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Abstract. Kyrgyz is a very underrepresented language in terms of mod-
ern natural language processing resources. In this work, we present a new
public benchmark for topic classification in Kyrgyz, introducing a dataset
based on collected and annotated data from the news site 2/. KG and pre-
senting several baseline models for news classification in the multilabel
setting. We train and evaluate both classical statistical and neural mod-
els, reporting the scores, discussing the results, and proposing directions
for future work.
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1 Introduction

Kyrgyz is an agglutinative Turkic language spoken in several countries, notably
China and Tajikistan in addition to Kyrgyzstan; it is by no means an endan-
gered language, and several millions of people call it their mother tongue [35].
However, despite a large amount of linguistic work, including computational
linguistics (see Section ), it is certainly a low-resource language, with a very
modest number of tools and datasets available in the open for Kyrgyz language
processingﬁ. A recent publication [35], following the taxonomy proposed in [22],
labels Kyrgyz with the “Scraping By” status, defined as follows: “With some
amount of unlabeled data, there is a possibility that they could be in a bet-
ter position in the ’race’ in a matter of years. However, this task will take a
solid, organized movement that increases awareness about these languages, and
also sparks a strong effort to collect labelled datasets for them, seeing as they
have almost none.” Therefore, we believe that a meaningful effort to construct
open manually annotated text collections or other reliable resources for Kyrgyz

® For a list of tools, corpora, and other language resources for Turkic languages
including Kyrgyz, see e.g. https://github.com/alexeyev/awesome-kyrgyz-nlp| and
http://ddi.itu.edu.tr/en/toolsandresources.
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language processing is in great demand; modern NLP, while shifting towards
universal models, is still hard to imagine without at least evaluation data.

Text topic classification is a core task in natural language processing and
information retrieval [34]; it is one of the most popular in practice, with appli-
cations in advertising [71], news aggregation, and many other industries. Very
often, topic categorization is posed as a multilabel classification problem since
the same text can touch upon multiple topics [33L46,[69].

In this work, we present virtually the first labeled dataset for text classifi-
cation in the Kyrgyz language based on the 24.kg news portal. Moreover, we
propose several baseline models and evaluate their results; in this evaluation,
we see that multilingual models do help to process Kyrgyz, using even primitive
stemming and passing from word n-grams to symbol n-grams quite expectedly
help, and deep learning models that we have considered perform better than
the best linear models with virtually no hyperparameter search. Thus, the con-
tributions of our work are threefold: (1) a novel manually labeled dataset for
texts in the Kyrgyz language, (2) several approaches to multi-label Kyrgyz text
classification, (3) proof of concept for the feasibility of multilingual LLMs for
Kyrgyz language processing in supervised tasks. The paper is organized as fol-
lows: SectionPldiscusses related work, Section [Blintroduces our dataset, Section
shows baseline models and experimental setup used in our experiments, Section[f]
discusses experimental results, and Section [6] concludes the paper.

2 Related Work

Topic classification. Text topic classification is one of the oldest and best known
tasks in information retrieval and natural language processing [34L[72]. It is
straightforwardly defined as a supervised learning (classification) task, often ex-
panding into multilabel classification since longer texts are hard to fit into a
single topic [33,46L[69], a problem that is still attracting attention in the lat-
est deep learning context [32/[62]. Many approaches have been developed for
datasets of different nature: (i) news article datasets such as BBC News [I§],
Reuter [30], 20 Newsgroups [28], or WMT News Crawl [29]; (ii) scientific texts
such as arXiv abstracts [29], patents [56], or clinical texts [4253,66]; (iii) social
media posts where topics are usually represented by [hash|tags [13], and more.
We note especially prior efforts related to text classification for low-resource
languages [2L[1T],14L[16,19].

