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Abstract. In everyday life collaboration tasks between human opera-
tors and robots, the former necessitate simple ways for programming new
skills, the latter have to show adaptive capabilities to cope with environ-
mental changes. The joint use of visual servoing and imitation learning
allows us to pursue the objective of realizing friendly robotic interfaces
that (i) are able to adapt to the environment thanks to the use of visual
perception and (ii) avoid explicit programming thanks to the emulation
of previous demonstrations. This work aims to exploit imitation learn-
ing for the visual servoing paradigm to address the specific problem of
tracking moving objects. In particular, we show that it is possible to infer
from data the compensation term required for realizing the tracking con-
troller, avoiding the explicit implementation of estimators or observers.
The effectiveness of the proposed method has been validated through
simulations with a robotic manipulator.
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1 Introduction

Today robots are not merely asked to execute tasks in controlled environments,
but they must have friendly interfaces so that everyone can conveniently operate
them in everyday life. In fact, given their high level of ubiquity, more and more
robots are at the disposal of people with no technical expertise. As a consequence,
easy control frameworks that do not require specific engineering or programming
skills are urgently needed. Furthermore, modern robots operating “in the wild”
need to be highly adaptive, to cope with changes of dynamic environments.

Imitation Learning (IL) [29], also known as programming by demonstra-
tions [4] or learning from demonstrations [3], promises to avoid specific cod-
ing duties by imitating the desired behavior as performed by an expert [5].
With respect to classic control paradigms, IL is easier and more convenient for
non-expert operators, as they only need to provide demonstrations of the de-
sired robotic tasks. Among the IL approaches, Dynamical System (DS)-based
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methods [15,27,28] allow realizing the imitation strategy while ensuring sta-
bility properties. Adaptive capabilities, instead, can be realized by including
exteroceptive sensing, such as vision, into the IL strategy. In particular, re-
cent work [23,24,30] have explored the possibility to combine Visual Servo-
ing (VS) [7,8] with DS-based IL. We name such integration Imitation Learning
for Visual Servoing (ILVS). Such combination brings benefit to both techniques:
on the one side, the visual perception adds adaptability to the IL scheme to cope
with environmental changes; on the other, the imitation strategy allows the ad-
dition of tasks or constraints to the VS law with no specific implementation.

This work aims at resorting to the ILVS paradigm to tackle the specific prob-
lem of tracking moving objects. Traditional tracking techniques need to estimate
the motion of the target, e.g., specifically implementing a Kalman filter [6] or pre-
dictive controllers [13]. Instead, we provide a framework that leverages ILVS and
extrapolates from demonstrations of tracking experiments the required informa-
tion for adding the tracking skill to the basic VS law. In particular, we propose to
use the so-called Reshaped Dynamical System (RDS) approach [28] to imitate
the tracking behavior into the basic VS control. The resulting learning-aided
control system has been validated with robotic simulations.

2 Background

The well-known VS technique [7,8] employs vision to control the motion of a
robot. In particular, in image-based VS, considered in this work, the objective
is to zero the difference between desired and measured visual features that are
directly defined on the camera image. Such visual features represent the feed-
back of the controller that computes camera velocities to achieve a desired task;
they can be detected with standard image processing [16] or more sophisticated
methods, e.g., artificial neural network [22]. Assuming an eye-in-hand configura-
tion, a static target, and constant desired features, the basic VS law computes
the camera velocity v ∈ R6 with a simple reactive controller. Its objective is to
nullify the visual error e ∈ Rk between the detected and desired visual features:

v = −λL̂+e, (1)

where λ is a positive scalar gain and L̂+ ∈ R6×k an approximation of the Moore-
Penrose pseudoinverse of the interaction matrix [7]. Such approximation is nor-
mally due to unknown information, such as the depth of the visual features4.
The simple law (1) can be augmented with other tasks or constraints to en-
able additional skills, by employing planning techniques [10,17], predictive con-
trollers [2,20,21,26], and other sort of optimization-based frameworks [1,18,19].
However, such approaches require careful design and implementation of the ad-
ditional modules, which is desirable to avoid for the sake of easiness of use.

