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Abstract. The Transformer is a highly successful deep learning model
that has revolutionised the world of artificial neural networks, first in
natural language processing and later in computer vision. This model is
based on the attention mechanism and is able to capture complex seman-
tic relationships between a variety of patterns present in the input data.
Precisely because of these characteristics, the Transformer has recently
been exploited for time series forecasting problems, assuming a natural
adaptability to the domain of continuous numerical series. Despite the
acclaimed results in the literature, some works have raised doubts about
the robustness and effectiveness of this approach. In this paper, we fur-
ther investigate the effectiveness of Transformer-based models applied
to the domain of time series forecasting, demonstrate their limitations,
and propose a set of alternative models that are better performing and
significantly less complex. In particular, we empirically show how sim-
plifying Transformer-based forecasting models almost always leads to an
improvement, reaching state of the art performance. We also propose
shallow models without the attention mechanism, which compete with
the overall state of the art in long time series forecasting, and demon-
strate their ability to accurately predict time series over extremely long
windows. From a methodological perspective, we show how it is always
necessary to use a simple baseline to verify the effectiveness of proposed
models, and finally, we conclude the paper with a reflection on recent re-
search paths and the opportunity to follow trends and hypes even where
it may not be necessary.

Keywords: Transformer · Time Series · Forecasting · Shallow Models ·
SLP · Sencoder · Sinformer · Baseline · Persistence

1 Introduction

Time series forecasting has often attracted the attention of researchers in fields as
diverse as bioengineering, finance, climatology, and mechanics. With the advent
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of widespread data availability, it has become increasingly common to use com-
putational models that can analyse long historical data series to identify patterns
and use this information to make accurate predictions about future. Early ef-
forts in the field of time series forecasting were based on autoregressive statistical
models such as ARIMA and SARIMA. These models were particularly effective
for their predictive power, especially when used in conjunction with domain
specific knowledge about the signals being predicted [1]. At the same time, the
scientific community began to explore the potential of artificial neural networks
to further reduce estimation error via their adaptive capabilities. Recurrent neu-
ral networks have emerged as a natural choice for forecasting due to their ability
to extract valuable information from both feature and time domains [10,17,22].
Another popular deep learning approach to forecasting have been temporal con-
volutional neural networks. These networks adapt the successful paradigm of
convolutional neural networks for image analysis to extract hierarchical patterns
from temporal sequences and make accurate predictions [3,20,11].

A major turning point in the world of deep learning has been the intro-
duction of the Transformer model [18]. This model set a new benchmark for
performance in a wide range of applications, including natural language pro-
cessing [2,4], computer vision [6,13], and speech analysis [16,5]. The key to the
Transformer success lies in its attention mechanism which uses a sophisticated
representation of the input and a large amount of training data to identify com-
plex spatial and temporal correlations. These correlations are then used during
the learning process to improve prediction quality. The Transformer model has
since been widely adopted and has inspired numerous variations and extensions.
More recently, the Informer model has emerged as a leading alternative to tra-
ditional forecasting techniques [26]. Drawing heavily on the structure of the
Transformer model, the Informer has been designed to be computationally effi-
cient while maintaining high levels of performance. The authors believe that this
model is well suited to predicting very long sequences, and, since its introduc-
tion, numerous Transformer-based techniques have been proposed and continue
to set new standards for time series forecasting.

