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Abstract. This paper investigates the tracking problem of a smooth
coordinate-invariant trajectory using dual quaternion algebra. The pro-
posed architecture consists of a cascade structure in which the outer-loop
MPC performs real-time smoothing of the manipulator’s end-effector
twist while an inner-loop kinematic controller ensures tracking of the
instantaneous desired end-effector pose. Experiments on a 7-DoF Franka
Emika Panda robotic manipulator validate the proposed method demon-
strating its application to constraint the robot twists, accelerations and
jerks within prescribed bounds.

1 INTRODUCTION

Robotic manipulators are gaining broad acceptance in a wide range of appli-
cations, varying from manufacturing to assistive care. As the robotic applications
of serial manipulators grow, so does the complexity of the environment and the
conditions in which they operate. This brings extra challenges into the planning
and control formulation, as constraints on the end-effector should be satisfied
during motion. For instance, carrying a bottle of water may require holding the
cup straight while allowing free motion in the Cartesian space—regardless of the
reference frame used to describe the motion, e.g., reference frame from a camera
or robot base. Furthermore, when sharing the environment with humans, the
robot should prioritize coordinate invariant, easy to demonstrate and real-time
smooth movements, while ensuring the imposition of safety constraints [1–4].

To address this challenge, this work proposes a reactive planning approach
based on the sate-of-the-art coordinate-invariant real-time path planning. The
approach is built on the screw geometry of motion along side a model-predictive
control and kinodynamic constraints in the task space. Separately, screw motion
and model-predictive control are well-developed areas within the control and
robotics communities. The former has been largely studied with a multitude of
applications [5–16], and more recently integrated into real-time path planning
approaches given its coordinate invariance properties [17–19], whereas the latter
has experienced a surge of results in the past decades, particularly within field-
robotics [20]. Nevertheless, only a few studies have explored solutions falling
in the intersection of both fields, and to the best of the authors’ knowledge,
none have been shown to satisfy the inherent translation and rotation coupling
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that describes rigid body motions in SE(3), as well as screw geometry with
constraint and coordinate-invariance properties necessary for real-world constraint
satisfaction.

Reactive motion and path planners for real-world applications often rely
on dynamics or control systems with convergence and stabilization properties,
such as [21, 22], or on geometric constraint satisfaction through interpolation
methods [23]. Although the former provides stabilization features and allows for
kinodynamic planning, they often lack formal guarantees to satisfy geometric
constraints and have poor explainability of the resulting trajectory, which is
only locally optimized. In contrast, interpolation approaches are easy to deploy,
interpret, and generalize from demonstrations; that is, a simple demonstration can
be used to guide a path planner, as seen in [23]. Therefore, they are often preferred
in industry and service robotics. However, care must be taken to ensure a proper
group structure when performing interpolation and addressing the geometric
constraints. Several results still decouple translation and rotation components—
and some even consider Euler angles, which are widely known to be singular
and non-representative for motions—which lead to poor results and dependency
on the reference frame.1 Readers are referred to [19, 24–26]. In this study, our
planner produces paths through screw linear interpolation (ScLERP) [25] that
implicitly maps—and therefore satisfies—all geometric constraints embedded in
the single demonstration.

Notwithstanding, defining smooth continuous, C1 or C2 trajectories through
demonstration or interpolation whilst satisfying the inherent geometric constraints
is not trivial. As one includes additional velocity and acceleration constraints,
following the trajectory and keypoints becomes challenging. Allmendinger et
al. [24] proposes a parameter selection for a dual-quaternion C1 screw linear
interpolation but the approach is fairly limited to special cases. In contrast,
recent quadratic-programming and model-predictive control solutions are well-
suited to ensure constraint satisfaction with fewer parameters. Particularly, model
predictive control (MPC) formulations allow the control of constrained multiple-
input multiple-output nonlinear systems with respect to an optimal criteria.
Similarly to H2 and H∞ strategies [27] and to quadratic-programming-based
controllers [28], MPC approaches explore the solution of an optimal control
problem. However, differently from the former, MPCs have a finite time horizon
that enables the online solution of the optimal control problem [29,30], making it
suitable for dynamic trajectory tracking within cluttered environments [31]. The
ongoing advancements in the underlying theoretical framework has evolved MPC
into a reliable control technique capable of offering stable, robust, constraint-
compliant controllers, and computationally feasible solutions for both linear and
nonlinear systems [32]. Moreover, the predictive capability of MPCs lead to
enhanced trajectory tracking performance by effectively handling disturbances
and generating smooth control signals [29]. However, most approaches have
a decoupled treatment of the translational and rotational components of the
mechanism [33]. Thus, increasing the number of equations, the overall complexity

