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Abstract. Accurate traffic flow prediction plays an important role in
intelligent transportation management and reducing traffic congestion
for smart cities. Existing traffic flow prediction techniques using deep
learning, mostly LSTMs, have achieved enormous success based on the
large traffic flow datasets collected by governments and different organi-
zations. Nevertheless, a lot of these datasets contain sensitive attributes
that may relate to users’ private data. Hence, there is a need to develop
an accurate traffic flow prediction mechanism that preserves users’ pri-
vacy. To address this challenge, we propose a federated learning-based
temporal fusion transformer framework for traffic flow prediction which
is a distributed machine learning approach where all the model updates
are aggregated through an aggregation algorithm rather than sharing and
storing the raw data in one centralized location. The proposed framework
trains the data locally on client devices using temporal fusion transform-
ers and differential privacy. Experiments show that the proposed frame-
work can guarantee accuracy in predicting traffic flow for both the short
and long term.

Keywords: Federated Learning · Traffic Flow Prediction · Differential
Privacy · Temporal Fusion Transformer · Time Series Data

1 Introduction

Urban transportation is a vital part of everyday life. Traffic congestion on roads is
one of the major concerns in today’s transportation system. Most of the people
traveling on the road utilize their own observations for selecting an optimum
time and path to commute. In the absence of accurate traffic flow predictions,
this leads to longer commute times and delays. Hence, everybody requires a
timely and accurate traffic flow prediction. Using accurate traffic flow prediction
techniques, we can use historic traffic data to predict future road conditions that
can be utilised in different location-based services.
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Even after being such an essential part of Intelligent Transport Management,
traffic flow prediction is difficult and quite challenging. First of all, the nature
of the traffic data is spatiotemporal. The models predicting the traffic flow must
capture both the time-series information and spatial features of the location.
Secondly, the traffic flow in a particular region is highly dependent on many
different external factors like which day of the week is it or is there any special
event happening on a particular day. Hence, these factors need to be considered.
Thirdly, most of the existing works can only do a short-term prediction for about
the next 30 to 50min which might not be enough time for the commuters to plan
their journey route. Lastly and most importantly, a lot of the historic traffic data
may contain some sensitive information about the vehicle which may reveal some
private information Hence, it is very essential to build a framework for traffic
flow prediction that gives accurate predictions and at the same time preserves
sensitive information.

Most of the traffic data is collected by the sensors deployed on the road. This
collected data is stored at a central location over which a traffic prediction model
is trained. This intrudes on the privacy of the data collected and increases the
prediction duration Hence, to address the above-mentioned issues, we propose a
novel federated differentially private traffic flow prediction framework based on
Temporal Fusion Transformers. The contributions of this paper are summarized
as follows:

– We propose a novel privacy-preserving traffic flow prediction framework that
integrates Federated Learning (FL), Differential Privacy (DP) and Tempo-
ral Fusion Transformers (TFTs). This framework gives accurate and timely
predictions without actually sharing the raw data collected from the sensors.

– We incorporate various static information like the day of the week and the
calendar holidays within the region which improve the accuracy of the pre-
diction.

– We have included the long-term prediction of traffic flow in a region that was
missing in the existing literature.

We use two evaluation metrics (Mean Squared Error and Mean Absolute
Error) on a real-world dataset for the simulation of the proposed framework.
From the obtained results we can clearly see that our proposed algorithm has a
higher performance when compared with the existing works.

The remaining part of this paper is organized as follows. Section 2 reviews
some basic concepts needed in understanding the paper. In particular, we dis-
cuss FL, DP, and TFTs. Section 3 describes, in brief, some existing literature
on traffic flow prediction. Our suggested prediction mechanism is described in
Sect. 4. Section 5 describes the dataset and simulation settings for experiments.
In Sect. 6, we provide and discuss the results. Section 7 gives the conclusion and
future directions.
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2 Preliminaries

2.1 Federated Learning

The concept of FL was proposed by Google [5] in 2016 which allows building a
collaborative model from distributed data without actually sharing and storing it
at a centralized location thereby preserving the privacy and security of the data.

Assuming M clients {C1, C2, . . . , CM}, Yang et al. [18] define federated
learning as a process of constructing collaborative model MFed with accuracy
AFed such that

|AFed − ACen| < δ (1)

Fig. 1. Federated Learning

where ACen is the accuracy of centralized machine learning on the centralized
dataset D = D1 ∪ D2 ∪ · · · ∪ DM and δ is a non-negative real number if Eq. (1)
holds. The FL algorithm is said to have δ-accuracy loss [18]. There are mainly two
categories of FL - one, where data at clients have the same features but different
samples, called horizontal FL, and second, called vertical FL, where clients have
different feature spaces. In our proposed solution, we work with horizontal FL.

