar to fsp. While fsdp also learns environment dynamics, Anderson
et al. [1] claim that successive observations are very similar and predicting only
the difference thus gives more explicit insight into environment dynamics. The
fsdp task requires a notion of difference, though this is not a practical issue as
observations are usually encoded as numerical vectors. In comparison with fsp,
the fsdp task should provide an advantage in environments without excessive
noise or significant changes between successive observations. That would mean
fsp is more robust, but fsdp is particularly suited for environments simulating
real-world physics.

State reconstruction (sr) (used e.g. in [11,25]) is the task of reconstructing
ot (and possibly at) from ot and at. This is the classical autoencoder task, but
does not make sense in our setup where data dimensionality is expanded by
concatenation (see Sect. 4.1). Our representations thus always contain the raw ot
and at, and reconstruction would amount to simply filtering these out. No useful
representations could be learned. On a technical level, sr is similar to fsp but,
crucially, does not learn environment dynamics. It therefore seems reasonable to
assume that fsp will in most cases be a better choice for learning representations
for RL. The results of both [11] and [25] confirm this.

The inverse dynamics model (inv), framed as a learning task, predicts at
from ot and ot+1. Works using this task include [25,21]. While fsp and fsdp focus
on learning transition probabilities of the environment, the inv task considers
how actions of the agent affect changes in the environment. The inv task does
not work with actor-critic algorithms; using its representation as input to the
critic renders the actor untrainable. Gradients would have to pass through the
– usually not differentiable – environment in order to be propagated back from
critic to actor. Figure 2 provides a visualization of this problem.

Fig. 2. Diagram of information flow in an actor-critic setup with the inv auxiliary
task where the critic, or representation learning module, receives ot and ot+1 (and
potentially at) as input. If ot+1 is part of the input to the critic, directly or through
the module, the gradient of the critic loss cannot be propagated back to the actor as
long as the environment (red) is not differentiable. Even if the action is additionally
passed into the critic directly (dashed grey line) the actor will not get the true gradient.

6 M. Lange et al.

Various other priors have been proposed by different authors (for a list,
see [14]). Noteworthy examples include the slowness principle [13] and the robotics
prior [12]. However, these are not as commonly used as the tasks above, and many
are even problem-specific. We thus exclude them from our comparison.

In addition to the tasks above, there are several works on combining auxiliary
tasks. A popular combination is fsp or fsdp with rwp (e.g. [18,11]), various others
exist. Lin et al. [15] have even proposed a method to adaptively weigh different
auxiliary tasks.

4 Methods

This section explains the neural network we use to learn representations with
auxiliary tasks, the RL algorithms we train on these representations and the
environments we use for training.

4.1 Representation Learning Network

To train decoupled representations on auxiliary tasks, we use the network ar-
chitecture of OFENet from [20]. The architecture is composed of two parts. Its
first part calculates a representation zot of ot, and the second part calculates
a representation zot,at

of zot and at. Internally, the parts stack MLP-DenseNet
blocks which consist of fully connected and concatenation layers. The whole ar-
rangement is visualized in Fig. 3. For our experiments we give both parts of
OFENet the same internal structure (apart from input dimensionality), but ad-
just parameters to different environments as described in Tab. 1. The auxiliary
loss is calculated as the mean squared error between predicted and actual target.

Fig. 3. Sketch of the OFENet architecture, modified from [20]. Observation ot and
action at are used to calculate representations zot and zot,at . These are passed into the
RL algorithm (light grey). The prediction target necessary to evaluate the auxiliary
loss, e.g. ot+1, is calculated with a fully connected layer (FC, light grey) from zot,at .

OFENet is a good choice for comparing auxiliary tasks as it is a rather
generic architecture for learning representations of expanded dimensionality. Be-
sides OFENet, we are not aware of any other decoupled approaches used in RL
that learn representations without dimensionality reduction. Most works use au-
toencoders (variational or otherwise), which have been shown to be very powerful

Improving RL Efficiency with Aux. Tasks in Non-Visual Environments 7

especially for visual data. OFENet, however, has the advantage that it can be
applied to smaller, simpler environments. This allows us to study auxiliary tasks
in environments that have far fewer dimensions than visual observations would
have and that are less complex than those used in [25,4].