1 Coordinate invariance should always be addressed. Otherwise, one may even have
different results in trajectory tracking simply by changing features within an object
topology, e.g., visual tracking of different edges in a mesh or a point cloud.
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of the system, and often leading to the reference-frame dependency. For instance,
Pereira et al. [30] used a SE(3) representation of a quadrotor UAV and of the
obstacles present in a cluttered environment. Based on that, the authors proposed
a nonlinear model predictive control strategy for the execution of aggressive
maneuvers. However, albeit free from the representation singularities inherent
from the extraction of Euler angles from rotation matrices, both the dynamic
model of the UAV and the control formulation present decoupled equations for the
attitude and the position of the system, given in SO(3) and in R3, respectively.

This paper presents the integration of a screw-interpolation strategy that
satisfies path and geometric constraints within a coordinate-invariant manner with
a dual-quaternion algebra MPC that constraints twists, accelerations and jerks
within prescribed bounds. Dual quaternions provide a unified representation of the
angular and linear components with strong geometrical meaning while being free
of representational singularities, more compact, and having lower computational
costs than homogeneous transformation matrices [34]. The proposed architecture
is a cascade structure in which the outer-most MPC controller smooths the
coordinate-invariant trajectory of the end-effector twist in real-time while the
inner-loop kinematic controller ensures tracking of the instantaneous desired
end-effector pose.

We validate the proposed method in experiments on a 7-DoF Franka Emika
Panda robotic manipulator including constraints on the robot twists, accelerations
and jerks within prescribed bounds.

2 Problem Formulation

In this section, we provide an overview of the definitions and fundamentals
of the planning problem. Firstly, we review the core concepts related to the
algebra of dual quaternions (DQ) and the properties of a screw-linear theory
based first-order interpolation. These will build the backbone of the proposed
planning scheme.

2.1 Mathematical Preliminaries

Dual quaternions [35] are elements of the set

H ≜ {hP + εhD : hP ,hD ∈ H, ε ̸= 0, ε2 = 0},

where H ≜ {h1+ ı̂h2+ ȷ̂h3+ k̂h4 : h1, h2, h3, h4 ∈ R} is the set of quaternions, in

which ı̂, ȷ̂ and k̂ are imaginary units with the properties ı̂2 = ȷ̂2 = k̂2 = ı̂ȷ̂k̂ = −1
[35]. Addition and multiplication of dual quaternions are analogous to their
counterparts of real and complex numbers. One must only respect the properties

of the dual unit ε and imaginary units ı̂, ȷ̂, k̂.
The subset S = {h ∈ H : ∥h∥ = 1} is the subset of unit dual quaternions,

where ∥h∥ =
√
hh∗ =

√
h∗h, with h∗ being the conjugate of h [36]. Under the

multiplication operation, this subset defines the group Spin(3)⋉R3 which double
covers SE(3) [35]. Any arbitrary rigid body transformation can be represented
by the unit dual quaternion x ∈ Spin(3)⋉R3,

x = r + ε (1/2)pr, (1)
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where p = ı̂x+ ȷ̂y + k̂z ∈ Hp represents the Cartesian position (x, y, z) within

the set of pure quaternions, i.e., Hp ≜ {h ∈ H : Re (h) = 0}, where the real

component is null, i.e., Re
(
h1 + ı̂h2 + ȷ̂h3 + k̂h4

)
≜ h1. The rotation r =

cos (ϕ/2) + n sin (ϕ/2) is defined within the unit-quaternion group, Spin(3),
in which ϕ ∈ [0, 2π) is the rotation angle around the rotation axis n. Notice
the rotation axis n is a unitary pure quaternion, that is, n ∈ Hp ∩ S3 with
S3 = {h ∈ H : ∥h∥ = 1}. For further details of the unit-dual quaternion represen-
tation see [11,35–39].