Despite the widespread adoption of these models and the interest they have
generated, there are critical issues that leave room for questions and doubts.
Firstly, these models are often compared with each other without a baseline or
a common reference, so there is no way of knowing whether they actually work
well or badly. Secondly, as Zeng et al. [23] points out, there are cases where
embarrassingly simple models can not only compete with, but even outperform,
the Transformer-based model of the moment. For these reasons, and in order to
shed some light on this extremely important area of research, in this article we
examine the effectiveness of the most popular time series forecasting techniques
presented in the literature as state of the art over the last three years. First, we
demonstrate the importance of comparing one’s own new model at least against
an extremely trivial baseline such as the Persistence model, show that there are
models based on Transformer that perform worse than this model still being con-
sidered in the literature to be very good. We then introduce two models derived
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from simplifying the Transformer, called respectively Sinformer and Sincoder,
which are capable of outperforming current Transformer-based models deemed
as the state of the art in forecasting. Finally, we present two shallow models, the
novel Sinusoidal Layered Perceptron (SLP) and a conventional Multi-Layer Per-
ceptron (MLP), show how both are able to outperform any Transformer-based
model, in some cases even by a large margin. We also analyse the behaviour of
these models in the presence of extremely long forecasting windows - which would
be prohibitive for Transformer-based models due to memory constraints - and
demonstrate their stability and robustness as predictive techniques. We conclude
our contribution with a reflection on recent research trends, which are often too
focused on chasing the deep learning model of the moment, and sometimes pay
little attention to promising alternatives being trapped in sort of evolutionary
niches.

The rest of the paper is structured as follows:

• Section 2 contains a description of the latest time series forecasting tech-
niques and provides a background to the models that will be compared in
the experiments.

• Section 3 describes our proposed models in details focusing on the simplifi-
cation path that led us to extremely shallow networks.

• Section 4 provides information on the datasets and hyperparameters used in
the experiments.

• Section 5 describes in details the experiments conducted, comparing and
commenting on the results of the proposed models against those selected
from the literature. Reflections on current trends and empirically more promis-
ing alternatives are shared.

• Section 6 concludes the article by summarising what has been discussed and
laying the foundations for future research.

2 Related Works

The earliest efforts to apply the Transformer architecture to time series fore-
casting were aimed at adapting the vanilla model to a continuous domain rather
than a dictionary-generated embedding, and at reducing its spatial complexity
to enable longer predictions. Shiyang Li et al. identified two major weaknesses
in the canonical Transformer architecture: first, the point-wise dot product self-
attention is insensitive to local context, which can make the model vulnera-
ble to anomalies in time series; second, the spatial complexity of the canonical
Transformer grows quadratically with sequence length L, making it unfeasible
to directly model long time series. To address these issues, the authors proposed
a convolutional self-attention mechanism that generates queries and keys with
causal convolution to better incorporate local context into the attention mech-
anism. They also proposed a LogSparse Transformer with a memory cost of
only O(L(log L)2), where L is the length of the sequence, which also improves
prediction accuracy for time series with fine granularity and strong long-term
dependencies under a constrained memory budget [12].
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In the same year, Kaiser and Levskaya proposed two techniques to improve
the efficiency of Transformers. The first technique replaced point product at-
tention with locality-sensitive hashing, reducing its complexity to O(L(log L)).
The second technique used reversible residual layers allowing activations to be
stored only once during training instead of N times, where N is the number of
layers. The resulting model, called Reformer, showed comparable performance
to standard Transformer models, while being significantly more memory efficient
and faster for long sequences [9].

Haoyi Zhou et al. proposed an efficient Transformer-based model for fore-
casting long time series called Informer. The model has three key features: first,
a ProbSparse self-attention mechanism that achieves O(L(log L)) time complex-
ity and memory usage while maintaining comparable performance on sequence
dependency alignment; second, a self-attention distillation that highlights dom-
inant attention by halving the cascading layer input and efficiently handles ex-
tremely long input sequences; and third, a generative style decoder that predicts
long time series sequences in a single forward operation rather than step-by-step,
significantly improving the inference speed of long sequence prediction. Extensive
experiments on four large-scale datasets showed that Informer significantly out-
performed existing methods and provided a new solution to the long-sequence
time series forecasting problem [26]. Haixu Wu et al. subsequently proposed
a novel decomposition-based architecture with an auto-correlation mechanism
called Autoformer. This model departs from the preprocessing convention for
series decomposition and instead incorporates it as a fundamental inner block of
deep models, providing Autoformer with progressive decomposition capabilities
for complex time series. Drawing on stochastic process theory, the authors de-
veloped an auto-correlation mechanism based on series periodicity that detects
dependencies and aggregates representations at the sub-series level. This auto-
correlation block outperformed the self-attention one in terms of both efficiency
and accuracy [21].