Kyrgyz language processing. There already exists a large corpus of linguistic
research papers dedicated to various aspects of the Kyrgyz language: (1) gram-
mar, syntax and morphology modeling [7|2T124-H261[50157.[64.6568.[74-77,[79,82],
including a recent release of 780 dependency trees [5] as part of the Universal
Dependencies initiative [41], (2) text-related statistics and construction of cor-
pora/dictionaries [4[24H261[73,80,83], (3) computer-aided language learning and
other educational systems [9123], (4) machine translation [45,58,[6478], (5) lexi-
cons and thesauri [71[84], (6) computational linguistics in general [81], and more.
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Kyrgyz also appears in multiple works as a part of multilingual research studies,
e.g. on multiway machine translation [36L37] and even text categorization [31],
although the latter uses a different (Arabic) script than our work.

News articles represent a traditional and widely used text domain, tradition-
ally a valuable source of data both for information retrieval and natural language
processing. News-based datasets have found many applications including such
non-traditional ones as relation classification [49]. In this work, we concentrate
on the news domain primarily because to the best of our knowledge, for the
Kyrgyz language only fiction, news, and Wikipedia articles are readily available
online. Collecting social media content, which may also be useful for numerous
NLP tasks |38, 27,3840, 59H6T], is also possible but requires significant ex-
tra effort for preprocessing; in particular, preprocessing steps for social media
sources would have to include language detection since oftentimes people writing
in Kyrgyz also publish posts in Russian and other languages.

Several research efforts on Kyrgyz open corpora and dictionaries are currently
in progress (see, e.g., [24H26]), but as of 2023, there are still very few manually
annotated datasets useful for Kyrgyz language processing. We hope to start
filling this gap with this work.

3 Dataset

3.1 Annotation

With permission of 24.kg|§| editors, we collected 23 283 news articles in Kyrgyz,
dated from May 2017 to October 2022. The portal does not provide any topical
tags for articles in Kyrgyz, hence we had to either match collected articles with
possibly available articles in Russian, which are tagged, or annotate them with
our own topical categories. The original rubrics used at 24.kg include: (1) Baiacts
(government, politics and law), (2) O6mecrso (society), (3) DxoHomura (eco-
nomics), (4) IIpoucmecrsus (accidents, current events), (5) Arenr 024 (current
events), (6) Cmopr (sports), (7) Texuobaor (tech), (8) Cuemmpoexrsr (special
projects), (9) Keiproizua (articles in Kyrgyz), (10) English (articles in English),
(11) Busnec (business). Some of the rubrics are clearly not topical (“English”,
“Koiprersua”), some are multi-topic (“CrernpoexTsr”, “Arent 024”), and some
other topics also turned out to cover very diverse information. Therefore, we
had to introduce our own topical labels.

While some general-purpose taxonomies for content classification do exist
and are used, e.g., in advertising, including dmoA] and 1ABH taxonomies, the
label sets there are too broad for the purpose of news classification. Our prelim-
inary experiments with translated news titles zero-shot classification with IAB
Tier 1 tags (in the label-fully-unseen setting [67]) yielded poor prediction quality.

6 lhttps://24.kg/
" https://www.dmoz-odp.org/; previously https://www.dmoz.org/.
8 lhttps: //iabtechlab.com /standards/content-taxonomy /
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Title |Proposed labels
The presidential candidate who violated traffic rules paid... |law/crime, politics
Cars of drivers who do not pay fines on time will be... law /crime

44 percent of the 108,000 fines imposed for violating traffic... |law/crime
Party candidate was fined 7,500 soms for holding a concert...|law/crime, politics
Fines for garbage thrown from cars have been increased... law /crime, ecology

Table 1. Sample cluster (#16).

However, we still consider this direction very promising from the practical point
of view and leave it for future research.