In each communication round, the server transmits the global model parame-
ters to the selected clients. These clients perform the local model training on their
own individual dataset and send their updated parameters to the server which
then aggregates the differences to the global model. This communication stops
when convergence is achieved. The system architecture of FL is represented in
Fig. 1.

2.2 Differential Privacy

Differential Privacy [2] is considered as the de facto standard of privacy by most
researchers in the field of privacy. DP can provide strong privacy guarantees
if the selected values of ε and δ are good. The formal definition of differential
privacy is given as follows. An algorithm M is said to be (ε, δ) - differentially
private if

P (M(D ∈ S) ≤ e∈P (M(D′) ∈ S) + δ (2)
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where D and D′ are neighbouring datasets and S is an arbitrary subset of outputs
of M . ε is the privacy budget and δ is the relaxation term. A smaller value of ε
enforces stronger privacy.

2.3 Temporal Fusion Transformers

Transformers are the state of art deep learning models that were proposed recently
in 2017 [16]. They use the self-attention mechanism for different types of tasks.
Though they were originally proposed for natural language processing models
but several different versions of transformers have become popular over the time.
The major advantage of using the transformer models over the traditionally used
LSTMs [4] in sequential processing tasks is that they require much less training
time due to parallelization. One such type of transformer is the TFT.

TFTs were proposed by Lim et al. [7] in 2020. This model is specifically
designed for interpreting and predicting the time-series data. It has several novel
architectures that have improved the prediction performance for time series con-
siderably. The TFTs consider different types of inputs like static inputs which
could be the never-changing information like the ids of sensors, known inputs
which are known even after the input time like a day of the week and holidays,
and observed values.

The main modules of the TFT architecture are:

– Gating module: This module helps in filtering out the not-so-necessary com-
plex details in the model formed and hence reducing the complexity of the
trained model.

– Variable Selection Network: This module, being true to its name, is used for
the feature selection mechanism.

– Static information encoder: This encodes the static information in the prob-
lem considered for prediction.

– LSTM encoder-decoder layers: Since our main input is sequential in nature,
hence it is worthwhile to consider using LSTM layers to process the temporal
information well.

– SeqtoSeq layer and Multi-head attention module: They are used for capturing
the short-term and long-term dependencies in the data respectively.

3 Related Work

In this section, we discuss the most relevant research in the field of traffic flow pre-
diction. In the initial studies related to traffic flow prediction, most researchers
used traditional machine learning algorithms to solve the time-series problem.
Gary et al. [1] proposed a K-Nearest Neighbour approach for short-time traffic
flow prediction. Another Bayesian network-based [14] approach was proposed by
Sun et al. which took into consideration the adjacent road links to analyze the traf-
fic better. A few more machine learning-based approaches were proposed based on
Support Vector Machines (SVMs) [6] and Autoregressive Integrated Moving aver-
age (ARIMA) [13] but none of them was accurate enough. This could be because
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of the complicated relationship between features, volume, and uncertainty of the
traffic flow data. Hence, researchers started exploring some deep-learning tech-
niques for time-series prediction [11]. Since, the time-series data is sequential in
nature, hence, researchers found that Recurrent Neural Networks (RNNs) could
be good at capturing the temporal features in traffic flow prediction. Ma et el.
[9] proposed a bidirectional LSTM to capture the time features better while Fu
et al. RNNs indeed performed better than traditional machine learning algo-
rithms. Another set of researchers used Convolutional Neural Networks (CNNs)
and demonstrated good ability to capture the features in the field of computer
vision. Zhang et al. [21] used CNNs for predicting urban traffic flow and captured
the correlations of traffic with each road in a city. Some researchers tried combin-
ing properties of both CNNs and RNNs like Zhang et al. [20] which used the ST-
ResNet, to collectively forecast the inflow and outflow of crowds in a city. Xia et al.
[17] proposed a distributed WND-LSTM model in MapReduce that can predict
traffic flow for distributed traffic networks. All these models could predict the traf-
fic flow with a decent accuracy but all of them were centralized models and hence
did not take data privacy into consideration. Since data privacy is a major concern,
hence it is very important to find out an alternative to these models. FL being an
emerging field attracted a lot of researchers’ eyes. Liu et al. [8] proposed a feder-
ated learning-based highway traffic prediction using GRUs. FL, though, is more
secure when compared to the centralized approach but it is still not enough. To
ensure more privacy in FL approaches Yang et al. [19] proposed privacy-preserving
Additive Homomorphic Encryption (AHE) in FL. AHE is a good way of secur-
ing the FL environment but it is very computationally intensive and slow and
hence cannot be used in timely traffic flow prediction. To overcome these Qi et
al. [12] proposed a blockchain-based federated learning approach combined with
GRUs and Tang et al. [15] proposed a differential privacy-based federated learn-
ing approach with LSTMs for short-term prediction. Though LSTM models are
reasonably accurate but training them is difficult as they have a larger number of
parameters and cannot parallelize the task. Hence, we propose transformer-based
models to predict short-term as well as long-term traffic flows in conjugation with
privacy protection.