4.2 Reinforcement Learning Algorithms

To solve the RL task of maximizing returns, we use TD3 [7] and SAC [8], two well-
known state-of-the-art RL algorithms. They are both model-free off-policy actor-
critic methods. Comparing auxiliary tasks against these two presents a trade-
off between the computational expense of the runs required for our comparison
(hundreds per RL algorithm) and investigating more than one algorithm to avoid
results being biased. We chose these two algorithms in particular because they
are powerful and also popular, which makes them a testbed that is both non-
trivial and particularly relevant to readers.

We study one environment, FetchSlideDense-v1, that is too difficult to solve
with baseline TD3 and SAC. It does however become at least partially solv-
able when adding hindsight experience replay, first proposed in [2]. HER infuses
the replay buffer used by off-policy algorithms with additional samples copied
from previous episodes. In these copied samples it changes the reward signal
to pretend the agent had performed well in order to present it with positive
learning signals. Additional supposedly successful episodes provide a stronger
incentive for the agent to learn, which makes learning in complex environments
easier. Nowadays it is wide-spread practice to use HER for robotics tasks such
as FetchSlideDense-v1.

4.3 Environments

We perform our study on five different environments: A simulated pendulum,
three MuJoCo control tasks and a simulated robotics arm. They span a large
range of size and complexity. Size, here, refers to the dimensionality of obser-
vation and action space, while complexity concerns how difficult it is to learn a
sufficient mapping between observation space, action space, and rewards. The
three MuJoCo control tasks differ in size but are controlled by similar dynamics,
which allows for a very direct comparison. All studied environments are depicted
in Fig. 4. Sizes of observation and action spaces, and of the corresponding rep-
resentations learned with OFENet, are listed in Tab. 1.

In the following, all five environments we use are briefly described. For further
details on the first four we refer the reader to OpenAI Gym’s documentation [3].

Pendulum-v1 is a simple and small classic control environment in which
a pendulum needs to be swung upwards and then balanced in this position
by applying torque. Its observations quantify angle and angular velocity of the
pendulum. The reward at each time step is an inversely linear function of how
much the angle differs from the desired goal, how much the angle changes, and
how much torque is applied.

https://www.gymlibrary.dev

8 M. Lange et al.

Fig. 4. Sample images rendered to visualize the environments. The image of
FetchSlideDense-v1 is taken from [22].

Table 1.Dimensions of observations, actions, representations, and OFENet parameters
used to achieve them. Layers per part describes the total amount, and individual width,
of fully connected layers per OFENet part.

Environment dim(ot) dim(at) dim(zot) dim(zot,at) Layers/part

Pendulum-v1 3 1 23 44 2 × 10
Hopper-v2 11 3 251 494 6 × 40
HalfCheetah-v2 17 6 257 503 8 × 30
Humanoid-v2 292 17 532 789 8 × 30
FetchSlideDense-v1 31 4 271 515 8 × 30

Hopper-v2 is one of three MuJoCo control tasks we consider here. It is based
on a physical simulation of a two-dimensional single leg with four parts, which
can be controlled by applying torque to three connecting joints. This makes
it comparatively small and simple. The observation contains certain angles and
positions of parts and joints, and their velocities. The reward at a given time step
mostly depends on how much the hopper has moved forward, plus a constant
term if it has not collapsed.

HalfCheetah-v2 is another two-dimensional MuJoCo control task, similar
to Hopper-v2 but larger and more complex. It already consists of 9 links and 8
joints, with action and observation space similar in nature to those of Hopper-
v2 but consequently of larger dimensionality. The reward is again based on how
much the HalfCheetah-v2 has moved forward since the last time step.

