
Verifiable Fairness: Privacy–preserving

Computation of Fairness for Machine Learning

Systems

Ehsan Toreini1, Maryam Mehrnezhad2, and Aad Van Moorsel3

1University of Surrey, UK
2Royal Holloway University of London

3Birmingham University

Abstract

Fair machine learning is a thriving and vibrant research topic. In this
paper, we propose Fairness as a Service (FaaS), a secure, verifiable and
privacy-preserving protocol to computes and verify the fairness of any
machine learning (ML) model. In the deisgn of FaaS, the data and out-
comes are represented through cryptograms to ensure privacy. Also, zero
knowledge proofs guarantee the well-formedness of the cryptograms and
underlying data. FaaS is model–agnostic and can support various fairness
metrics; hence, it can be used as a service to audit the fairness of any
ML model. Our solution requires no trusted third party or private chan-
nels for the computation of the fairness metric. The security guarantees
and commitments are implemented in a way that every step is securely
transparent and verifiable from the start to the end of the process. The
cryptograms of all input data are publicly available for everyone, e.g.,
auditors, social activists and experts, to verify the correctness of the pro-
cess. We implemented FaaS to investigate performance and demonstrate
the successful use of FaaS for a publicly available data set with thousands
of entries.

1 Introduction

Demonstrating the fairness of algorithms is critical to the continued prolifer-
ation and acceptance of algorithmic decision making in general, and AI-based
systems in particular. There is no shortage of examples that have diminished
trust in algorithms because of unfair discrimination of groups within our pop-
ulation. This includes news stories about the human resource decision-making
tools used by large companies, which turn out to discriminate against women
[28]. There also are well-understood seminal examples studied widely within
the academic community, such as the unfair decisions related to recidivism in

1

ar
X

iv
:2

30
9.

06
06

1v
1

 [
cs

.C
R

]
 1

2
Se

p
20

23

different ethnicities [20]. In the UK, most recently the algorithm to determine
A-levels substitute scores under COVID-19 was widely found to be unfair across
demographics [23].

There has been a surge of research that aims to establish metrics that quan-
tify the fairness of an algorithm. This is an important area of research, and
tens of different metrics have been proposed, from individual fairness to group
fairness. It has been shown that various expressions for fairness cannot be satis-
fied or optimised at once, thus establishing impossibility results [11]. Moreover,
even if one agrees about a metric, this metric on its own does not provide trust
to people. It matters not only what the metrics express, but also who computes
the metrics and whether one can verify these computations and possibly appeal
against them. At the same time, in situations in which verification by stake-
holders is possible, the owner of the data wants to be assured that none of the
original, typically sensitive and personal, data is leaked. The system that runs
the algorithms (later referred to as Machine Learning system or ML system)
may have a valid interest in maintaining the secrecy of the model. In other
words, if one wants to establish verifiable fairness, one needs to tackle a number
of security, privacy and trust concerns.

In FaaS, we take a fundamentally different design approach. We leak no
data or model information, but the FaaS is still able to calculate fairness for a
variety of fairness metrics and independent of the ML model. Thus, replacing
the model in the ML system will not impact functionality of FaaS protocol.
Moreover, any other party can verify this calculation since all the necessary
encrypted information is posted publicly, on a ‘fairness board’.

Summarising, our contributions are:

• We propose FaaS, a model–agnostic protocol to compute different fairness
metrics without accessing sensitive information about the model and the
dataset.

• FaaS is universally verifiable so everyone can verify the well–formedness
of the cryptograms and the steps of the protocol.

• We implement a proof-of-concept of the FaaS architecture and protocol
using off-the-shelf hardware, software, and datasets and run experiments
to demonstrate the practical feasibility of FaaS.

2 Background and Related Work

One of the benefits of auditing ML-based products relates to trust. Trust and
trustworthiness (in socio-technical terms) are complicated matters. Toreini et.
al [32] proposed a framework for trustworthiness technologies in AI–solutions
based on existing social frameworks on trust (i.e. demonstration of Ability,
Benevolence and Integrity, a.k.a. ABI and ABI+ frameworks) and technological
trustworthiness [30]. They comprehensively reviewed the policy documents on
regulating AI and the existing technical literature and derived any ML–based

2

Table 1: Features of FaaS and comparison with other privacy–oriented fair ML
proposals (support: full: ✓, partial: ✙, none: ✗)

Work
Universal

Verifiability
Ind. of
metric

Ind. of
ML model

User
Privacy

Model
Confidentiality

Off-the–shelf
Hardware

Veal & Binns [33] ✗ ✗ ✗ ✗ ✗ ✓
Kilbertus et al. [19] ✙ ✗ ✗ ✓ ✓ ✓
Jagielski et al. [17] ✗ ✗ ✗ ✓ ✗ ✓
Hu et al. [16] ✗ ✗ ✗ ✓ ✗ ✓
Segal et al. [29] ✙ ✓ ✓ ✓ ✓ ✓
Park et al. [27] ✙ ✓ ✓ ✓ ✓ ✗

FaaS (this paper) ✓ ✓ ✓ ✓ ✓ ✓

solution needs to demonstrate fairness, explainability, auditability, and safety
and security to establish social trust. When using AI solutions, one cannot be
assured of the fairness of such systems without trusting the reputation of the
technology provider (e.g., datasets and ML models). It is commonly believed
that leading tech companies do not make mistake in their implementation [8];
however, in practice, we often witness that such products indeed suffer from
bias in ML [28, 23].