4 Differentially Private Federated Traffic Flow Prediction
Using Temporal Fusion Transformers

In this section, we propose two variants of a new federated traffic flow prediction
framework. The two variants differ only in the noise added to them.

Suppose we have m different sensors located in different parts of the city. Each
sensor collects the traffic flow data Di from its region. Each client’s data Di is
not shared with anyone and is only used by the client for training their model.
Each sensor constructs a TFT model on the dataset Di. Then, the model updates
are sent to the aggregating server where we use the FedAVG [10] algorithm to
aggregate these parameters. These aggregated parameters form the global model.
This global model is then sent back to the clients. This results in learning from
each other’s datsets without actually knowing the data.
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4.1 Client-Side Training

Figure 2 presents the client-side training steps. Each client collects road traffic
data every hour. When feeding this input to the TFT, we segregate the inputs
into different types. The first type is the static input values which is the detector
id and road number. Then, we input the known inputs. These values are the one
that we know even after the prediction time like the hour of the day, day of
the week, month, holiday or not etc. Lastly, we input the observed value. This
is the value that we want our model to predict after training. In our case, this
observed value is the number of vehicles on the road at any particular time. The
data format file is created and we set the look back historical window and the
prediction length of our model. We then set the hyperparameters which include
the number of LSTM layers, dropout rate, minibatch size and number attention
heads. Lastly, we train our TFT model and obtain the model parameters.

Fig. 2. Client side architecture

4.2 Model Perturbation

When the TFT model is trained on the client, then to ensure the security of the
sensitive information we apply ε differential privacy on the client-side trained TFT
model. More concretely, we supply the Gaussian mechanism and add noise to the
parameters. In our experiments, we add the noise with varying values of epsilon
from 0.1 to 0.9 and see how it impacts the global model’s prediction accuracy.

4.3 Aggregation Algorithm

Since, aggregation is the key component of this framework, we use the FedAVG
algorithm [10] for secure parameter aggregation. It is one of the simplest yet
effective and very popular aggregation algorithms. Every iteration of the algo-
rithm starts with initializing a global model to all the clients. The clients train on
that model with their own local datasets and obtain a new updated model. The
updates in the model parameters of these updated local models are then sent
to the global server. The global server aggregates these updates by performing
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a weighted average of their values. This forms a new global model. Again this
updated global model is sent back to the clients for local training. This process
continues iteratively until it reaches convergence. Once, the converged model is
ready we use this model to predict on the data to evaluate its performance.

Table 1. Prediction results of the proposed model without DP

Time Step MSE MAE

Centralized 24 0.0117 0.0567
72 0.0134 0.0562
720 0.0178 0.0713

2 Clients 24 0.0240 0.0931
72 0.0435 0.1098
720 0.0466 0.1536

4 Clients 24 0.0495 0.1589
72 0.0639 0.1795
720 0.0726 0.1689

6 Clients 24 0.0515 0.1525
72 0.0552 0.1541
720 0.0680 0.1646

8 Clients 24 0.0442 0.1461
72 0.0556 0.1608
720 0.0721 0.1667

5 Dataset and Experimental Settings

We are using the real-world public dataset collected by Caltrans Perfor-
mance Measurement System (PeMS) (http://pems.dot.ca.gov) in California.
This dataset contains the traffic flow information from the San Francisco Bay
area freeways. The data is collected from 862 different sensors located on the
highway system. The data is available for two years from 2015 to 2016 with a
reading of traffic on roads after every hour. We used three months of data from
January 2015 to March 2015 for training the TFT model and predicting the
values for the following one day, three days and one month. We have used the
Darts TFT [3] python library for implementing the TFT code. For simulating
the federated settings we clustered the sensors located in a nearby region in
proximity to each other into a single client. The values for the different TFT
hyperparameters for the experiments were set as input chunk length as 64, out-
put chunk length as 8, hidden size as 64, LSTM layers as 1, num attention heads
as 4, dropout as 0.1, batch size as 16 and epochs=3. The proposed algorithm is
simulated for 2, 4, 6 and 8 clients. We also apply DP on the client-side models
with different ε values (0.1,0.5 and 0.9) to show how it impacts the prediction

http://pems.dot.ca.gov
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results. For the evaluation of our results, we used Mean Squared Error and Mean
Absolute Error.