4 To keep the notation compact, we omit the dependence of the interaction matrix on
the visual features and their depth.



Imitation Learning-based Visual Tracking 3

To this end, inspired by the DS paradigm, it has been proposed to augment
the skills of the basic law with an ILVS strategy [24]. In particular, by using the
specific RDS method [28], one could write the augmented VS law as follows:

v = −λL̂+e+ hρ(e), (2)

where ρ(e) is an error-dependent corrective input used to follow complex tra-
jectories and h is a vanishing term used to suppress ρ after a user-defined time
and retrieve stability. Such an approach can be used to generate complex visual
trajectories, e.g., to avoid collisions, as done in [24]. In this work, instead, we
use this formulation to enable the learned compensation terms needed to achieve
the tracking of moving objects, as explained in the next section.

3 Method

3.1 Problem definition

The aim of our work is to enable visual tracking of moving targets avoiding
explicit programming of the required additional components of the basic law (1).

Assuming a moving target, the VS law has to account for such motion [8]:

v = −λL̂+e− L̂+
∂e

∂t
, (3)

where the second term on the right of the equation actually acts as a feedforward
term to compensate for the error’s time variation due to the target motion [8].
Ad hoc techniques can be implemented to estimate the term due to the motion
of the target so that it can be inserted in (3) and compensated, e.g., with the
introduction of integrators [9], feedforward terms [6,12] or filters [13,31].

In this work, instead, our aim is to rely on an imitation strategy to infer
the compensation term of the law (3) from previous demonstrations of tracking
experiments. In particular, inspired by DS-based approaches as in (2), we treat
the reshaping term ρ, to be learnt from data, as the compensation term in (3):

ρ = −L̂+
∂e

∂t
. (4)

Therefore, our problem can be formulated as follows: learn from previous demon-
strations an estimate of the compensation term ρ̂ so that the VS law

v = −λL̂+e+ ρ̂(e) (5)

realizes tracking of moving objects. It is worth mentioning that (5) is formally
the same as (2). However, the vanishing term h is not used in (5) since the
estimate ρ̂ has to be always active to perform the tracking skill.
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3.2 Dataset

We assume that an “oracle” is available to provide a few demonstrations of the
full desired tracking behavior. A possible oracle could be a human user, who
can kinesthetically teach the robot the tracking motion, or an ideal controller in
simulated environments, where all the required information is perfectly known.

During the oracle’s executions, data describing how the task is carried out
are recorded for each timestamp. In particular, we log the evolution of the visual
error, as measured on the camera image, and the corresponding velocities, as
shown to the camera in order to achieve the full desired task:

D =
{
edn,v

d
n

}N,D

n=1,d=1
, (6)

where N is the number of samples and D the number of demonstrations. This
dataset serves as the basis for the actual training set T that is built as follows:

T =
{
εdn,ρ

d
n

}N,D

n=1,d=1
, (7)

considering that εdn = L̂+edn and ρd
n = vd

n + λL̂+edn. Note that for all the
demonstrations we consider that the value of the control gain λ does not change,

as well as the value of the approximated inverse of the interaction matrix L̂+ is
assumed to be constant and equal to its value at convergence.

3.3 Learning the compensation term

Given the training dataset (7), an estimate of the compensating term can be
conveniently retrieved from vision data using any regression function r. In par-
ticular, we train a Gaussian Mixture Model (GMM) on T to estimate the veloc-
ity term needed to compensate for the motion of the target object. Therefore,
Gaussian Mixture Regression (GMR) is used to retrieve a smooth estimate of ρ,
namely ρ̂. The GMR takes as input the current value of ε and provides ρ̂ as

ρ̂ = rGMR(ε | T ). (8)

Therefore, the compensation term is online estimated using (8) and inserted in
the control law (5) to achieve the tracking of moving objects.

4 Results

4.1 Validation setup

To validate our framework we consider a robotic experiment with the robot
manipulator Franka Emika [14], which has 7 joints and an Intel RealSense D435i
sensor (used as a monocular camera) mounted on the end-effector. The sensor has
a field of view of 69◦×42◦ and a frame resolution of 1920×1080 pixel. The robot
and the environment for the experiments are simulated in CoppeliaSim [11], as
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(a) Front view. (b) Side view.