2.1 Fairness Metrics

There exist several fairness definitions in the literature. Designing a fair algo-
rithm requires measuring and assessment of fairness. Researchers have worked
on formalising fairness for a long time. Narayanan [24] lists at least 21 different
fairness definitions in the literature and this number is growing, e.g., [5, 6].

Fairness is typically expressed as discrimination in relation to data features.
These features for which discrimination may happen are known as Protected
Attributes (PAs) or sensitive attributes. These include, but are not limited to,
ethnicity, gender, age, scholarity, nationality, religion and socio-economic group.

The majority of fairness definitions expresses fairness in relation to PAs. In
this paper, we consider Group Fairness, which refers to a family of definitions,
all of which consider the performance of a model on the population groups level.
The fairness definitions in this group are focused on keeping decisions consistent
across groups and are relevant to both disparate treatment and disparate impact
notions, as defined in [9, 15].

For the following definitions, let U be an individual in the dataset, where
each individual has data features (X,A). In this context, A denotes the PA and
in what follows A = 1 and A = 0 express membership of a protected group or
not. X constitutes the rest of attributes that are available to the algorithm.
Y denotes the actual label of U while Ŷ would be the predicted label by the
model: (1) Demographic Parity (DP) A classifier satisfies DP when outcomes are

equal across groupsFDP =
Pr(Ŷ=1|A=0)
Pr(Ŷ=1|A=1)

(2) Equalised Odds (EOd) A classifier

satisfies EO if equality of outcomes happens across both groups and true labels:

FEOd =
Pr(Ŷ=1|A=0,Y=γ)
Pr(Ŷ=1|A=1,Y=γ)

where γ ∈ {0, 1}. (3)Equality of Opportunity (EOp)

3

is similar to EO, but only requires equal outcomes across subgroups for true

positives:FEOp =
Pr(Ŷ=1|A=0,Y=1)
Pr(Ŷ=1|A=1,Y=1)

In this paper, we will focus on the computations based on the above three
fairness metrics. For this computation, the auditor requires to have access to
the three pieces of information for each elements in the dataset: (1) the sensitive
group membership (binary value for A demonstrating if a sample does or does
not belong to a group with PAs) (2) the actual labelling of the sample (binary
value for Y) (3) the predicted label of the sample (binary value for Ŷ). The ML
system transfers this information for each sample from their test set. Then, the
auditor uses this information to compute the above fairness metrics.

Note that while we consider the above metrics for our protocol and proof-of-
concept implementation in next sections, our core architecture is independent
of metrics, and the metric set can be replaced by other metrics too (Fig. 1).

2.2 Auditing ML Models for Fairness

The existing research in fair ML normally assumes the computation of the fair-
ness metric to be done locally by the ML system, with full access to the data,
including the private attributes [15, 6, 5]. However, there is a lack of verifi-
ability and independence in these approaches which will not necessarily lead
to trustworthiness. To increase trust in the ML products, the providers might
make the trained model self–explaining (aka transparent or explainable). There
is also the transparent–by–design approach [12, 2, 34]. While this approach
has its benefits, it is both model–specific and scenario–specific [25]; thus it can-
not be generalised. There is also no trusted authority to verify such claims
and explanations. Moreover, in reality, the trained model, datasets and feature
extraction mechanisms are company assets. Once exposed, it can make them
vulnerable to the competitors. Another approach to provide transparency to
the fairness implementation comes through the black–box auditing, also known
as adhoc [12, 22, 26]. In this way, the model is trained and audited for different
purposes [1]. This solution is similar to tax auditing and financial ledgers where
accountants verify and ensure these calculations are legitimate.However, unlike
the well–established body of certifications and qualifications for accountants in
tax auditing and financial ledgers; there does not exist any established processes
and resources for fairness computation in AI and ML.

The concept of a service that calculates fairness has been proposed before,
e.g., in [33]. The authors introduced an architecture to delegate the computation
of fairness to a trusted third party that acts as a guarantor of its algorithmic
fairness. In this model, the fairness service is trusted both by the ML system
and the other stakeholders (e.g. users and activists). In particular, the ML
system must trust the service to maintain the privacy of data and secrecy of
its model, whilst revealing to the trusted third party the algorithm outcome,
sensitive input data and even inner parameters of the model. This is a big
assumption to trust that the third party would not misuse the information and
hence the leakage of data and model information is not a threat.