Humanoid-v2 is the third MuJoCo control task we use in our compari-
son. As opposed to the others, it is three-dimensional. It roughly models a hu-
man, which leads to actions and observations similar to those of Hopper-v2 and
HalfCheetah-v2, but of far higher dimensionality. Again, the reward is primarily
based on forward movement plus a constant term if the robot has not fallen over.

FetchSlideDense-v1 is a simulated robotics task presented in [22]. It is
not much larger than HalfCheetah-v2, but much more complex than any of the
other tasks. A three-dimensional arm needs to push a puck across a low-friction
table such that it slides to a randomly sampled goal position out of reach of the
arm. The action controls movement of the tip of the arm, while the observation
encodes position and velocities of arm and puck as well as the goal location. The
reward is the negative distance between puck and goal, and thus constant until
the arm hits the puck. In their technical report, the authors show that this task

Improving RL Efficiency with Aux. Tasks in Non-Visual Environments 9

is very difficult to solve even with state-of-the-art methods, unless additional
methods such as HER are deployed. FetchSlideDense-v1 is evaluated by success
rate instead of return. Success rate describes in how many cases out of 100 the
puck ended up closer than some threshold to its goal.

5 Experiments

To compare the auxiliary tasks, we train agents with baseline TD3 and SAC on
raw observations (baseline) and on representations learned with auxiliary tasks.
We do this for each of the five environments. Additionally, for FetchSlideDense-
v1, we combine TD3 and SAC with HER and train these on raw observations as
well as on representations learned with auxiliary tasks. All of the aforementioned
experiments are conducted five times with the same set of random seeds. We do
regular evaluations over several evaluation episodes throughout training, and
their average return/success rate is what we report here.

For our experiments we use the PyTorch implementations of TD3 [6] and
SAC [28], together with our own PyTorch implementation of OFENet based
on the Tensorflow code provided with [20]. For the experiments with HER, we
modified the Stable-Baselines3 code [24] to include OFENet. For the experiments
done with Stable-Baselines3, we took hyperparameters from the RL Baselines3
Zoo repository [23]. In all other experiments, hyperparameters are the default
ones provided by the respective RL algorithm implementation or the OFENet
implementation of [20], configured as indicated in Tab. 1.

We pretrain OFENet with 1000 steps for Pendulum, and 10,000 steps for
the other environments. This pretraining data is sampled using a random policy.
After that, the system alternates between training OFENet on its auxiliary task
and the RL algorithm on its RL task, while freezing the weights of the respective
other. Representations are thus continuously updated during the training process
and become optimized on those states and actions relevant to the agent. In each
iteration OFENet and agent are trained on the same sampled observations and
we count this as one training step of the overall system. In other words, we only
count training steps of the RL algorithm for better clarity and comparability.

In terms of computation time, adding OFENet to the RL algorithms roughly
doubles to triples the training time of our agents, which appears little given the
large increase in dimensionality. We speculate that this factor is caused by a
doubling in backward passes for gradient updates plus some additional overhead
in handling two separate networks for separate tasks, while additional gradients
due to the increased network width can be computed in parallel by PyTorch.

6 Results

The returns or success rates on all different environments are shown in Figs. 5 and
6 for all auxiliary tasks and baseline algorithms. For a direct, normalized compar-
ison Fig. 7 plots the normalized maximum return/success rate against sample
efficiency. To measure sample efficiency, we calculate the fraction of training

10 M. Lange et al.

steps (and therefore samples) which are required to reach 80% of the maximum
return of the baseline algorithm, calibrated against the untrained baseline algo-
rithm since the initial reward is not always 0. We choose 80% instead of 100%
because at this lower threshold we can capture increases in sample efficiency
even where maximum return/success rate are similar to that of the baseline. We
call our measure SE80.

Fig. 5. Returns/success rates achieved with TD3 and different auxiliary tasks on
various environments. The shaded areas show minimum and maximum performance
achieved across 5 runs, while the lines represent the means. Values have been smoothed
slightly for better visualisation.