Fig. 1: Validation setup: the Franka Emika robot manipulator in the CoppeliaSim
environment has to reach a box moving on a conveyor belt.

shown in Fig. 1. The goal of the experiment is to allow the robot to reach a box
that moves at a constant velocity on a conveyor belt. In other terms, we set the
desired features so that at convergence the robot centers the box on the image
plane. The box is marked with an AprilTag marker, whose corners provide the
visual features for the VS law. In particular, we use the 4 corner points of the
marker as visual features (i.e., k = 8). As classically done in VS, 4 points are
enough to ensure robust visual feedback. At the start of the experiments, the
conveyor belt accelerates from zero to 0.1 m/s and keeps the velocity constant
for the rest of the experiment. The implementation of the framework has been
done in Python 2.7 language within the ROS [25] infrastructure.

The oracle used to collect the demonstrations consists of an ideal VS con-
troller provided with complete knowledge of the dynamics of the target, available
in the simulated environment. In practice, we use the law (3) with λ = 2, and
the compensation term is built from the perfect knowledge of the box velocity.
The interaction matrix has been approximated by using the value of the visual
features depth at the target, which is 0.09116m. In total, we have collected
three demonstrations of the task. If not otherwise mentioned, the same value
of the gain and the same approximation of the interaction matrix are kept for
the online experiments. It is worth mentioning that other teaching methodolo-
gies could be used, such as kinesthetic teaching or teleoperation. Our choice was
dictated by the need for high precision in tracking the object: a tracking con-
troller with complete knowledge, as available in simulation, provides way better
performances for precise movements than human demonstration. Furthermore,
human demonstrations usually require preprocessing of the trajectories to grant
exact convergence to the target in the feature space. The regression is carried
out using GMM with 11 components. The number of components has been set
performing a grid search. At each iteration of the controller, the framework de-
tects new visual features and computes the new value of ε, which is used by the
GMR to compute an estimate ρ̂ of the compensation term that is finally inserted
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(a) VS with λ = 1 (b) VS with λ = 2 (c) VS with λ = 5 (d) Proposed ILVS

Fig. 2: Comparison between three versions of the standard VS controller and the
proposed ILVS strategy.

in the control law as in (5). The camera velocity thus computed is sent to the
kinematic control of the manipulator that transforms it into joint velocities to
move the robot towards the desired tracking behavior. With this setup, multiple
tests are carried out to evaluate firstly the learning and replication capabilities
of the demonstrated target tracking tasks, and secondly, the system’s ability to
adapt to new scenarios and sudden changes in the environment.

In the presented plots of the experiments, the trajectories saved in the demon-
strations are shown with black dotted lines, whereas the execution of our ILVS
framework is in blue; red dots represent the starts of the demonstrated trajec-
tories, while the red crosses are their ends.

The experiments are shown in the video accompanying the paper, available
at the following link: https://youtu.be/ORdAZDmCQsA.

4.2 Comparison with the standard VS controller

The first set of experiments aims at comparing the behavior of standard VS
without compensation term, as in (1), with different values of the gain λ, against
our proposed ILVS strategy. The results of this comparison are shown in Fig. 2.
As expected, even if the standard VS law manages to approach the box, due to
its motion, it never manages to center it on the image plane. Indeed, a constant
error between the current state of the features (denoted in red and numbered
from zero to three in Fig. 2) and their desired position (in green) is kept at
a steady state. Such error is lower by increasing the value of λ from 1 to 5,
but cannot be nullified. It is indeed noteworthy that extremely high gain values
cannot provide a reasonable solution to the tracking problem, since it would
introduce instability in the control system [7,8]. Unlike the standard controllers,
our ILVS manages to infer from data the required information to compensate for
the box motion. As shown in Fig. 2d, ILVS provides the robot with the capability

https://youtu.be/ORdAZDmCQsA
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Fig. 3: ILVS experiment with the same initial condition as in the demonstration:
visual features trajectories as in the demonstrations and executed by our method.

to approach the target, reach convergence, and keep the camera above the box
at the desired pose for the duration of the experiment. Indeed, in this case, the
measured visual features match their desired counterpart at steady-state.

Fig. 3 shows, for the same experiment, a qualitative evaluation of the trajec-
tories of the visual features from the demonstrations (black dotted lines), and
the trajectories executed by the ILVS strategy (in blue). One can observe the
ability of the system to accurately replicate the demonstrated trajectories when
starting from a known location (the same as the demonstrated ones).