4

Fairness
Auditing

Table

Machine
Learning
System

PublishFairness Auditor
Service

Challenge Fairness
Metric Results

Universal Verifier

Sensitive Data

Data set Fairness
Metric set

Bulletin
Board

Fairness
Metric Results

Figure 1: FaaS Architecture

To address these limitations, Kilbertdus et al. [19] proposed a system known
as ‘blind justice’, which utilises multi–party computation protocols to enforce
fairness into the ML model. Their proposal considers three groups of partici-
pants: User (data owner), Model (ML model owner) and the Regulator (that
enforces a fairness metric). These three groups collaborate with each in order
to train a fair ML model using a federated learning approach [35]. The outcome
is a fair model that is trained with the participation of these three groups in
a privacy-preserving way. They only provide a limited degree of verifiability in
which the trained model is cryptographically certified after training and each of
the participants can make sure if the algorithm has not been modified. It should
be noted that since they operate in the training stage of the ML pipeline, their
approach is highly dependent on the implementation details of the ML model
itself. Jagielski et al. [17] proposed a differential privacy approach in order to
train a fair model. Similarly, Hu et al. [16] used a distributed approach to
fair learning with only demographic information. Segal et al. [29] used similar
cryptographic primitives but took a more holistic approach towards the com-
putation and verification of fairness. They proposed a data-centric approach
in which the verifier challenges a trained model via an encrypted and digitally
certified dataset using merkle tree and other cryptographic primitives. Further-
more, the regulator will certify the model is fair based on the data received from
the clients and a set of dataset provided to the model. Their approach does not
provide universal verifiability as the regulator is the only party involved in the
computation of fairness. More recently, Park et al. [27] proposed a Trusted
Execution Environment (TEE) for the secure computation of fairness. Their
proposal requires special hardware components which are cryptographically se-
cure and provide enough guarantees and verification for the correct execution
of the code.

The previous research generally has integrated fairness into their ML algo-
rithms; therefore, such algorithms should be redesigned to use another fairness
metric set. As it can be seen in Table 1, FaaS is the only work which is inde-
pendent of the ML model and fairness metric with universal verifiability, and
hence, can be used as a service.

5

3 FaaS Architecture

In this Section, we present the architecture of our system (Fig. 1) and describe
its features. The FaaS architecture includes stakeholders in three roles: A) ML
System: a system that owns the data and the ML algorithm, B) Fairness
Auditor Service: a service that computes the fair performance of the ML
system, and C) Universal Verifier: anyone who has the technical expertise
and motivation to verify the auditing process.

3.1 Threat Model

The design and implementation of the security of parties implementing the
respective protocol roles (ML system, Fairness Auditor Service, and Universal
Verifier) (Fig. 1) are independent of each other. The inter–communications that
happen between the roles assumes no trust between parties; thus, all their claims
must be accompanied with validation proofs (for which we will use ZKP). We
assume the Auditor System is vulnerable to different attacks and not trustwor-
thy. Thus, the data stored on the Fairness Auditor System must be encrypted,
tamper-proof and verifiable at all stages. Moreover, we assume the communi-
cation channel between the ML system and fairness auditor is not protected.
Therefore, the sensitive data must be encrypted before the transmission starts.
However, there will be an agreement on the cryptographic primitives at the
pre–setting stage in the protocol sequence.

In FaaS, we assume that the ML system is honest in sending the cryptograms
of the original labels of the dataset samples. One might argue against such as-
sumption and discuss that the ML system might intend to deceive the Auditor
Service, and by extension the verifiers, by modifying the actual labels of the
dataset. For instance, the ML system would provide the cryptograms of the
actual labels and the predicted ones as similar to each other as possible so that
the auditor concludes the algorithms are fair. This is an interesting area for fur-
ther research. For instance, it may be addressed by providing the cryptograms
of the actual labels to the Auditor Service independently e.g. the verifier may
own a dataset it provides to a ML system. The verifier then separately decides
the desired values for the actual labels and feeds these to the Auditor service.
In this way, it is far less clear to the ML system how to manipulate the data it
sends to the auditor, since some of the labels come from elsewhere.

The internal security of the roles is beyond FaaS. The ML system itself needs
to consider extra measures to protect its data and algorithms. We assume the
ML system does present the data and predictions honestly. This is a reasonable
assumption since the incentives to perform ethically is in contrast to being
dishonest when participating in fairness auditing process. This is discussed
more in the Discussion Section.

6

Table 2: Possible permutations of 3-bit representation of an entry in the original
data.

Membership
of Sensitive Group

Actual
Label

Predicted
Label

Encoded
Permutation

Permutation
#

No 0 0 000 #1
No 0 1 001 #2
No 1 0 010 #3
No 1 1 011 #4
Yes 0 0 100 #5
Yes 0 1 101 #6
Yes 1 0 110 #7
Yes 1 1 111 #8

3.2 Protocol Overview

The main security protocol sequence is between the ML system and Fairness
Auditing Service or auditor in short form. Note that although we suggest three
roles in our architecture, the communications are mainly between the above two
roles, and any universal verifier can turn to the auditor service (which represents
the fairness board), if they want to challenge the computations.

The ML system is responsible for the implementation and execution of the
ML algorithm. It has data as input and performs some prediction (depending
on the use case and purpose) that forms the output (Fig. 1). The Fairness
Auditor Service receives information from the ML system, evaluates its fairness
performance by computing a fairness metric. Then, it returns the result for the
metric back to the ML system. It also publishes the calculations in a fairness
board for public verification. The public fairness board is a publicly accessible,
read-only fairness board (e.g. a website). The auditor only has the right to
append data (and the sufficient proofs) to the fairness board. Also, the auditor
verifies the authenticity, correctness and integrity of data before publishing it.

3.3 Protocol Sequence

This protocol has three stages: setup, cryptogram generation and fairness metric
computation.