In the following, the word performance shall refer to the combination of max-
imum return and sample efficiency. If only one of the two is concerned, we will
state that explicitly. It is apparent that all three auxiliary tasks lead to a sig-
nificant increase in performance for complex, higher-dimensional environments.
For the low-dimensional and simple Pendulum-v1, a slight increase in sample ef-
ficiency but not in best return can be achieved. In fact, improvements in sample
efficiency are achieved across almost all environments. Increases in maximum
returns follow a certain pattern: They seem to increase with problem complexity
rather than strictly dimensionality, although the two go hand in hand. When
using HER to solve FetchSlideDense-v1, however, representation learning only
leads to minor improvements. This is a special case discussed in Sect. 6.1.

6.1 Representation Learning for Different Types of Environments

Our experiments show different behavior for small and simple environments com-
pared to larger and more complex ones. For the very small and simple Pendulum-
v1 environment, representation learning with auxiliary tasks does not signifi-

Improving RL Efficiency with Aux. Tasks in Non-Visual Environments 11

Fig. 6. Returns/success rates achieved with SAC and different auxiliary tasks on
various environments. The shaded areas show minimum and maximum performance
achieved across 5 runs, while the lines represent the means. Values have been smoothed
slightly for better visualisation.

cantly benefit return or sample efficiency. For the slightly larger and less simple
Hopper-v2 environment, the picture is ambiguous with an increase in sample
efficiency for TD3 but not for SAC. For the remaining larger and more com-
plex environments, however, representation learning with auxiliary tasks pro-
vides clear performance gains over baseline TD3 and SAC. These gains seem to
scale with complexity rather than size of the environments, as the difference in
performance between HalfCheetah-v2, FetchSlideDense-v1 and Humanoid-v2 is
not proportionate to their difference in size.

An interesting case is the FetchSlideDense-v1 environment. It is too complex
for any learning to occur with baseline TD3 or SAC (without HER). Because of
its initially constant rewards, rwp is not able to learn anything at all. Adding
HER to the RL algorithm, however, seems to speed up learning enough to gen-
erate meaningful rather than trivial reward signals very soon and to successfully
train rwp, as evidenced by the fact that agents using rwp are competitive with
those trained on other tasks.

The authors proposing HER argue that in cases such as FetchSlideDense-v1
too few learning impulses, in the form of rewards, are provided to meaningfully
update network weights in the RL algorithm. When using TD3 with HER, the
auxiliary tasks do not seem to offer any benefits. For SAC with HER, the agents
trained with auxiliary tasks are on average better than those without. Baseline
SAC with HER can in fact perform as well as with auxiliary tasks, but is less
reliable; its mean is lowered considerably by two agents which did not learn at
all. These results suggest that adding a learning signal through HER in princi-
ple enables the RL algorithm itself to learn meaningful patterns from original

12 M. Lange et al.

Fig. 7. Sample efficiency on different environments compared to normalized best re-
turns/success rates. Note the different scales on the axes. The markers describe average
performance, error bars (solid for TD3 and dotted for SAC) mark best and worst case
out of 5 runs. Where markers or error bars are missing, agents in question never reached
the return/success rate required to calculate SE80.

observations (i.e. HER significantly reduces the complexity of the problem), but
it only does so reliably when adding representations learned on auxiliary tasks.