The set Hp = {h ∈ H : Re (h) = 0} of pure dual quaternions is used to
represent twists and wrenches, which are represented in different coordinate
systems using the adjoint operator Ad : S ×Hp → Hp. For instance, consider
the twist ξa ∈ Hp expressed in frame Fa and the unit dual quaternion xb

a that
represents the rigid motion from Fb to Fa. The same twist is expressed in frame
Fb as

ξb = Ad
(
xb
a

)
ξa = xb

aξ
a
(
xb
a

)∗
. (2)

Furthermore, it is critical to highlight that from a differential geometry per-
spective, the Lie group associated to Spin(3)⋉R3 is defined within a differentiable
Riemannian manifold [40]. As a direct consequence, Riemannian metrics based
on a collection of inner products on the tangent space at Spin(3) ⋉ R3 can be
assigned to the manifold [19, 40, 41]. These Riemannian metrics define the length
of paths along the manifold [42], and therefore allow us to define minimum curve
lengths, i.e., geodesics, see [41–44] for further information. In such manifolds,
actions in the geodesics can be expressed by means of the exponential map
expx : TxSpin(3) ⋉ R3 → Spin(3) ⋉ R3. The expx locally maps a vector in the

tangent space TxSpin(3)⋉R3 (at x ∈ Spin(3)⋉R3)2 to a point on the manifold fol-
lowing the geodesic through x [45]. The inverse mapping (from manifold to tangent
space at the point x) is the logarithm map logx : Spin(3)⋉R3 → TxSpin(3)⋉R3.

The mappings expx and logx are non-trivial to obtain. A solution is to

compute them by parallel transport [40,46]. The parallel transport exploits the
exponential function that maps vectors from the tangent space (at the identity)
to the manifold [43],

expx(y) = x exp(x∗y),

logx(z) = x log(x∗z), (3)

where z ∈ Spin(3)⋉R3 and y is defined in the tangent space at x—notice that y
is not a unit DQ. The exp and log maps from the tangent space, at the identity,
i.e., T1 Spin(3)⋉R3 are given by the dual vector representing the axis of screw
motion and the dual angle containing both the translation length and the angle
of rotation, see further details in [19,25,36,40,45,47].

2.2 Overview of the Problem

In this work, we are interested in the design of a real-time motion planning
solution that considers geometric constrains from prescribed keypoints in a

2 The tangent space at x is built by the collection of vectors whose inner products
with x is null—that is the orthogonal vector space to x.
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coordinate-invariant fashion, while ensuring smooth movements and addressing
twist, acceleration and jerk constraints in real-time. The proposed motion gener-
ation scheme takes as prior knowledge any n-number of keypoints in task-space,

K = {k1,k2, . . . ,kℓ, . . .kn}, kℓ ∈ Spin(3)⋉R3. (4)

These keypoints implicitly embed the desired task-space constraints and range.
In this way, following a screw-linear interpolation, our planner also ensures that
the resulting sequence of rigid body transformations from interpolation satisfies
the observed task-space constraints in pose, i.e., orientation and translation as well.
Notwithstanding, in case either the prescribed or resulting twists, acceleration or
jerks are not feasible, the real-robot system would fail in deployment. To ensure
additional constraint satisfaction, not only instantaneous, but rather along the
trajectory, we propose a cascade approach with a model-predictive control system
that takes the dual-quaternion algebra and the mapping to the tangent space of
the prescribed poses in the path into account. This leads to a smooth motion
planner satisfying the below problem definition.

Problem Definition: Given a set of n-number of keypoints in the task-space,
K, with n ≥ 2, find a trajectory from k0 to kn such that

1. The implicit constraints within K are satisfied as close as possible;
2. Motion generation is achieved in real-time with an additional constraint

satisfaction and smooth motion regarding twists, acceleration and jerk con-
straints.

3 ScLERP-MPC: A Motion Planner based on Screw-linear
Interpolation & Model-Predictive Control

This section presents an integrated screw-linear interpolation with a model-
predictive control solution to address the problems designed in the problem
definition. From the desired set of n keypoints in the task-space, K, we first need
an initial path planning structure going through along the desired setpoints.

The ScLERP [25] explores the screw-linear interpolation that connects any
two points through the geodesic prescribed in the previous section. Given xa

and xb, the resulting path should be given by x(τ) : [0, 1] → Spin(3)⋉R3 with
x(0) = xa and x(1) = xb. The process starts by mapping xb following the
geodesic on Spin(3) ⋉ R3 through xa onto the tangent space at xa. In other
words, it obtains a Txa

Spin(3)⋉R3 corresponding to the geodesic direction of
xb w.r.t. xa. Hence,

logxa
(xb) = xa log(x

∗
axb), (5)

where the mapping expx1
and logxa

is computed using the parallel transport

(3), and defines the tangent space of a Riemannian manifold—a vector space.
From the geodesic path in the tangent space, one can linearly interpolate points
from logxa