3.3.1 Phase I: Setup

In this phase, the ML System and Auditor agree on the initial settings. We
assume the protocol functions in multiplicative cyclic group setting (i.e. Digital
Signature Algorithm (DSA)–like group [18]), but it can also function in additive
cyclic groups (i.e. Elliptic Curve Digital Signature Algorithm (ECDSA)–like
groups [18]). The auditor and ML system publicly agree on (p, q, g) before the
start of the protocol. Let p and q be two large primes where q|(p − 1). In a
multiplicative cyclic group (Z∗

p), Gq is a subgroup of prime order q and g is
its generator. For simplicity, we assume the Decision Diffie–Hellman (DDH)
problem is out of scope [31].

7

Table 3: Cryptogram Table for n data samples
Sample

No
Random

Public Key
Reconstructed
Public Key

Cryptogram
of Permutation #1

Cryptogram
of Permutation #2

...
Cryptogram

of Permutation #8

1 gx1 gy1
gx1.y1 .g,

1-of-8 ZKP
gx1.y1 .g2

m
,

1-of-8 ZKP
... gx1.y1 .g2

7.m
,

1-of-8 ZKP

2 gx2 gy2
gx2.y2 .g,

1-of-8 ZKP
gx2.y2 .g2

m
,

1-of-8 ZKP
... gx2.y2 .g2

7.m
,

1-of-8 ZKP

...

n gxn gyn
gxn.yn .g,
1-of-8 ZKP

gxn.yn .g2
m
,

1-of-8 ZKP
... gxn.yn .g2

7.m
,

1-of-8 ZKP

Next, the ML system generates a public/private pair key by using DSA or
ECDSA and publishes the public keys in the fairness board. The protection the
private key pair depends on the security architecture of the ML system and we
assume the private key is securely stored in an industrial standard practice (e.g.
using the secure memory module on board).

Cryptogram Table: After initial agreements, the ML system produces a
cryptogram table with n rows corresponding to the number of samples in their
test dataset. We will refer to this table as cryptogram table in the rest of this
paper. In case the ML system does not want to reveal the number of the samples
in the test set, the auditor and the ML system can publicly agree on n. In this
case, n must be big enough so that the universal verifiers are satisfied with the
outcome.

Each row in the cryptogram table summarises three parameters: (1) pro-
tected group membership status, (2) its actual label and (3) predicted label by
the ML model. Each row contains the encrypted format of the three parameters
along with proofs of its correctness. A cryptogram table in the setup phase is
shown in Table 3. In the simplest case, each parameter is binary. Therefore,
the combined parameters will generate eight permutations in total. In the setup
phase, the table is generated to contain all eight possible permutations and their
proofs for each data sample. The total structure of the permutations are shown
in Table 2. Each row will satisfy four properties: (a) one can easily verify if a
single cryptogram is the encrypted version of one of the eight possible permu-
tations, (b) while verifiable, if only one single cryptogram selected, one cannot
exert which permutations the current cryptogram represents, (c) for each two
cryptograms selected from a single row, anyone will be able to distinguish each
from one another, and (d) given a set of cryptograms arbitrarily select from
each row as a set, one can easily check how many cases for each “permutation”
are in the set.

The generation of the cryptogram table functions are based on the following
sequence:

Step (1): For each of the n samples, the system generates a random public
key gxi where xi is the private key and xi ∈ [1, q − 1].

Step (2): Once computation of public keys is finished for all samples, the
system will compute another number gyi where computed using Equation below.
We refer to as reconstructed public key as it is computed using a combination

8

of public keys of all the rows, except for the current one.gyi =
∏i−1

j=1 gxj∏n
j=i+1 gxj .

Step (3): At this step, the ML system computes the cryptograms and zero
knowledge proofs for all the possible parameter permutations. This step occurs
before the ML system is trained and deployed to predict data samples. There-
fore, it considers all the permutation for minimising the overhead in the next
protocol sequence stages (as we discuss later).

Cryptograms: Each permutation is encoded into a Ci = gxi.yi .gpi which
are computed based on the multi-option voting schemes introduced in [4] and
applied in [13, 14]. In their method, pi is computed based on the n (number of
samples which already have been publicly agreed) and m as the smallest integer
such that 2m > n. For each of the eight permutations, the pi is computed using
the following equation:

pi =


20 for permutation #1
2m for permutation #2
· · · · · ·
27.m for permutation #8

(1)

Zero Knowledge Proofs: In addition to cryptograms, the ML system
also generates 1–out–of–8 ZKP for each of the permutations. This proof ensure
the values presented as Ci in the cryptogram table is indeed the production
of gxi.yi and gpi where pi ∈

{
20, 2m, · · · , 27.m

}
. As shown in Table 3, each of

the computed columns for permutation contains a ZKP to guarantee it is one
of the valid values for evaluating the fairness metric in next stages. We use
the widely used 1–out–of–n interactive ZKP technique [7], where n = 8 in our
protocol. Moreover, by application of Fiat–Shamir heuristics [10], this ZKP
can be converted into non–interactive which makes the verification of proofs
simpler [14].

3.3.2 Phase II: Parameter Assignment

This stage starts when the ML system’s training and testing. The output of this
stage is a table with n rows, each containing a cryptogram of the encoded permu-
tation parameters with the required ZKPs, public key (gxi) and reconstructed
key (gyi). The outcome of this stage is the final variant of the cryptogram table
which we will call fairness auditing table.