Furthermore, FetchSlideDense-v1 becomes at least partially solvable for TD3,
even without HER, when fsp or fsdp are used. This interesting result shows that
even if an environment is too complex for a RL algorithm, adding representa-
tion learning might still make training of agents possible. There is however no
equal improvement in the same experiment with SAC, which shows that this
strategy has its limits. We hypothesize that the learned representations recast
observations, actions and thereby the entire RL problem into a less complex
manifold. At least some dimensions of the representation learned with OFENet
would then contain more informative features than the original observation. For
FetchSlideDense-v1 the representation might for instance contain a feature en-
coding distance between arm and puck, instead of just the absolute positions
from raw observations. When the arm accidentally hits the puck, the RL algo-
rithm could consequently relate observation and reward more easily. Another
possible factor, proposed in [20], is that the added depth and width of OFENet
enable the agent to learn more complex and therefore more successful solutions.
In this case, however, additional expressivity through added weights alone does
not reduce problem complexity which is caused by initially constant rewards. It
can therefore not explain why fsp and fsdp make FetchSlideDense-v1 learnable
for TD3 without HER. We thus consider simplification of the learning problem
to be the dominant factor at least for this setting.

Improving RL Efficiency with Aux. Tasks in Non-Visual Environments 13

6.2 Comparison of Auxiliary Tasks

This section presents a direct comparison of auxiliary tasks across the different
algorithms and environments. Since HER seems to significantly distort the per-
formance of auxiliary tasks compared to just using baseline RL algorithms, the
FetchSlideDense-v1 solved with HER will not be considered.

In the remaining cases, the rwp task performs worst out of all investigated
tasks. For the complex and high-dimensional environments it is quickly outper-
formed by fsp and fsdp, even though it appears competitive for environments
with less complex dynamics where differences in performance are minimal. The
performances of fsp and fsdp are approximately similar, although one usually
outperforms the other by a slight but noteworthy margin. There is however no
apparent pattern to this. When used with TD3, there might be a slight tendency
for fsdp to outperform fsp, but results are too inconclusive to confidently make
this claim, especially since it cannot be observed with SAC-based agents.

There are three potential causal factors which might explain why rwp per-
forms worse. Firstly, due to its dimensionality alone, the prediction target rt+1

of rwp can not convey the same amount of information as the prediction tar-
gets of fsp and fsdp. Secondly, the nature of the information differs. Learning
representations on environment dynamics makes environment information ac-
cessible that is much harder to access when using reward signals. Thirdly, the
reward signals are provided to both the agent and OFENet, which underlines
the redundancy claim regarding rwp. However, neither of these factors is easy to
investigate without studying the representations. We hope to conduct such an
investigation as future work to better understand these explanations.

The absence of a consistent difference in performance between fsp and fsdp
suggests that the theoretical advantages of each (Sect. 3) are either not im-
portant or cancel each other out. Our studied environments are well behaved
as they all simulate real-world physics. Consequently, they do not confront the
algorithm with abrupt state changes or excessive noise. The fact that fsp on av-
erage still works about as well as fsdp, despite those properties, suggests that the
advantages proposed for fsdp in particular do not play a large role in practice.

7 Conclusion

In this paper we compare auxiliary tasks for decoupled representation learning
on non-visual observations in RL. To this end we use five common benchmark
environments and two different state-of-the-art off-policy RL algorithms. We
find that representation learning with auxiliary tasks can significantly improve
both sample efficiency and maximum returns for larger and more complex en-
vironments while it makes little difference with simpler environments that are
easy to solve for the baseline agent. In those latter cases, we observe a slight
increase in sample efficiency at most. Auxiliary tasks that encourage learning
environment dynamics generally outperform reward prediction. Particularly en-
couraging is that the FetchSlideDense-v1 environment, a simulated robotics arm,

14 M. Lange et al.

becomes partially solvable when adding representation learning to the otherwise
unsuccessful TD3 algorithm. We interpret this as an indication that decoupled
representation learning with auxiliary tasks can reduce problem complexity in
RL. Across all experiments, we found that results might vary between RL algo-
rithms, even when using the same representation learning techniques.

Despite this variability we are confident that the patterns we found can con-
tribute to the future development of representation learning algorithms for RL,
in particular for decoupled and interpretable representation learning approaches
for real-world applications.