To motivate the introduction of a custom set of labels, we have automatically
translatedd titles of Kyrgyz articles into English, randomly sampled 500 out of
23284 of them (a subset small enough to annotate in reasonable time yet hope-
fully large enough to derive meaningful conclusions regarding the topics), and ob-
tained their embeddings via the SentenceBERT model [48] (all-mpnet-base-v2,
the best-performing! fine-tuned MPNet model [54]). Then, we have grouped the
resulting embeddings using agglomerative clustering (Euclidean distance, Ward
linkage [63], other hyperparameters left at default as provided by scikit-learn
version 1.0 [44]) into 100 clusters. Note that the exact clustering procedure and
chosen parameters are not of significant importance here; the main idea is to
group texts into hopefully small clusters of very similar titles to speed up an-
notation and, most importantly, to be able to easily invent topic names that
are neither too general nor too specific. Note also that we had to translate the
titles and apply the model trained on English language data not for the annota-
tion itself but only because there are no good sentence embeddings models for
Kyrgyz with reported quality. Where it was impossible to deduce the topics of
the article from the title, we made decisions based on the original Kyrgyz news
texts. A sample cluster is presented in Table [1

The exploratory annotation task was defined as follows: for each cluster,
invent a topic name that best describes most if not all titles and use it as the
class label. Then correct the label for titles in the cluster that do not fit the
invented topic. If multiple topics apply to some of the titles, add more tags where
necessary. After that, we make another pass over all 500 titles since some of the
labels were not “available” at the beginning, i.e., a certain “general” label might
be added to the label set after some of the texts that would be appropriately
labeled with it had already been annotated. As a result, we obtained a refined
list of 20 labels shown in Table 2l To validate the label set by comparing label
distributions with each other, we have annotated 500 more English translations
of the titles using the same set of labels. We found that the difference in label
count distributions in the two sets of 500 were relatively small, which showed
that our annotation was consistent. Finally, we have annotated 500 more texts

9 Google Translate: [https://translate.google.com /7sl—ky&tl—en&op—docs
19" As of 24.08.2023: |https://www.sbert.net/docs/pretrained models.html,
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500-1
500-2

Class label Description

politics | 127 | 174 | Mentions of politicians and political decisions
law /crime | 126 | 128 | Judiciary and penitentiary sys., legislature, trials, crime
foreign affairs | 84 | 91 | Any non-Kyrgyzstan-related news
health | 68 | 63 | Health and medicine-related news (mostly COVID19)
local | 43 | 43 | Traffic rerouting, events scheduling
accidents | 41 | 31 | Disasters, fires, road accidents, etc.
econ/finance | 37 | 50 | Money, import-export and labour-related news
society | 36 | 49 | Local initiatives, protests, other citizen-related news
culture | 32 | 29 | Cultural events and initiatives, celebrity news
citizens abroad | 17 | 11 | Migration questions and Kyrgyz people abroad
sports | 16 | 15 | Awards, announcements, famous sportspeople mentions
natural hazards | 13 | 5 |Inconveniences and threats due to natural reasons
development | 12 | 25 | Realty, land use and infrastructural development
religion | 11 | 13 | Religion-related news
science/tech | 9 7 | Everything related to science and technology

border | 8 | 9 |Kyrgyzstan’s borders-related conflicts and resolutions
education | 7 | 22 | News on educational procedures/events/institutions
weather | 6 4 | Weather forecasts and reports
ecology | 4 | 4 |Ecological initiatives, laws and reports

natural resources| 2 0 |Issues related to natural resources

Table 2. Topical tags for 24.kg, total number of tags in the first two annotation batches
and their descriptions. The counts do not sum up to 500 since this is a multilabel task.

Unique
stems

Unique
tokens

#

texts

#
sent. | Sent /text
Train | 1000 | 7319 | 7.32 £ 5.36 | 107 556 18958 | 107.56 £ 74.02 9872
Test 500 | 4025 | 8.05 £8.78 | 57414 12885 (114.83 £101.15 6924

Table 3. Dataset statistics; sentences counted via the sent_tokenize method from
NLTK [6]. Per-text values show mean value and standard deviation.

#

tokens

Tok/text

following the same procedure. We do not disclose the exact distribution of the
labels in the final batch for the sake of fairness in possible future competitions:
knowing the exact number of texts with a certain label might be used as a test
data leak to improve results.