Fairness Auditing Table: This is derived from the previously computed
cryptogram table. This table combines the outcome of the ML model (as shown
in encoding format) with the cipher-text created in Phase I and form a ciphered
version of the test dataset with n samples. This table is generated based on the
following steps:

Step (1): First, the ML system and fairness service properly authenticate
each other to ensure they are communicating to the intended party. The ML
system determines the permutation combination based on the three items pa-
rameters explained before. For that, ML system generates binary encoding for

9

each of the data samples in the test dataset (i.e. the sensitive group membership,
actual label and the predicted labels respectively as explained in Table 3).

Step (2): The ML system generates ZKP for the knowledge of the encoding
as commitment to its choice (pi as in Equation 1). The ZKP for the proof of
knowledge can be converted to non–interactive using Fiat–Shamir heuristic [10].

Step (3): The corresponding column number that equals the decimal value
of the binary encoding is selected from the cryptogram table to complete the
fairness auditing table(as shown in Table 2).

Finally, the generated fairness auditing table is digitally signed by the ML
system and then is sent over the Fairness auditing service.

3.3.3 Phase III: Fairness Evaluation

First, the fairness auditing service receives the fairness auditing table, verifies
the digital signature and the ZKPs, and publishes the contents in the fairness
board.

Then, it starts the process of computing the fairness metric. For this, the
auditor service multiplies all the cryptograms (Ci) received in the cryptogram
table together. Therefore, we have

∏
i Ci =

∏
i g

xi.yi .gpi . At this stage, the key
point is the consideration of the effect yi and xi have on each other; know as
“Cancellation Formula” (Lemma 1 and [14, 13, 3]).

Lemma 1. Cancellation Formula: for xi and yi,
∑

i xi.yi = 0

Proof. From reconstructed keys equation, one can deduce yi is as
∑

i =
∑

j<i xj−∑
j>i xj , hence:

∑
i

xi.yi =

i=n∑
i=1

xi.(

j=i−1∑
j=1

xj −
j=n∑

j=i+1

xj)

=

i=n∑
i=1

j=i−1∑
j=1

xi.xj −
i=n∑
i

j=n∑
j=i+1

xi.xj

=

j=n∑
j=1

i=n∑
i=j+1

xi.xj −
i=n∑
i

j=n∑
j=i+1

xi.xj

=

i=n∑
i=1

(

j=i−1∑
j=1

xj −
j=n∑

j=i+1

j=n∑
j=i+1

xj)xi

= 0

(2)

At this point, we expand each of these equation components to compare them
together.

Considering the Cancellation Formula, we can conclude multiplication of
all cryptograms into

∏
i Ci =

∏
i g

xi.yi .gpi =
∏

i g
pi = g

∑
i pi . The result is

total sum of permutations (p#1 to p#8) as
∑

i pi = a.20 + b.2m + c.22m +

10

d.23m + e.24m + f.25m + g.26m + h.27m where a, b, c, d, e, f, g, h are the num-
ber of each permutation respectively (Permutation #1, Permutation #2, . . . ,
Permutation #8). The search space for such combination depends on the num-
ber of samples sent from the ML system to the auditor (the size of the test
set is n for 8 permutations is

(
n+8−1
8−1

)
[14]). As described in Phase I, the size

of n (the total number of samples) can be agreed with consideration of the
computational capacity of the auditor service. In the simplest setting where n
is small, the auditor will determine the overall number of permutations (as in∑

pi, where i ∈ {1, 2, · · · , 8}) by performing an exhaustive search in all possible
combinations until it finds the correct one.

This process is computationally heavy especially when the number of data
samples in the fairness auditing table is large. In this case, the fairness auditor
can delegate the declaration of the permutation number to the ML system. The
auditor still receives the fairness auditing table and the relevant ZKPs. It can
store the fairness auditing table to the fairness board, compute the fairness,
and verify the correctness of the declared permutation numbers. The universal
verifier can follow the same steps to verify the fairness metric computations
through the fairness auditing table that is publicly accessible via fairness board.

At the end of this stage, the auditor uses the acquired numbers to compute
the fairness metric and release the information publicly. The number of each
permutation denotes the overall performance of the ML algorithm for each of
the groups with protected attribute. Table 4 demonstrates the permutations
and how it relates to the fairness metric of the ML system. The cryptogram
table and the results will be published on the fairness board (Fig. 1).

4 Implementation and Performance Analysis

4.1 Proof-of-Concept Implementation

Tools and Platform: The back–end is implemented in Python v3.7.1 and
the front–end is implemented with Node.js v10.15.3. In our evaluations, the
computations required for generation of the cryptogram table (in the ML sys-
tem) is developed with Python. The elliptic curve operations make use of the
Python package tinyec and the conversion of Python classes to a JSON com-
patible format uses the Python package JSONpickle. All the experiments are
conducted on a MacBook pro laptop with the following configurations: CPU 2.7
GHz Quad-Core Intel Core i7 with 16 GB Memory running MacOS Catalina
v.10.15.5 for the Operating System.