References

1. Anderson, C.W., Lee, M., Elliott, D.L.: Faster reinforcement learning af-
ter pretraining deep networks to predict state dynamics. In: 2015 Interna-
tional Joint Conference on Neural Networks (IJCNN). pp. 1–7 (Jul 2015).
https://doi.org/10.1109/IJCNN.2015.7280824

2. Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., Mc-
Grew, B., Tobin, J., Pieter Abbeel, O., Zaremba, W.: Hindsight Experience Replay.
In: Advances in Neural Information Processing Systems. vol. 30 (2017)

3. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: OpenAI Gym (Jun 2016), arXiv:1606.01540 [cs]

4. de Bruin, T., Kober, J., Tuyls, K., Babuska, R.: Integrating State Representation
Learning Into Deep Reinforcement Learning. IEEE Robot. Autom. Lett. 3(3),
1394–1401 (Jul 2018). https://doi.org/10.1109/LRA.2018.2800101

5. Dulac-Arnold, G., Mankowitz, D., Hester, T.: Challenges of Real-World Re-
inforcement Learning (Apr 2019). https://doi.org/10.48550/arXiv.1904.12901,
arXiv:1904.12901 [cs, stat]

6. Fujimoto, S.: TD3 implementation in PyTorch (Sep 2022), https://github.com/
sfujim/TD3

7. Fujimoto, S., van Hoof, H., Meger, D.: Addressing Function Approximation Error
in Actor-Critic Methods (Oct 2018). https://doi.org/10.48550/arXiv.1802.09477,
arXiv:1802.09477 [cs, stat]

8. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft Actor-Critic: Off-Policy Max-
imum Entropy Deep Reinforcement Learning with a Stochastic Actor (Aug 2018).
https://doi.org/10.48550/arXiv.1801.01290, arXiv:1801.01290 [cs, stat]

9. Hlynsson, H.D., Wiskott, L.: Reward prediction for representation learning
and reward shaping (May 2021). https://doi.org/10.48550/arXiv.2105.03172,
arXiv:2105.03172 [cs, stat]

10. van Hoof, H., Chen, N., Karl, M., van der Smagt, P., Peters, J.: Stable reinforce-
ment learning with autoencoders for tactile and visual data. In: 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). pp. 3928–3934
(Oct 2016). https://doi.org/10.1109/IROS.2016.7759578

11. Jaderberg, M., Mnih, V., Czarnecki, W.M., Schaul, T., Leibo, J.Z., Silver, D.,
Kavukcuoglu, K.: Reinforcement Learning with Unsupervised Auxiliary Tasks (Nov
2016). https://doi.org/10.48550/arXiv.1611.05397, arXiv:1611.05397 [cs]

12. Jonschkowski, R., Brock, O.: Learning state representations with robotic pri-
ors. Auton Robot 39(3), 407–428 (Oct 2015). https://doi.org/10.1007/s10514-015-
9459-7

https://doi.org/10.1109/IJCNN.2015.7280824
https://doi.org/10.1109/LRA.2018.2800101
https://doi.org/10.48550/arXiv.1904.12901
https://github.com/sfujim/TD3
https://github.com/sfujim/TD3
https://doi.org/10.48550/arXiv.1802.09477
https://doi.org/10.48550/arXiv.1801.01290
https://doi.org/10.48550/arXiv.2105.03172
https://doi.org/10.1109/IROS.2016.7759578
https://doi.org/10.48550/arXiv.1611.05397
https://doi.org/10.1007/s10514-015-9459-7
https://doi.org/10.1007/s10514-015-9459-7

Improving RL Efficiency with Aux. Tasks in Non-Visual Environments 15

13. Legenstein, R., Wilbert, N., Wiskott, L.: Reinforcement Learning on Slow Features
of High-Dimensional Input Streams. PLOS Computational Biology 6(8), e1000894
(Aug 2010). https://doi.org/10.1371/journal.pcbi.1000894

14. Lesort, T., Dı́az-Rodŕıguez, N., Goudou, J.F., Filliat, D.: State representation
learning for control: An overview. Neural Networks 108, 379–392 (Dec 2018).
https://doi.org/10.1016/j.neunet.2018.07.006