Tian Zhou et al. recently introduced a novel method that combines the Trans-
former architecture with the seasonal trend decomposition technique. The de-
composition method captures the global profile of the time series, while the
Transformers capture more detailed structures. To further improve the perfor-
mance of Transformers for long-term forecasting, the authors exploited the fact
that most time series tend to have a Fourier transform decomposable repre-
sentation that is sparse, but highly informative. The resulting method, known
as the Frequency Enhanced Decomposed Transformer or FEDformer, is more
efficient than standard Transformers with linear complexity with respect to se-
quence length [27]. In recent months, Yunhao Zhang et al. published a novel
method that combines the Transformer architecture with the seasonal trend de-
composition method from multivariate time series forecasting. The model, called
Crossformer, exploits cross-dimensional dependency and embeds the input into
a 2D vector array through Dimension-Segment-Wise (DSW) embedding to pre-
serve time and dimensional information. The Two-Stage Attention (TSA) layer
is then used to efficiently capture both cross-time and cross-dimension depen-
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dencies. By utilising the DSW embedding and the TSA layer, Crossformer estab-
lishes a Hierarchical Encoder-Decoder to use information at different scales for
the final prediction. Extensive experimental results demonstrate the effectiveness
of Crossformer over previous state-of-the-art methods [24].

Despite the recent tendency to reward the latest Transformer-based model,
recent studies suggest that there may be alternatives to this paradigm. Zeng
et al. argued that while Transformers are successful at extracting semantic cor-
relations between elements in a long sequence, they may not be as effective at
extracting temporal relations in an ordered set of continuous points. The authors
claimed that permutation-invariant attention mechanisms, which are present in
many of the aforementioned approaches, may result in a loss of temporal infor-
mation. To validate their claim, the authors introduced a set of simple one-layer
linear models into the comparison, namely Linear, NLinear, and DLinear. Exper-
imental results on nine real-world datasets showed that these simple approaches
surprisingly outperformed existing sophisticated Transformer-based models in
all cases, often by a large margin. The authors hope that this surprising finding
opens up new research directions for long time series forecasting, and advocate
re-examining the validity of Transformer-based solutions [23].

3 Method

The purpose of this work is to advance the study of the long-term sequence
prediction problem and to deepen the behavior of Transformer-based models
advocating the use of much less complex alternatives. In this section, we will
present in detail the models and techniques that we have developed and utilized
in our experiments.

3.1 Baseline

The starting point for this work was to determine an appropriate baseline for a
predictive model. While recurrent neural networks or Transformer-based mod-
els have been widely used in the literature and were previously considered the
gold standard, they have limitations. These limitations include non-deterministic
learning, dependence on the choice of input window and other hyperparameters,
and thus the inability to be considered a robust and replicable baseline. To ad-
dress these limitations, this paper proposes the use of a non parametric model,
known as the Persistence model, as reference baseline for comparison in any
forecasting problem. This model asserts that future predictions of length L will
be identical to their previous L samples. Experiments in Section 5 will demon-
strate how even this approach can compete with, and sometimes outperform,
state of the art models recently presented at prestigious venues, highlighting the
need for a more precise evaluation in time series forecasting.
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3.2 Embedding

Having defined a robust comparison baseline, we sought to determine a suit-
able latent representation for temporal sequences to be used as embeddings in
Transformer-based models. We assumed that the presence of periodic patterns
and a sufficiently large amount of data were the only two conditions necessary
to extract useful information for both Transformer-based models and shallow
neural networks. In this perspective, we were inspired by the Time2Vec model
presented by Kazemi et al. [8]. This technique is intended to replace the po-
sitional encoding used in linguistic Transformers and is characterised by two
linearly learnable tensors, one with periodic activation, which receive the raw
temporal sequence as input and concatenate the output as a latent representa-
tion to be fed into the predictive model. The aim of Time2Vec is to extract and
isolate high-level periodic patterns. The main drawback of this technique is the
increase in spatial complexity due to the concatenation operation, which can be
particularly limiting in problems with very long prediction windows. To address
this issue, we used a revised version of the original architecture called Additive
Time To Vector (AddT2V) in our experiments. This variant uses the additive
operator instead of concatenation, the sine function as the periodic function, and
has tensors equal in size to the prediction window to map the periodicities in
the input directly onto the prediction space. From the ablation studies we have
carried out, the performance of the Time2Vec and AddT2V models appears to
be equivalent.