Case-Study Dataset: We use a publicly available dataset from Medical
Expenditure Panel Survey (MEPS) [21] that contains 15830 data points about
the healthcare utilization of individuals. We developed a model (Logistic Re-
gression) that determines whether a specific patient requires health services,
such as additional care. This ML system assigns a score to each patient. If the
score is above a preset threshold, then the patient requires extra health services.
In the MEPS dataset, the protected attribute is “race”. A fair system provides

11

Table 4: The required permutations to compute the fairness metrics of an ML
system

Fairness
Component

Corresponding
Permutation #

Computation

Pr(Ŷ | A = 0) #2 , #4 (#2 +#4)/n

Pr(Ŷ | A = 1) #6 , #8 (#6 +#8)/n

Pr(Ŷ | A = 0, y = 0) #2 #2/n

Pr(Ŷ | A = 1, y = 0) #6 #6/n

Pr(Ŷ | A = 0, y = 1) #4 #4/n

Pr(Ŷ | A = 1, y = 1) #8 (#8)/n

such services fairly independent of the patient’s race. Here, the privileged race
group in this dataset is “white ethnicity”. We have used 50% of the dataset as
training, 30% as validation and the remaining 20% as test dataset. We set the
number of cryptogram table samples to equal the size of test set (N = 3166).
In this example we include three attributes in the cryptogram to represent the
binary values of A, Y and Ŷ (section 2.1), thus leading to 8 permutations for
each data sample.

In our experiment, where N = 3166, the total size of the search space is(
3166+8−1

8−1

)
≈ 269. The exhaustive search approach is computationally expensive

for our experimental hardware configurations, so we decided to use the approach
suggested in Section 3.3.3. Here, the permutation numbers are declared by
the ML system and the auditor service verified the claims by comparing the
computations done by the auditor (as in

∏
i Ci =

∏
i g

xi.yi .gpi =
∏

i g
pi =

g
∑

i pi) with the total sum of the received permutations (p#1 to p#8) as
∑

i pi =
a.20+b.2m+c.22m+d.23m+e.24m+f.25m+g.26m+h.27m. This is a reasonable
approach since we assumed that the ML system will not attempt to deceive the
auditor for its outcome (section 3.1).

4.2 Performance

This section presents the execution time per data point for each of the main
computational tasks, in each protocol stage. Recall that phase I was executed
before the ML system’s training and testing. This stage can be developed (and
stored separately) in parallel to the implementation of the model in order to
mitigate the performance challenge of Phase I. In our implementation, the out-
put of this stage (cryptogram table) is stored in a separate file in JSON format
and can be retrieved at the beginning of the phase II.

Phase II begins after the ML model is trained, tested, and validated. This
stage uses the output of the ML model to generate the fairness auditing table
from the cryptogram table as well as ZKP for knowledge of the permutation.
The output of this phase is transmitted to the Fairness Auditor Service in JSON
format for phase III. At this stage, first the ZKPs are verified and then, the
summation of the cryptograms determines the number of permutations for each
of the sensitive groups. Once the auditing service has these numbers, it can
compute the fairness of the ML system.

12

In our evaluations (where N = 3166), public/private key pair generation
completes in 60 milliseconds (ms) on average with standard deviation of 6ms.
The execution time for ZKP of private key was roughly the same (60ms on aver-
age with standard deviation of 6ms). The generation of reconstructed public key
took around 450ms with standard deviation of 8ms. The most computationally
expensive stage in phase I was the 1–out–of–8 ZKP for each of the permuta-
tions. This stage took longer than the other ones because first, the algorithm
is more complicated and second, it should be repeated 8 times (for each of the
permutations separately) for every row in cryptogram table. The computation
of 1–out–of–8 ZKPs takes 1.7 seconds for each data sample with STD of 0.1
seconds. Overall, phase I took around 14 seconds with STD of 1 second for each
data sample in the test set. In our experiments (where N = 3166 samples), the
total execution of phase I took roughly 12 hours and 54 minutes.

Phase II consists of creation of the auditing table and generation of the
ZKP for knowledge of the permutation. The fairness auditing table is derived
from the cryptogram table (as it is mapping the encoding to the correspond-
ing permutation number in the cryptogram table). The elapsed time for such
derivation is negligible (total: 1ms). The generation of ZKP for knowledge of
the permutation executed less than 60ms on average with standard deviation
of 3ms for each data sample. The completion of both stages took less than 3
minutes. The fairness auditing table is sent to the Fairness Auditor Service for
Phase III.

The verification of ZKPs in the last phase (Phase III) is a computationally
expensive operation. The ZKP for the ownership of the private key took around
260ms on average with standard deviation of 2ms. The verification of 1–out–
of–8 ZKP for each data point roughly took 2.5 seconds on average with 20ms
standard deviation. The verification of the ZKP for knowledge of permutation
executed in 100ms with standard deviation of 5ms. The summation of the
cryptograms after verification took 450ms overall for N = 3166 items. In our
experiment, completion of the stages in phase III took around 2 hours and 30
minutes in total.