3.2 Data Description

The dataset consists of 1500 texts, annotated in three sessions as described
above. Since the dataset is relatively small, we split it in only two parts: the first
two batches of 500 (i.e., training set has 1000 texts) and the last batch (i.e. the
test set has 500 texts).
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For further application of models based on the bag-of-ngrams approach, the
texts had to be split into tokens and, possibly, stemmed/lemmatized. For tok-
enization, we used the splitting mechanism provided by the Apertium Project
morphological analyzer [I7,[65]; to the best of our knowledge, this is the only
open source engine for Kyrgyz morphology. Similarly, for word normalization we
used the Apertium-Kir [65] FST’s token segmentation; since prefixes are uncom-
mon in Kyrgyz, the first segment was used as the stem. Overall dataset statistics
are presented in Table Bl

4 Models and Experimental Setup

The resulting dataset is far too small to be used for training, especially for classi-
cal models that heavily depend on frequency estimates of various ratios of tokens
and n-grams, e.g., models based on the bag-of-words assumption. However, we
can use the dataset in cross-validation to make comparisons across models that
perform transfer learning. Still, we include classical approaches into the bench-
mark as well, since several works have demonstrated that word/character n-gram
baselines are sometimes surprisingly competitive, e.g., in entity linking [I[51], so
they should not be ignored even for a relatively small dataset.

We have used grid search to find the best parameters. Since the training set
is small and imbalanced in terms of labels, we used 2-fold validation for hyper-
parameter search with a stratified split into two subsets preserving the label
distribution™]. Below we show the considered values and ranges of hyperparam-
eters in addition to the models themselves.

4.1 Approaches based on the bag-of-ngrams assumption

To provide a classic baseline, we have considered several sparse text representa-
tions (essentially bags-of-ngrams) and several corresponding models.

Text preprocessing. We tested several text representations. First, we tokenized
text (SectionB.2)) into unigrams, 1-2-grams, 1-2-3-grams, and 2-3-grams. For fre-
quency cutoffs we retained tokens with maximum document frequency (maxdf)
of 40%, 60%, 80%, and 100% and minimum occurrence (mincount) in 2, 5, or
10 documents. We also set the maximum number of features (maxfeat) equal to
2000 or 10000. In another set of experiments, we used character n-grams: 2-3-
grams, 3-4-grams, and 5-6-grams; maxdf for a character n-gram was set to 40%,
70%, or 100%, mincount was 4, 10, and 15, and maxfeat was 2000 or 10 000.
Then, having stemmed the texts as in Section [3.2] we have run experiments with
the same “vectorization” parameters.

11 Specifically, we used the IterativeStratification algorithm from the scikit-multilearn
library [55].
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Independent classifiers (“Independent”). In this set of baselines, we train a sep-
arate model for every label, using models that are known to perform well for
sparse features: logistic regression (both LBFGS and SGD optimization meth-
ods), a linear model with hinge loss (linear SVM), and a linear model with Huber
loss (usually preferred for regression tasks). In the search for the best model, we
treated log-loss, hinge loss, and Huber loss as hyperparameters. Experiments
with LBFGS were carried out separately, which is reflected in the results table
in Section Bl For logistic regression with the LBFGS optimizer (that includes
Lo-regularization), we have tested the performance with regularization strength
C = 1 €{0.7,0.9,1.0} and limited the number of iterations to 1000 or 10000
steps. For other models, apart from the loss function, we have tested the averag-
ing mechanism (enabling/disabling it), L1, and Lo-regularizers, and limited the
number of iterations to either 20 000 or 100 000 steps.

Binary classifiers chain (“Chain”). In this approach, the base models (which
are the same as in the previous paragraph) make predictions in a sequence; the
training task for every label in a chain includes predictions for previous labels
as features. Apart from the hyperparameters listed in the previous paragraph,
we have tried different orderings of the prediction chain.

Multilabel k-Nearest Neighbors. We have added two models based on k-nearest
neighbors to the grid search: (1) the model ML-kENN introduced in [70], which
uses Bayesian inference to assign labels to test classes based on the standard kNN
output, (2) a binary relevance kNN classifier (BR-kNN ), a similar method intro-
duced in [I5] that assigns the labels that have been assigned to at least half of the
neighbors. Although nearest neighbors classifiers are known to perform poorly
for high-dimensional vectors (which bags-of-ngrams are), we added them to the
task due to them being multi-label by design. We have tested k € {1,2,3,5,10}
neighbors; for ML-kNN, we tried different values of the smoothing parameter,
s € {0.1,0.5,0.7,1.0}. As a reliable implementation, we used a combination of
models from the scikit-learn and scikit-multilearn Python libraries [441[55].