3.3 Transformer-based Models

In contrast to the literature, where Transformer-based models typically have
deep and complex architectures, the new models presented in this paper aim
to simplify the original Transformer architecture and analyse its behaviour in
the context of long time series prediction. The most complex model, we named
Sinformer, is a Transformer built upon a single block in both the encoder and
decoder, with both blocks equal in size to the prediction window. The embedding
of this model is the previously described AddT2V. To address the problem of
intrinsic permutation invariance of the self-attention operation, the output of
the model is a sinusoidal function rather than a linear one. The rationale behind
this choice is that in an end-to-end learning context, AddT2V aims to map
periodic patterns from the input to the prediction space by taking into account
permutation invariant reworking and the presence of periodic components in
the model output. The second Transformer-based model is a simplification of
Sinformer where the decoder is removed and a sinusoidal activation is added to
the encoder output. This model is called Sencoder.

3.4 Shallow Models

Seeking for further simplification, the logical progression involves the complete
removal of all components associated with the Transformer architecture, in par-
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Table 1. This table provides a summary of the datasets utilized in the experiments
conducted within this study.

Dataset Length Features Frequency Batch Size Training/Validation/Test

ETTh1 17520 7 1h 64 60/20/20
ETTm1 70080 7 15m 64 60/20/20

Electricity 26304 321 1h 32 70/10/20
Milan T° 7360 1 24h 32 66/17/17
Venice 330000 1 1h 256 60/20/20

Weather 52696 21 10m 16 70/10/20

ticular the attention operators. Consequently, we have developed a model consist-
ing of AddT2V followed by a single dense layer with the same dimensionality as
the predicted window and a sinusoidal activation function. This model has been
called the Sinusoidal Layered Perceptron (SLP). The aim of this architectural
choice is to evaluate whether a less sophisticated operator such as a simple in-
ternal linear combination can result in a reduction in prediction error compared
to the Sencoder model. As a final model, we have constructed a Multi-Layer
Perceptron (MLP) that is completely independent from the blocks previously
presented and at the same time different from the simple models proposed by
Zeng et al. [23]. This MLP consists of three dense layers with ReLU activation
and the same dimensionality as the predicted window. The MLP model is elas-
tically regularised with l1=10−5 and l2=10−4, and the last layer has a linear
activation function.

4 Experiments Setting

To facilitate the interpretation of the results, this section provides a detailed
description of the datasets and hyperparameters used in the experiments. In
addition, the models under comparison, the evaluation criteria, and the data
pre-processing methods prior to the learning phase are presented.

4.1 Datasets

In order to gain a detailed insight into the effectiveness of the forecasting tech-
niques under consideration, in this research we identified and selected six datasets
for their heterogeneous characteristics, which are summarised in Table 1. More
specifically, the selected datasets are:

• ETTh1 and ETTm1 [25]: The Electricity Transformer Temperature (ETT)
datasets contain information relevant to the long-term distribution of elec-
tricity. The data were collected over a period of two years from two different
counties in China. The ETTh1 dataset, which refers to the first station,
consists of 17520 hourly samples. The ETTm1 dataset, also related to the
first station, consists of 70080 samples taken at 15 minute intervals. Both
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datasets consist of eight features and were used in all proposed experiments
with a training/validation/test split of approximately 14/5/5 months. Each
model was trained on these datasets with a batch size of 64. These datasets
represent two of the most important benchmarks for time series forecasting
due to their multivariate nature and different sampling frequencies.

• Electricity [7]: The Electricity dataset contains several features on the elec-
tricity consumption of 321 customers from 2012 to 2014. It consists of 26304
hourly samples, each with 322 features. The data was divided into training,
validation and test sets of approximately 24, 4 and 8 months respectively.
Each model was trained on this dataset with a batch size of 32. This dataset
was chosen to represent a medium-sized multivariate dataset with a signifi-
cant number of features.