In summary, the experimental setup for our architecture, where we computed
the required cryptograms and ZKPs for N = 3166 data points in a real–world
dataset, overall time was around 15 hours on the laptop specification given ear-
lier. The main part of the time is consumed by the computation required for
phase I (12 hours and 54 minutes). However, as we noted before, Phase I can
be executed before the ML model setup and is stored in a separate JSON file
and will be loaded at the beginning of stage II (after the training and validation
of the ML model is complete). The other main computational effort, which can
only be done after the ML system’s outcomes have been obtained, is in Phase
III. For our example, actual computation of fairness takes two and a half hours.
In summary, the creation and handling of cryptograms takes considerable com-
putational effort for realistic datasets and for the fairness metrics that require
three attributes. In what follows we analyse how performance scales with re-
spect to the number of data points as well as with the number of attributes
represented in the cryptograms.

13

5 Conclusion

This paper proposes Fairness as a Service (FaaS), a trustworthy service archi-
tecture and secure protocol for the calculation of algorithmic fairness. FaaS
is designed as a service that calculates fairness without asking the ML system
to share the original dataset or model information. Instead, it requires an en-
crypted representation of the values of the data features delivered by the ML
system in the shape of cryptograms. We used non-interactive Zero Knowledge
Proofs within the cryptogram to assure that the protocol is executed as it should.
These cryptograms are posted on a public fairness board for everyone to inspect
the correctness of the computations for the fairness of the ML system. This is a
new approach in privacy–preserving computation of fairness since unlike other
similar proposals that use federated learning approach, our FaaS architecture
does not rely on a specific machine learning model or a fairness metric definition
for its operation. Instead, one have the freedom of deploying their desired model
and the fairness metric of choice.

In this paper we proved that the security protocol guarantees the privacy of
data and does not leak any model information. Compared to earlier designs,
trust in our design is in the correct construction of the cryptogram by the ML
system. Arguably, this is more realistic as a solution than providing full access
to data to the trusted third party, taking into account the many legal, business
and ethical requirements of ML systems. At the same time, this provides a new
challenge in increasing the trust one has in the ML system. Increasing trust in
the construction of the cryptograms remains an interesting research challenge
following from the presented protocol.

We implemented a proof-of-concept of FaaS and conducted performance ex-
periments on commodity hardware. The protocol takes seconds per data point
to complete, thus demonstrating in performance challenges if the number of
data points is large (tens of thousands). To mitigate the performance challenge,
the security protocol is staged such that the construction of the cryptogram can
be done off-line. The performance of the calculation of fairness from the cryp-
togram is a challenge to address in future work. All together, we believe FaaS
and the presented underlying security protocol provide a new and promising
approach to calculating and verifying fairness of AI algorithms.

Acknowledgement

The authors in this project have been funded by UK EPSRC grant “FinTrust:
Trust Engineering for the Financial Industry” under grant number EP/R033595/1,
and UK EPSRC grant “AGENCY: Assuring Citizen Agency in a World with
Complex Online Harms” under grant EP/W032481/1 and PETRAS National
Centre of Excellence for IoT Systems Cybersecurity, which has been funded by
the UK EPSRC under grant number EP/S035362/1.

14

References

[1] Philip Adler, Casey Falk, Sorelle A Friedler, Tionney Nix, Gabriel Rybeck,
Carlos Scheidegger, Brandon Smith, and Suresh Venkatasubramanian. Au-
diting black-box models for indirect influence. Knowledge and Information
Systems, 54(1):95–122, 2018.

[2] Elaine Angelino, Nicholas Larus-Stone, Daniel Alabi, Margo Seltzer, and
Cynthia Rudin. Learning certifiably optimal rule lists for categorical data.
arXiv preprint arXiv:1704.01701, 2017.

[3] Muhammad Ajmal Azad, Samiran Bag, Simon Parkinson, and Feng Hao.
Trustvote: Privacy-preserving node ranking in vehicular networks. IEEE
Internet of Things Journal, 6(4):5878–5891, 2018.

[4] Olivier Baudron, Pierre-Alain Fouque, David Pointcheval, Jacques Stern,
and Guillaume Poupard. Practical multi-candidate election system. In
Proceedings of the twentieth annual ACM symposium on Principles of dis-
tributed computing, pages 274–283, 2001.

[5] Alexandra Chouldechova. Fair prediction with disparate impact: A study
of bias in recidivism prediction instruments. Big data, 5(2):153–163, 2017.

[6] Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, and Aziz
Huq. Algorithmic decision making and the cost of fairness. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 797–806. ACM, 2017.

[7] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial
knowledge and simplified design of witness hiding protocols. In Annual
International Cryptology Conference, pages 174–187. Springer, 1994.

[8] Craig E. Carroll and Rowena Olegario. Pathways to corporate accountabil-
ity: Corporate reputation and its alternatives. Journal of Business Ethics,
163(2):173–181, 2020.

[9] Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger,
and Suresh Venkatasubramanian. Certifying and removing disparate im-
pact. In Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 259–268. ACM, 2015.

[10] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Conference on the theory and
application of cryptographic techniques, pages 186–194. Springer, 1986.

[11] Sorelle A Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian.
On the (im) possibility of fairness. arXiv preprint arXiv:1609.07236, 2016.

[12] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini,
Fosca Giannotti, and Dino Pedreschi. A survey of methods for explain-
ing black box models. ACM computing surveys (CSUR), 51(5):1–42, 2018.