4.2 Neural baseline

As a modern approach to fine-tuning neural networks, we have intentionally
selected the most standard method, which is not necessarily state of the art
for other languages. Among multilingual pretrained large language models, one
of the most popular ones is XLM-RoBERTa (large which is essentially a
RoBERTa model [I0] trained on a 2.5TB segment of CommonCrawl data con-
taining 100 languages, including Kyrgyz. We used XLM-RoBERTa in the multil-
abel classification fine-tuning setting, using a “classification head” with two linear
feedforward layers with dropout and a binary cross-entropy loss. We have used
the same split as before as the train-development split to find the best number
of epochs (14 out of 15) based on the Jaccard score metric (see below). We used

12 Available on HuggingFace: [https: //huggingface.co/xIm-roberta-largel
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the AdamW optimizer [20] (the AMSGrad version [47]), with weight decay set
to 0.01, learning rate set to 0.00002, and exponential learning rate scheduling
with 7 coefficient set to 1.0; 81 = 0.9, B2 = 0.999, ¢ = 10~8. Batch size was
set to 4 mostly due to the equipment-related constraints. Also note that the
pretrained x1m-roberta-large checkpoint uses byte-pair encoding (bpe) [52] as
the tokenizer (provided with the model).

4.3 Evaluation metrics

Each prediction is a set of labels represented as a vector of Os and 1s, where
1 means that the corresponding label has been predicted. Several metrics from
“regular” binary and multi-class classification can also be applied for multilabel
classification. The counterpart of accuracy here is the fraction of exact matches
(“Exact”). The F; measure (a harmonic mean of precision and recall) can be
computed for every sample if we treat each binary vector representation of the
label set as binary prediction results and then averaged (“F1-sample” in Table[d]).
Besides, the F} measure can be computed for each label and, e.g., micro-averaged
(“F1l-micro”). We also used metrics unique to the multilabel setting: share of
samples where at least one label is predicted correctly (“@l11”) and the Hamming
loss (“Hamm”), i.e., the Hamming distance between binary vectors of labels.
Finally, we report the metric we have used for model selection: the sample-
averaged Jaccard similarity computed for each pair of predicted and ground

truth label sets; Jaccard similarity between sets A and B is defined as }ﬁgg}.

5 Results

Results of our computational experiments are presented in Table [l It clearly
demonstrates that employing the multilingual models for supervised tasks with
Kyrgyz text data is feasible, since a fine-tuned XLM-RoBERTu-based classifier
(without any hyperparameter search) outperforms all other approaches. Note
that this result has been far from obvious, since, in our preliminary experi-
ments, fine-tuning another popular model bert-base-multilingual-cased (in
our case essentially BERT [12] with an added feedforward layer and dropout)
did not bring any meaningful results. Another interesting observation is that
while (i) Apertium-Kir does not consider the contexts of words, (ii) it is not
a lemmatizer, and (iii) the selected stemming method is very far from perfect,
even this kind of text normalization does bring improvements compared to the
basic bag-of-ngrams approach. Moving from word ngrams to character ngrams
also improves the results in most cases, which one could expect since the Kyrgyz
language is morphologically rich.