• Temperature of Milan (Milan T°) [14]: This dataset covers the daily
mean temperature history of Milan from 2001 to 2021. It is the smallest
dataset analysed in this study, consisting of 7360 points sampled at 24-hour
intervals. The data was divided into training, validation and test sets with
durations of approximately 160, 40 and 40 months respectively. Each model
was trained on this dataset with a batch size of 32. This dataset was chosen
to investigate the behaviour of models dealing with a small scale univariate
forecasting task.

• High Water of Venice (Venice) [19]: This dataset contains the historical
series of sea level values recorded in Venice from 1983 to the present. It is the
largest dataset analysed in this study, consisting of 330000 hourly samples.
The data were divided into training, validation and test sets with durations
of 24, 8 and 8 years respectively. Due to the large amount of data, a batch size
of 256 was chosen for the experiments. This dataset was chosen for its high
cardinality, which allows the analysis of the behaviour of different models in
a univariate context for very long forecasts.

• Weather [15]: This dataset, which contains 21 meteorological features such
as air temperature and humidity, was collected in Germany in 2020. It is a
medium-sized dataset consisting of 52696 samples taken at 10-minute inter-
vals. Following the literature, the data was divided into training, validation
and test sets with proportions of 70%, 10% and 20% respectively. A batch
size of 16 was used for the experiments. This multivariate dataset was in-
cluded due to its average length and number of features relative to the other
datasets.

The experiments were designed to provide a comprehensive comparison of the
models’ capabilities by running multivariate predictions on each multivariate
dataset and univariate predictions on all others.

4.2 Models and Setup

The models selected for comparison on the above datasets are grouped into three
categories. The first category, consisting only in the Persistence model, repre-
sents the non parametric model used as a baseline. The second category consists
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Table 2. This table presents the results of the experiments conducted on the test
sets in the form of Mean Absolute Error. The evaluations were carried out over four
different forecasting windows for each dataset. Results for models not presented in
this paper were obtained from their respective original papers, with the exception of
the results for the Milan T° and Venice datasets, which were computed as part of
this paper. Crossformer results were all recalculated with the authors code. Results
that outperform the baseline are coloured green, while those that underperform it are
coloured red. The best results are highlighted in bold, while the best results considering
only the Transformer-based models are underlined.

Model
Persistence SLP MLP Linear NLinear DLinear Sencoder Sinformer FEDformer Autoformer Informer Crossformer

(baseline) (ours) (ours) AAAI2023 AAAI2023 AAAI2023 (ours) (ours) ICML2022 NeurIPS2021 AAAI2021 ICLR2023

E
T

T
h

1 96 0.480 0.392 0.388 0.397 0.394 0.399 0.390 0.415 0.419 0.459 0.713 0.426
192 0.530 0.422 0.424 0.429 0.415 0.416 0.433 0.444 0.448 0.482 0.792 0.440
336 0.571 0.456 0.464 0.476 0.427 0.443 0.463 0.457 0.465 0.496 0.809 0.459
720 0.718 0.528 0.540 0.592 0.453 0.490 0.542 0.537 0.507 0.512 0.865 0.519

E
T

T
m

1 96 0.389 0.335 0.334 0.352 0.348 0.343 0.333 0.345 0.419 0.475 0.571 0.449
192 0.421 0.358 0.366 0.369 0.375 0.365 0.389 0.382 0.441 0.496 0.669 0.413
336 0.845 0.380 0.403 0.393 0.388 0.386 0.415 0.433 0.459 0.537 0.871 0.455
720 0.851 0.414 0.419 0.435 0.422 0.421 0.425 0.455 0.490 0.561 0.823 0.528