(xa) towards logxa
(xb), as (logxa

(xb) − logxa
(xa))τ + logxa

(xa),

with logxa
(xa)=0. Hence, using the parallel transport (3) to map the vector in

Txa
Spin(3)⋉R3 back to the S manifold (following the geodesics along xa) gives

way to

x(τ) = expxa
(xa log(x

∗
axb)τ)
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=xa exp (log(x
∗
axb)τ) . (6)

Following (6), the prescribed discrete path linearly-scaled along the geodesic
between two keypoints xa and xb can be derived as [25]

x = ScLERP(xa,xb; τ) = xa(x
−1
a xb)

τ , (7)

with τ ∈ [0 1] defined within equally spaced values. Notice the ScLERP function
(7) is the same as the one derived in (6). This can be shown by geometrical
exponential [36, 48], and from the scaling of the dual rotation angle about the
screw axis—hence the name [49]. Furthermore, the ScLERP interpolation allows
for the coordinate-invariant interpolation which is not possible when decoupling
orientation and translation [25,50], as detailed in [24].3

The resulting screw interpolation can be used to connect all keypoints from (4).
The resulting connected path from the coordinate-invariant ScLERP interpolation
(7) through kℓ to kℓ+1 within K, ℓ = 1, . . . , n−1, results in a discrete set of desired
poses xd. The desired twist between the discrete points can be either user-defined
or follow a C0 path. In this case, the prescribed reference twist, ξ

r
∈ Hp, is given

in a way to describe the geodesic path within the given time-step i,

ξ
r
[i] =

2

τ
log(xd[i]x

∗
d[i− 1]). (8)

Notwithstanding the result trajectory is C0, and hence might not be feasible
for the robot system to execute. Thus, for our framework we integrate a discrete
MPC to improve smoothness and moreover ensure the twist, acceleration and
jerk constraints in the task-space are satisfied. The discrete MPC optimizes the
future control trajectory within the finite control horizon nc ∈ N in the prediction
horizon. To track the desired trajectory, we consider the system as a double

integrator, that is u[i] = vec6

(
ξ̈
r

)
∈ R6, in which the operator vec6 : H → R6

maps the coefficients of a pure dual quaternion into a sixth-dimensional vector.4

The state space equations are given by[
ξ̇r[i]

ξ̈r[i]

]
=

[
06×6 I6×6

06×6 06×6

]
︸ ︷︷ ︸

Am

[
ξr[i]

ξ̇r[i]

]
+

[
06×6

I6×6

]
︸ ︷︷ ︸

Bm

u[i],

ξeff [i] =
[
I6×6 06×6

]︸ ︷︷ ︸
Cm

[
ξeff [i]

ξ̇r[i]

]
,

(9)

3 Similar interpolation scheme nonetheless could also be derived from SE(3), and
other covering groups that satisfy left-invariance and are based on non-minimal
representation of rigid displacements. Hence, it is by no means restricted to the choice
of Spin(3)⋉R3. Still, a matrix-based solution is non-attractive due to the additional
computational cost—that can possibly restrict real-time implementation—and due
to the efficiency, compactness and intuitiveness of Spin(3) ⋉ R3 which can depict
wrenches, twists, geometric primitives, constraints and its tangent space with the
same algebra.

4 Given h = ı̂h2 + ȷ̂h3 + k̂h4 + ε
(
ı̂h6 + ȷ̂h7 + k̂h8

)
, vec6 h =

[
h2 · · · h8

]T
.
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where ξ̇eff = vec6

(
ξ̇
eff

)
and ξ̈eff = vec6

(
ξ̈
eff

)
are, respectively, the first and the

second order time derivatives of the end-effector twist and I6×6,06×6 ∈ R6×6 are
zero and identity matrices.