15

[13] Feng Hao, Matthew N Kreeger, Brian Randell, Dylan Clarke, Siamak F
Shahandashti, and Peter Hyun-Jeen Lee. Every vote counts: Ensuring
integrity in large-scale electronic voting. In 2014 Electronic Voting Tech-
nology Workshop/Workshop on Trustworthy Elections (EVT/WOTE 14),
2014.

[14] Feng Hao, Peter YA Ryan, and Piotr Zieliński. Anonymous voting by
two-round public discussion. IET Information Security, 4(2):62–67, 2010.

[15] Moritz Hardt, Eric Price, Nati Srebro, and others. Equality of opportu-
nity in supervised learning. In Advances in neural information processing
systems, pages 3315–3323, 2016.

[16] Hui Hu, Yijun Liu, Zhen Wang, and Chao Lan. A distributed fair machine
learning framework with private demographic data protection. In 2019
IEEE International Conference on Data Mining (ICDM), pages 1102–1107.
IEEE, 2019.

[17] Matthew Jagielski, Michael Kearns, Jieming Mao, Alina Oprea, Aaron
Roth, Saeed Sharifi-Malvajerdi, and Jonathan Ullman. Differentially pri-
vate fair learning. In International Conference on Machine Learning, pages
3000–3008. PMLR, 2019.

[18] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography.
CRC press, 2014.

[19] Niki Kilbertus, Adria Gascon, Matt Kusner, Michael Veale, Krishna P
Gummadi, and Adrian Weller. Blind justice: Fairness with encrypted sen-
sitive attributes. In 35th International Conference on Machine Learning,
pages 2630–2639. PMLR, 2018.

[20] Jeff Larson, Surya Mattu, Lauren Kirchner, and Julia Angwin. How we
analyzed the COMPAS recidivism algorithm. ProPublica (5 2016), 9(1),
2016.

[21] Jiacheng Liu, Fei Yu, and Lixin Song. A systematic investigation on the
research publications that have used the medical expenditure panel survey
(MEPS) data through a bibliometrics approach. Library Hi Tech, 2020.

[22] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model
predictions. Advances in neural information processing systems, 30, 2017.

[23] Arwa Mahdawi. It’s not just A-levels – algorithms have a nightmarish new
power over our lives. The Guardian, 2020.

[24] Arvind Narayanan. Translation tutorial: 21 fairness definitions and their
politics. In Proc. Conf. Fairness Accountability Transp., New York, USA,
2018.

16

[25] Cecilia Panigutti, Alan Perotti, André Panisson, Paolo Bajardi, and Dino
Pedreschi. Fairlens: Auditing black-box clinical decision support systems.
Information Processing & Management, 58(5):102657, 2021.

[26] Cecilia Panigutti, Alan Perotti, and Dino Pedreschi. Doctor xai: an
ontology-based approach to black-box sequential data classification expla-
nations. In Proceedings of the 2020 conference on fairness, accountability,
and transparency, pages 629–639, 2020.

[27] Saerom Park, Seongmin Kim, and Yeon-sup Lim. Fairness audit of machine
learning models with confidential computing. In Proceedings of the ACM
Web Conference 2022, pages 3488–3499, 2022.

[28] Reuters. Amazon ditched AI recruiting tool that favored men for technical
jobs. The Guardian, 2018.

[29] Shahar Segal, Yossi Adi, Benny Pinkas, Carsten Baum, Chaya Ganesh,
and Joseph Keshet. Fairness in the eyes of the data: Certifying machine-
learning models. In Proceedings of the 2021 AAAI/ACM Conference on
AI, Ethics, and Society, pages 926–935, 2021.

[30] Keng Siau and Weiyu Wang. Building trust in artificial intelligence, ma-
chine learning, and robotics. Cutter business technology journal, 31(2):47–
53, 2018.

[31] Douglas Robert Stinson and Maura Paterson. Cryptography: theory and
practice. CRC press, 2018.

[32] Ehsan Toreini, Mhairi Aitken, Kovila Coopamootoo, Karen Elliott, Car-
los Gonzalez Zelaya, and Aad van Moorsel. The relationship between trust
in AI and trustworthy machine learning technologies. In Proceedings of
the 2020 Conference on Fairness, Accountability, and Transparency, pages
272–283, 2020.

[33] Michael Veale and Reuben Binns. Fairer machine learning in the real world:
Mitigating discrimination without collecting sensitive data. Big Data &
Society, 4(2):2053951717743530, 2017.

[34] Tong Wang, Cynthia Rudin, Finale Doshi-Velez, Yimin Liu, Erica Klampfl,
and Perry MacNeille. A bayesian framework for learning rule sets for
interpretable classification. The Journal of Machine Learning Research,
18(1):2357–2393, 2017.

[35] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated ma-
chine learning: Concept and applications. ACM Transactions on Intelligent
Systems and Technology (TIST), 10(2):1–19, 2019.

17

	Introduction
	Background and Related Work
	Fairness Metrics
	Auditing ML Models for Fairness

	FaaS Architecture
	Threat Model
	Protocol Overview
	Protocol Sequence
	Phase I: Setup
	Phase II: Parameter Assignment
	Phase III: Fairness Evaluation

	Implementation and Performance Analysis
	Proof-of-Concept Implementation
	Performance

	Conclusion