E
le

ct
ri

ci
ty 96 0.477 0.217 0.210 0.237 0.237 0.237 0.218 0.221 0.308 0.317 0.368 0.285

192 0.372 0.242 0.233 0.250 0.248 0.249 0.236 0.242 0.315 0.334 0.386 0.313
336 0.435 0.277 0.297 0.268 0.265 0.267 0.296 0.311 0.329 0.338 0.394 0.353
720 0.561 0.383 0.371 0.301 0.297 0.301 0.363 0.397 0.355 0.361 0.439 0.449

M
il

a
n

T
° 96 1.337 0.328 0.318 0.304 0.303 0.299 0.360 0.282 0.503 0.722 0.305 0.283

192 1.718 0.326 0.321 0.304 0.295 0.302 0.306 0.303 0.384 0.644 0.293 0.303
336 0.543 0.312 0.328 0.314 0.295 0.310 0.309 0.296 0.584 0.602 0.298 0.286
720 0.496 0.382 0.356 0.332 0.295 0.328 0.380 0.363 0.271 0.904 0.321 0.308

V
en

ez
ia

96 0.936 0.223 0.274 0.275 0.279 0.274 0.273 0.270 0.357 0.665 0.302 0.267
192 1.190 0.242 0.364 0.325 0.330 0.322 0.312 0.313 0.421 0.633 0.327 0.308
336 0.525 0.252 0.394 0.359 0.372 0.357 0.342 0.343 0.492 0.853 0.766 0.331
720 0.540 0.262 0.413 0.396 0.410 0.398 0.360 0.360 0.503 0.814 0.749 0.355

W
ea

th
er

96 0.889 0.321 0.486 0.236 0.232 0.237 0.501 0.509 0.296 0.336 0.384 0.233
192 0.956 0.394 0.541 0.276 0.269 0.282 0.572 0.544 0.336 0.367 0.544 0.263
336 1.090 0.452 0.566 0.312 0.301 0.319 0.571 0.566 0.380 0.395 0.523 0.308
720 0.714 0.479 0.551 0.365 0.348 0.362 0.541 0.559 0.428 0.428 0.741 0.349

of shallow models, including the SLP and MLP models proposed by us and the
Linear, NLinear and DLinear models proposed by Zeng et al. [23]. The third
and final category consists of Transformer-based models, including the Sencoder
and Sinformer models we propose in this paper, and the FEDformer [27], Auto-
former [21], Informer [26], and Crossformer [24] models.

Among the various metrics used in the literature to evaluate forecasting qual-
ity, this paper uses the Mean Absolute Error (MAE) to allow a more direct
comparison, independent from the magnitude of individual errors, as opposed
to quadratic metrics. In terms of the learning details of the models, the best
epoch was selected according to the validation error from a training of 50 epochs
performed with the Adam optimiser and an exponentially decaying learning rate
starting from 10−3 and shrinking to 10−6. The optimal portion of the training
set and the input window were determined by tuning. Data standardisation was
the only form of pre-processing used. All experiments were run on a single A6000
GPU with 48 GB of memory.

5 Results and Discussion

In the first set of experiments, we conduct a comparative analysis between the
selected Transformer-based and shallow models from the literature and the newly
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proposed models. The Persistence model is used as a baseline for comparison.
The analysis is performed on six datasets, as described in the previous section,
and it considers four different forecasting windows.

The results presented in Table 2 reveal a remarkable finding: the Informer,
previously considered to be the best forecasting model up to 2021 and superior to
all other Transformer-based models, performs worse than the Persistence model
in almost half of the cases, regardless of the forecasting window considered. A
similar observation can be made for the Autoformer, although to a lesser ex-
tent, and the same holds partially also for the FEDformer. The Crossformer is
the only exception within this family of models; it consistently outperforms the
non parametric model, as would be desirable, in some cases with a lot of room
for improvement. The Sencoder and Sinformer models show remarkable perfor-
mance in the forecasting task, consistently outperforming the baseline across all
datasets and forecasting windows. In particular, the two proposed models turn
out to be the best Transformer-based choice, rivalling the Crossformer model
and outscoring it for half of the datasets considered. Despite being significantly
simpler than their counterparts, they consistently outperform the state of the
art architectures, in some cases by a considerable margin. When evaluating the
performance of the Sencoder and Sinformer models, it is clear that neither model
consistently outperforms the other. On average, the Sencoder performs slightly
better than the Sinformer, although differences are negligible. As the Sencoder
model is the first half of the Sinformer, and therefore has fewer parameters and
operations, it should be considered the preferred choice by Occam’s razor.