Applying the backward difference operator, the augmented state vector ξ[i+

1] =
[
∆ΞT

r [i+ 1] ξeff [i+ 1]
]T ∈ R18, with∆Ξ[i+1] =

[
∆ξr[i+ 1] ∆ξ̇

r
[i+ 1]

]T
∈

R12, can be described by

ξ[i+ 1] =

[
Am 012×6

CmAm I6×6

]
[ξ[i]] +

[
Bm

CmBm

]
[∆u[i]] (10)

and also

ξeff [i] =
[
06×12 I6×6

]︸ ︷︷ ︸
C

[
∆Ξr

ξeff [i]

]
(11)

The control objective is to find the sequence of incremental control efforts
∆U over the control horizon, defined as

∆U =
[
∆uT [i] ∆uT [i+ 1] · · · ∆uT [i+ nc − 1]

]T
, (12)

such that ∆U ∈ R6nc is the solution of minimizing the formulation of the cost
function based L on the Laguerre equations [51] taken as

min
∆U

L(∆U) = ∥ξs − Y ∥Qmpc
+ ∥∆U∥Rmpc

, (13)

subject to 
ϑ̇min ≤ ΣU ≤ ϑ̇max

ϑ̈min ≤ U ≤ ϑ̈max...
ϑmin ≤ ∆U ≤

...
ϑmax

(14)

in which
[
ϑ̇min ϑ̇max

]
∈ R12,

[
ϑ̈min ϑ̈max

]
∈ R12, and

[ ...
ϑmin

...
ϑmax

]
∈ R12

determine the limits in the Cartesian space for the admissible linear and angular
velocities, accelerations, and jerks in the task pace respectively and ξTs ∈ R6×np

is the vector that contains the information about the set points at the sampling
time,

ξTs =
[
1 1 · · · 1

]︸ ︷︷ ︸
np

ξ[i]. (15)

The predicted output signal Y in the equation (13), which satisfies the
boundary conditions on the upper and lower velocity, acceleration, and jerk
bounds at the task space of the n-DoF manipulator, is the solution of (10) and
(11), described as

Y =
[
ξeff [i+ 1|i] ξeff [i+ 2|i] · · · ξeff [i+ np|i]

]
= F ξ[i] + ϕ∆U , (16)
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where ξeff [i + np|i] is the predicted twist at i + np given the current plant
information at sampling time i.

F =
[
CA CA2 CA3 · · · CAnp

]T ∈ R6×(18∗np),

ϕ =


CB O O · · · O
CAB CB O · · · O
CA2B CAB CB · · · O

...
...

...
...

...
CAnp−1B CAnp−2B CAnp−3B . . . CAnp−ncB

 ∈ R(6∗np)×(6∗nc)
(17)

will result in a predicted sequence of the state vectors[
ξ[i+ 1|i] ξ[i+ 2|i] · · · ξ[i+ np|i]

]
. (18)

From (18), the smoothed desired pose is obtained by

xd[i] = exp(
kξ[i+ 1]

2
)xd[i− 1], (19)

k is the integration step.
Finally, the error between the current end-effector pose and the desired pose

xd[i] is defined as
e[i+ 1] = 1− x∗

d[i+ 1]xeff [i]. (20)

Defining uq̇ = q̇, and taking into account (20), consider the following control
law to ensure the closed-loop stability of the system [19]

uq̇ = −(
−
H8 (xd[i])C8J)

†K vec8 (e[i+ 1]) (21)

where K is a positive definite gain matrix,
−
H8 : H → R8×8 is the Hamilton

operator, such that vec8 (h1h2) =
−
H8 (h2) vec8 h1, and the matrix C8 ∈ R8×8 is

defined asC8 ≜ diag
([

1 −1 −1 −1 1 −1 −1 −1
])

and J ∈ R8×7 is the geometric
jacobian [34].

Fig. 1 presents the conceptual block scheme of the overall proposed control
architecture.

K
x

(kℓ,kℓ+1)

xd[i] ξ
r
[i] ξ,x

Qmpc

RmpcInput
Keypoints

ScLERP Reference
Twists (8)

Optimizer
(13)-(18)

Task-Space
Controller

Bounds (14)ScLERP-MPC

Fig. 1: Schematic block diagram of the ScLERP-MPC.

4 Experimental Results

To validate the proposed ScLERP-MPC formulation, we performed two sets of
tests. In the first one, we performed simulations in CoppeliaSim [52] using a 7-DoF
Franka Emika Robot to demonstrate the capabilities of the MPC on imposing
the desired constraints. The second validation was done through experiments on
the real platform.
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4.1 Experimental setup

To get the solution of the cost function in equation (13), the following optimization
problem is defined as the quadratic program given by

min
∆U

L(∆U) =
1

2
∆UT (ϕTQmpcϕ+Rmpc)∆U + (ξs − F ξ)Qmpc∆U (22)

subject to,

W∆U ≤ V , (23)

where

W =
[
W 1 W 2 W 3

]T
,

in which

W 1 = W 2 = W 3 =



−I 0 0 · · · 0 0
I 0 0 · · · 0 0
0 I 0 · · · 0 0
0 −I 0 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 0 −I
0 0 0 · · · 0 I