MSE = 1/M
M∑

i

(actuali − predictedi)2 (3)

MAE = 1/M
M∑

i

|actuali − predictedi| (4)

Fig. 3. Comparison of epsilon values for DP
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6 Results and Analysis

The results of the experiments described are presented below.

Table 2. Prediction results of the proposed model with DP

Clients Time
Step

Eps MSE MAE

2 Clients 24 0.9 0.1808 0.3321
72 0.9 0.1746 0.3298
720 0.9 0.1706 0.3103
24 0.5 3.2065 1.4260
72 0.5 2.8518 1.3553
720 0.5 1.8467 1.0783
24 0.1 8.9417 2.3549
72 0.1 8.2561 2.2964
720 0.1 8.2084 2.1916

4 Clients 24 0.9 0.1027 0.2458
72 0.9 0.0990 0.2440
720 0.9 0.1140 0.2436
24 0.5 1.5119 0.9814
72 0.5 1.4715 0.9699
720 0.5 1.4168 0.9445
24 0.1 5.6733 1.9114
72 0.1 4.9860 1.7923
720 0.1 4.3179 1.6547

Clients Time
Step

Eps MSE MAE

6 Clients 24 0.9 0.0898 0.2245
72 0.9 0.0905 0.2242
720 0.9 0.0980 0.2249
24 0.5 1.1510 0.8403
72 0.5 1.0912 0.8333
720 0.5 1.0094 0.8054
24 0.1 2.1788 1.1221
72 0.1 1.6476 0.9995
720 0.1 1.4634 0.9617

8 Clients 24 0.9 0.0768 0.1975
72 0.9 0.0715 0.2056
720 0.9 0.0679 0.2019
24 0.5 0.8602 0.7552
72 0.5 0.8055 0.7119
720 0.5 0.7056 0.6606
24 0.1 2.9688 1.3788
72 0.1 2.3772 1.3330
720 0.1 1.5631 1.0145

In Table 1, we compared the results of our proposed framework with the cen-
tralized Model. It shows the MSE and MAE values of the model by varying the
number of clients. It can be seen from the results that our federated framework
performs quite well and the obtained values are comparable to the centralized
approach. Though the error increases slightly with the increase in the number
of clients yet we consider that remains within reasonably good limits. We also
compare our proposed work with FedGRU [8]. The MAE and MSE values in
their work are 7.96 and 101.49 respectively for the same dataset. We can clearly
see that these are quite high when compared with the values of our approach.

In Table 2, we share the values of the MAE and MSE when varying the value
of ε for adjusting the privacy budget. In order to evaluate our results we can
report from the literature, the MAE and MSE values of FedLSTM with Differ-
ential Privacy [15]. They are 7.65 and 100.47 respectively which are very high
when compared to our framework’s results with DP. Hence, our proposed model
performs better than other baselines and existing works in the literature. In
Fig. 3, we have plotted the values of MSE and MAE to measure the effectiveness
of our model after adding noise. We have considered three values of ε, in our
experiments: 0.1,0.5 and 0.9. Please note that the lower the value of ε, more
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is the noise added. We can see from Table 2 that with the highest ε value, the
noise added is less, thus the error values are low and vice versa. We can also
observe that with the increase in the number of clients, the values of MAE and
MSE show a reducing trend which makes our proposed framework suitable to be
used in FL settings with large number of clients. Also, when comparing our error
values with existing FedLSTM with DP [15], our values are smaller. Therefore,
our approach is better.

7 Conclusion and Future Works

This paper presents a novel federated traffic flow prediction framework based on
temporal fusion transformers and differential privacy which can make timely and
accurate long-term as well as short-term predictions. The proposed federated
framework is privacy-preserving as it does not promote any data sharing, is
resistant to membership inference attacks, linkage attacks, and backdoor attacks
and also satisfies differential privacy guarantees. This work is compared with
some existing works and centralized models on the PEMS Dataset. Our results
are comparable to the centralized ML algorithms yet preserve the privacy of
the client’s data. In the future, we would like to investigate more about the
impact of different experiment settings on the proposed framework. We will also
consider taking into account the spatial and weather information into account
while traffic flow prediction.
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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