The analysis of the results obtained by shallow models shows that none of
them performs worse than the Persistence model across datasets and forecast
windows considered. Further analysis of the data presented in Table 2 shows
that the shallow models consistently produce the best overall results. Further-
more, with the exception of the MLP model - which is the most complex of all the
shallow models and at the same time the less performing one - no single model
emerges as the preferred choice. Rather, they are all interchangeable and equally
competitive, consistently producing a very low MAE. This confirms the hypoth-
esis that shallow models are highly effective in generating accurate forecasts,
outperforming their Transformer-based counterparts. In addition, it is notewor-
thy that the MLP model, although not specifically designed for forecasting tasks
and often considered unsuitable in the literature, also performs exceptionally
well, achieving excellent levels of MAE, particularly for small forecast windows,
and competing effectively with any current variant of the Transformer.

To gain a comprehensive understanding of the performance of the models
with respect to the size of the forecasting window and to assess their advantage
over the baseline, we calculated the percentage improvement between the MAE
of the models considered and that of the Persistence model. We then compute
the average for each dataset over the different forecasting windows. The results
are summarised in Table 3. A first look at the results shows that, in the context
of a time series forecasting problem, it is generally preferable to use the Persis-
tence model over the Informer, regardless of the forecasting window considered.
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Fig. 1. This figure depicts a qualitative comparison between the forecasts generated
by the SLP model and those produced by the Sencoder model. All predictions were
calculated with respect to the datasets test sets and were made across four distinct
forecasting windows.
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Table 3. This table displays the results of experiments conducted on test sets, cal-
culated as the average percentage improvement per forecasting window between the
Mean Absolute Error of the selected models and the Mean Absolute Error of the base-
line, represented by the Persistence model. Results that outperform the baseline are
coloured green, while those that underperform it are coloured red. The best results are
highlighted in bold, while the best results among the Transformer-based models are
underlined.

Model
SLP MLP Linear NLinear DLinear Sencoder Sinformer FEDformer Autoformer Informer Crossformer

(ours) (ours) AAAI2023 AAAI2023 AAAI2023 (ours) (ours) ICML2022 NeurIPS2021 AAAI2021 ICLR2023

96 0.512 0.464 0.511 0.518 0.511 0.460 0.464 0.414 0.304 -0.134 0.434
192 0.494 0.439 0.495 0.512 0.497 0.439 0.331 0.419 0.336 -0.223 0.439
336 0.403 0.279 0.363 0.401 0.373 0.308 0.322 0.200 0.065 -0.348 0.401
720 0.331 0.222 0.309 0.393 0.359 0.230 0.212 0.315 -0.006 -0.240 0.348

Furthermore, it is evident that the Sencoder and Sinformer models are the best
Transformer-based options for medium and small windows, reaching the state
of the art in this model family, while the Crossformer is preferable for longer
forecasts. It is also fair to say that SLP and NLinear are the optimal choices due
to their simplicity and superior performance. Overall, the results convey a clear
message: on average, any shallow model is preferable to any Transformer-based
model.

Figure 1 shows a graphical comparison between SLP and Sencoder on a
subset of the test set for each dataset analysed. Looking at all the plots, it
is clear that neither SLP nor Sencoder emerges as the clear winner in every
context. SLP produces predictions that are accurate but noisy, while Sencoder
produces smoother ones. Both models are successful in learning patterns and
periodicity, but struggle to make good predictions when these features are less
obvious or absent. For the ETTh1, ETTh2 and Venice datasets, the predictions
are close to the ground truth in many cases. However, for the Electricity, Milan
T° and Weather datasets, the models are less successful in approximating non-
periodicity, but still accurately capture the trend and quota of the time series.