∈ R12nc×6nc

I,O ∈ R6×6 are the identity and zero matrix respectively, and

V =
[
V 1 V 2 V 3

]T
,

in which,

V 1 =
[
−
...
ϑmin

...
ϑmax −

...
ϑmin

...
ϑmax . . . −

...
ϑmin

...
ϑmax

]T ∈ R12nc ,

V 2 =
[
−ϑ̈min ϑ̈max −ϑ̈min ϑ̈max . . . −ϑ̈min ϑ̈max

]T
−W 2

[
ϑ̈[i− 1] ϑ̈[i− 1] ϑ̈[i− 1] ϑ̈[i− 1] . . . ϑ̈[i− 1] ϑ̈[i− 1]

]T ∈ R12nc ,

V 3 =
[
ϕ†(−ϑ̇min + F ξ[i]) ϕ†(ϑ̇max − F ξ[i])

. . . ϕ†(−ϑ̇min + F ξ[i]) ϕ†(ϑ̇max − F ξ[i])
]
∈ R12nc .

Furthermore, the upper and lower jerk, acceleration, and velocity constraints
were selected to respect the limits of the Franka Emika Panda.5

The control horizon was chosen as nc = 10, and the prediction range as
np = 50. The stop criteria for the tests was e ≤ tol, with tol ∈ R empirically
defined. For the experiments on the real platform, the sampling rate for the MPC
controller was 9ms while the low level controller was running at 1kHz.

5 https://frankaemika.github.io/docs/control parameters.html
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4.2 Simulations

For the simulations, we selected an interpolated trajectory that would intentionally
force the robot outside the desired constraints to demonstrate that the proposed
ScLERP-MPC formulation can ensure their enforcement.

Fig. 3 presents the end-effector twists, whereas Fig. 2 shows the angular and
linear components of the end-effector pose. We can see that the executed trajectory
presents a delay since the robot cannot violate the constraints of accelerations,
and jerks. This behaviour is also observed in the resulting trajectory, Fig. 2.
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a
d
)

time(s)
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Fig. 2: Trajectories for the simulated scenario. Solid blue curves correspond to the
SCLERP-MPC resulting trajectory whereas Dashed blue correspond a system
without kinodynamic constraints. The Dashed red curves refer to the reference.
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Fig. 3: Twist trajectory for the simulation scenario. Solid blue curves correspond
to the SCLERP-MPC resulting trajectory whereas the Dashed red curves refer
to the reference. The shadowed areas depict picks of acceleration and jerk above
the robot limits.
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Fig. 4: Acceleration trajectory for the simulation scenario. Solid blue curves
correspond to the SCLERP-MPC resulting trajectory. The shadowed areas depict
picks of acceleration and jerk above the robot limits.

4.3 Experiments

For the experiments, the robot followed a trajectory obtained through the ScLERP
method given two used-defined initial and final end-effector poses. The constraints
imposed in the jerks, accelerations, and velocities followed the manufacturer
recommendations to ensure safety of operation.

Fig.5 and Fig. 6 present the translation and rotation components of the pose,
and angular and linear components of the end-effector twists successfully tracking
the desired twist trajectory.
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Fig. 5: Real-world experiment trajectories with SCLERP-MPC. Solid blue curves
correspond to measured output, whereas the Dashed red refers to the reference.

5 Conclusions and Future Works

This paper presented a cascade structure for the tracking of a smooth
coordinate-invariant trajectory using dual quaternion algebra. The proposed
architecture integrates a screw-interpolation strategy that satisfies path and geo-
metric constraints within a coordinate-invariant manner with a dual-quaternion
algebra MPC that imposes the task-space constraints. The outer-loop MPC
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Fig. 6: Linear and angular components of the end-effector twist for the experiment
performed on the real platform. Solid blue curves correspond to the values read
from the robot, whereas dashed red curves to the reference.

performs real-time smoothing of the manipulator’s end-effector twist while an
inner-loop kinematic controller ensures tracking of the instantaneous desired
end-effector pose.

Experiments on a 7-DoF Franka Emika Panda robotic manipulator have
validated the proposed method demonstrating its application to constraint the
robot twists, accelerations and jerks within prescribed bounds.

Future works will extend the proposed structure to robot dynamics as well as
considerate the inclusion of variable impedance constraints.
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