15. Lin, X., Baweja, H., Kantor, G., Held, D.: Adaptive Auxiliary Task Weighting for
Reinforcement Learning. In: Advances in Neural Information Processing Systems.
vol. 32 (2019)

16. Locatello, F., Bauer, S., Lucic, M., Rätsch, G., Gelly, S., Schölkopf, B., Bachem, O.:
Challenging Common Assumptions in the Unsupervised Learning of Disentangled
Representations. arXiv:1811.12359 [cs, stat] (Jun 2019)

17. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M.: Playing Atari with Deep Reinforcement Learning (Dec 2013).
https://doi.org/10.48550/arXiv.1312.5602, arXiv:1312.5602 [cs]

18. Munk, J., Kober, J., Babuska, R.: Learning state representation for deep
actor-critic control. In: 2016 IEEE 55th Conference on Decision and Con-
trol (CDC). pp. 4667–4673. IEEE, Las Vegas, NV, USA (Dec 2016).
https://doi.org/10.1109/CDC.2016.7798980

19. Oh, J., Singh, S., Lee, H.: Value Prediction Network. In: Advances in Neural In-
formation Processing Systems. vol. 30. Curran Associates, Inc. (2017)

20. Ota, K., Oiki, T., Jha, D., Mariyama, T., Nikovski, D.: Can Increasing Input Di-
mensionality Improve Deep Reinforcement Learning? In: International Conference
on Machine Learning. pp. 7424–7433. PMLR (Nov 2020)

21. Pathak, D., Agrawal, P., Efros, A.A., Darrell, T.: Curiosity-driven Exploration by
Self-supervised Prediction. In: Proceedings of the 34th International Conference
on Machine Learning. pp. 2778–2787. PMLR (Jul 2017)

22. Plappert, M., Andrychowicz, M., Ray, A., McGrew, B., Baker, B., Powell, G.,
Schneider, J., Tobin, J., Chociej, M., Welinder, P., Kumar, V., Zaremba, W.:
Multi-Goal Reinforcement Learning: Challenging Robotics Environments and
Request for Research (Mar 2018). https://doi.org/10.48550/arXiv.1802.09464,
arXiv:1802.09464 [cs]

23. Raffin, A.: RL Baselines3 Zoo (2020), https://github.com/DLR-RM/
rl-baselines3-zoo

24. Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-
Baselines3: Reliable Reinforcement Learning Implementations. Journal of Machine
Learning Research 22(268), 1–8 (2021)

25. Shelhamer, E., Mahmoudieh, P., Argus, M., Darrell, T.: Loss is its own Reward:
Self-Supervision for Reinforcement Learning (Mar 2017), arXiv:1612.07307 [cs]

26. Stooke, A., Lee, K., Abbeel, P., Laskin, M.: Decoupling Representation Learning
from Reinforcement Learning. In: International Conference on Machine Learning.
pp. 9870–9879. PMLR (2021)

27. Wahlström, N., Schön, T.B., Deisenroth, M.P.: From Pixels to
Torques: Policy Learning with Deep Dynamical Models (Jun 2015).
https://doi.org/10.48550/arXiv.1502.02251, arXiv:1502.02251 [cs, stat]

28. Yarats, D., Kostrikov, I.: Soft Actor-Critic (SAC) implementation in PyTorch (Sep
2022), https://github.com/denisyarats/pytorch sac

https://doi.org/10.1371/journal.pcbi.1000894
https://doi.org/10.1016/j.neunet.2018.07.006
https://doi.org/10.48550/arXiv.1312.5602
https://doi.org/10.1109/CDC.2016.7798980
https://doi.org/10.48550/arXiv.1802.09464
https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo
https://doi.org/10.48550/arXiv.1502.02251
https://github.com/denisyarats/pytorch_sac

	 Improving Reinforcement Learning Efficiency with Auxiliary Tasks in Non-Visual Environments: A Comparison