Thanks to the availability of a particularly large dataset such as Venice, the
last set of experiments concerns the analysis of forecasting when the prediction
window becomes extremely long. Table 4 shows the results of this study. The
first relevant result concerns the absence of the Transformer-based models which,
on average, saturate the available memory and thus became intractable already
with a window between 1440 and 2880 points and were therefore omitted. This is
certainly another feature to be taken into account; despite much work has been
done to optimise the spatial complexity of Transformer-based models, it is still
unthinkable to use them for extremely long forecasts. As far as the shallow mod-
els are concerned, many of the considerations made for windows shorter than
720 samples still apply, such as the fact that each of them manages to achieve
a smaller error than Persistence. Although other shallow models achieve good
performance, the SLP model proved to be the best among the alternatives anal-
ysed. This suggests the effectiveness of the AddT2V embedding and sinusoidal
activations to exploit periodicities during the training phase and achieve to good
generalisation on unseen data. Another general result, but particularly evident
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Table 4. This table presents the results of the experiments carried out on the test sets
of the Venice dataset in the form of Mean Absolute Error. Evaluations were performed
over five different forecasting windows, distinguished by their increased length relative
to the standard windows used in most other papers. Results that outperform the base-
line are coloured green, while those that underperform it are coloured red. The best
results are highlighted in bold, while the second best results are underlined.

Model
Persistence SLP MLP Linear NLinear DLinear

(baseline) (ours) (ours) AAAI2023 AAAI2023 AAAI2023

1440 0.680 0.395 0.402 0.432 0.447 0.432
2880 0.966 0.420 0.426 0.477 0.486 0.483
5760 1.125 0.410 0.418 0.480 0.501 0.479
11520 1.364 0.407 0.418 0.482 0.488 0.481
23040 1.018 0.421 0.466 0.472 0.492 0.472

from the SLP model results, is the lack of a clear and linear proportionality be-
tween prediction length and prediction MAE. For example, a 240-fold increase
in prediction size from 96 to 23040 points resulted in only an 88.8% increase
in error, as shown in Table 2. This demonstrates the potential of a simple yet
powerful model for forecasting medium, long and extremely long time series.

The final message from the analyses conducted in this study is quite clear:
at the current state of research, Transformer-based models, while theoretically
superior, are not, on average, the best choice for solving time series forecasting
problems. By this we do not mean that it will not be possible to disprove the
following statement as research progresses. What we are saying is that this type
of analysis requires a thoroughness that has been lacking in almost all of the
work presented in the literature in recent years, and which has led to probably
overestimate the Informer, which, in comparison, is not even able to compete
with the Persistence model. Finally, the results obtained with the simplest mod-
els, such as the SLP model, suggest that perhaps the best strategy in the field
of time series forecasting is to start with simple techniques and use them as a
basis for applying methods and strategies currently used in complex models.

6 Conclusion

In this article we discussed the effectiveness of applying Transformer-based tech-
niques in the context of time series prediction. The results of the experiments
showed that the key to improving these architectures is simplification, and that
currently the best performing models are simplified to the point where they are
no longer Transformers, but even shallow neural networks. We discussed the
importance of a baseline and showed how the Persistence model is able to out-
perform models that have been awarded state of the art techniques in recent
years. Finally, we showed how shallow models are able to make accurate pre-
dictions of extremely long time series, which are computationally prohibitive for
current Transformer-based models due to their polynomial complexity.
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Nevertheless, the main objective of this research was not to present new
forecasting models, but rather to share with the reader a reflection supported
by experimental results. It seems that in recent years, at least in the time series
forecasting field, research has focused more on the desire to apply a particular
fashionable technique at all costs than on finding a solution to the problem to be
solved. Having shown that very simple or even non parametric models are able
to outperform algorithms with millions of parameters, is it fair to ask whether
part of the scientific community has reached a dead end and talks about it as if
it were a highway? We leave it to the reader to answer this question. Our hope
is that, having shown that there are better techniques from a performance point
of view, and much better ones from a performance-complexity perspective, it
will be possible to continue down the path of finding better solutions by looking
forward while keeping an eye on the past. We hope that in this area, as in others,
we can move on by taking two steps forward and one behind.
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