6 Conclusion

In this work, we have introduced a new annotated text collection in the Kyrgyz
language for multilabel topic classification and evaluated several baseline mod-
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Bag-of-Token-Ngrams
Independent, LBFGS, 1-gram 390 .59 .43] .29| .06 | .54 | .48
Chain, LBFGS, 1-gram A405| .63 46| .31| .06 | .56 | .51
Independent, SGD, hinge loss, 1-2-gram 465 | .68 .47| .29| .06 | .56 | .53
Chain, SGD, hinge loss, 1-gram A74) .68 .49 .32| .06 | .56 | .55
ML-kNN;, 1 neighbor, 0.1-smoothing, 1-gram 276 45| .30 .19 .10 .33 | .35
BRML-kNN, 1 neighbor,1-gram 276 45| .30 .19] .10 .33 .35
Bag-of-Token-Character-Ngrams
Independent, LBFGS, 2-3-grams 4911 .69 .49| .33| .06 | .58 | .55
Chain, LBFGS, 2-3-grams 4941 69| 49| .33| .06| .58 .55
Independent, SGD, hinge loss, 3-4-grams 021 .70 46| .26| .07| .55 | .54
Chain, SGD, hinge loss, 3-4-ngrams 5241 71| .48 | .28 | .07| .55 .55
ML-kNN, 1 neighbors, 0.1-smoothing, 2-3-gram |.412| .65| .42| .24| .08 | .48 | .49
BRML-kNN, 1 neighbor, 2-3-gram 4121 .65 .42] 24| .08 48| 49
Bag-of-Stem-Ngrams
Independent, LBFGS, 1-gram 451 .67 .50 .34 .05 .59 .55
Chain, LBFGS, 1-gram 1463 | .68| .51 .35 .05| .60 | .56
Independent, SGD, log loss, 1-gram 014 74| .52 .33| .06| .61 .59
Chain, SGD, 1-gram .016| .74 | .54 .36| .06| .61 | .60
ML-kNN;, 1 neighbor, 0.1-smoothing, 1-gram 345 .55 .36 .21 .09 41 .42
BRML-kNN, 1 neighbor,1-gram 3451 .55 .36 .21 .09 41| .42
Bag-of-Stem-Character-Ngrams
Independent, LBFGS, 2-4-grams 494 71| .52 .35| .06| .61 .58
Chain, LBFGS, 5-6-grams 490| .70| .51 .35 .06 | .60 | .57
Independent, SGD, hinge loss, 3-4-grams 5221 .70 | .49 .32| .06 | .58 | .55
Chain, SGD, hinge loss, 3-4-grams 0241 .69 .50 .33| .06| .58 | .56
ML-kNN, 1 neighbor, 0.1-smoothing, 3-4-grams |.425| .65| .42| .25| .08 | .46 | .49
BRML-kNN, 1 neighbor, 3-4-grams 425 .65 | 42| 25| .08 | .46 | .49
XLM-RoBERTa (with bpe tokenization) | |.88].66|.46|.04|.72|.73
Table 4. Evaluation results: @11 — “at-least-one”, Hamm — Hamming loss, JaccCV —

mean Jaccard score in cross-validation, T — more is better, | — less is better.

eld™. This is one of the first open datasets for the low-resource Kyrgyz language.
As for baselines, we have found that while classical baselines can achieve accept-

13 The dataset, baselines, and evaluation code will be released after a Kyrgyz-
language-related competition we plan to hold, at the following URL:
https://github.com /alexeyev /kyrgyz-multi-label-topic-classification!
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able results, especially after (even primitive) stemming, a straightforward neural
baseline achieves significantly better results even with virtually no hyperparam-
eter search.

In the future, we plan to further improve the current labeling scheme, addi-
tionally expanding and validating current annotations; we plan to ask multiple
experts to label the texts using models trained on currently presented data to
speed up the labeling. Then, we plan to increase the dataset size by annotating
more news texts. Afterwards, we plan to hold a competition that should uncover
state of the art multilabel classification models for the Kyrgyz language news
domain.

Also, to enhance the benchmark with an arguably even more fair comparison,
we plan to: (1) translate original texts to English via Google Translate and report
the scores of the relevant neural models that employ English LLMs as backbones
or the scores of zero-shot classification via prompting state of the art generative
models such as, e.g., GPT-4 [43]; (2) add the results of the fastText supervised
classification model trained on our data to the benchmark after publication;
(3) study whether using data from a similar domain in other Turkic languages
can help improve classification quality. In general, we hope that the presented
dataset will be able to serve as the basis for these and other experiments and
become a starting point for novel NLP research for the Kyrgyz language.
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