The correspondent quantitative results of this experiment are presented in
terms of average Root-Mean-Square Error (RMSE)5 and its standard deviation
measuring the accuracy of the predicted camera position and velocity, and the
predicted feature position w.r.t the corresponding quantities contained in the
demonstrations. In particular, the average RMSE regarding the predicted visual
features position is 22±11 pixel. For the camera positions and the linear camera
velocities, the obtained results are 33± 24 mm and 69± 71 mm/s, respectively.

4.3 Target tracking experiments with unseen initial conditions

The second set of experiments is carried out to test the adaptability of the system
w.r.t. unseen initial conditions, i.e., when the starting orientation or the position
of the camera is different from those demonstrated in the training dataset.

We tested the framework with incremental levels of difficulty. In the first
experiment of this set, the initial conditions are analogous (but not identical as
in the experiment shown in Fig. 2d and Fig. 3) to the ones in the training dataset.
As illustrated in Fig. 4 (left), the starting point of the experiment in the image
plane are in the nearby of the starting points (red dots) of the demonstrations

5 RMSE values rounded up to the nearest whole number.
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Fig. 4: ILVS experiment with similar initial conditions of the demonstrated ones:
visual features trajectories (left) and visual error (right).

Fig. 5: Snapshots of the ILVS experiment with similar initial conditions of the
demonstrations: robot’s external views (top) and camera images (bottom).

(black dotted lines), since the initial position of the camera has been slightly
moved away from the one in the demonstrations. The starting orientation of
the camera is, instead, the same as the demonstrations. Given similar initial
conditions, as expected, the system executes the task (blue lines in the plot)
without any particular difficulties. Fig. 4 (right) shows the time evolution of the
visual error for each of the four features (blue lines), which is kept to zero after a
transient time for the duration of the experiment; it is also depicted the average
visual error among all features (black line). Four snapshots of this experiment
are presented in Fig. 5 showing the manipulator approaching the object and
tracking the target moving on the conveyor belt during all its motion.

The second experiment of this set aims to evaluate the effectiveness of the
approach in handling unseen conditions. In particular, at the beginning of the
experiment, the camera is oriented as in the demonstrations but has a substantial
difference in position. The large initial positional offset is well visible in the
plot of Fig. 6, where the initial value of the visual features is far off from the
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Fig. 6: ILVS experiment with unseen initial position and initial orientation as in
the demonstrations: visual features trajectories (left) and visual error (right).

Fig. 7: Snapshots of the ILVS experiment with unseen initial position and demon-
strated orientation: robot’s external views (top) and camera images (bottom).

demonstration. Nevertheless, the visual features trajectories shown in Fig. 6 (left)
demonstrate that the robot manage to successfully achieve the VS task, as the
current value of the feature converges to their desired one, as also demonstrated
in the dataset. Similarly, target tracking performance can be evaluated also from
the time evolution of the visual error presented in Fig. 6 (right). From this plot,
one can evaluate that the visual error is kept to zero after a transient time, even
while the box continues moving on the conveyor belt. Four snapshots of this
ILVS experiment can be evaluated in Fig. 7: the manipulator can reach the box
and keep it tracking for all the experiments. The last two snapshots show how
the robot manages to keep the box at the center of the image for the experiment,
accommodating the motion induced by the conveyor belt.

The third experiment is meant to test at its greatest degree the handling of
unseen initial conditions. As can be seen in Fig. 8 (left) from the position of the
features in the image plane, the end-effector of the manipulator at the beginning
of the experiment has a pose that is not present in the training data. Neverthe-
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Fig. 8: ILVS experiment with unseen initial position and orientation: visual fea-
tures trajectories (left) and visual error (right).

less, the robot still manages to adjust its movement to successfully approach the
moving target ensuring convergence, and once reached, it is able to track the
target along its motion (see also the snapshots of Fig. 9). For this experiment,
we also show in Fig. 10 the plots of the camera velocities, as demonstrated (grey
lines in the plots) and as executed by our method (in blue).

For these three experiments, we provide a quantitative evaluation of the
tracking performances. In particular, we considered the phase of the experiments
that starts when the visual error is lower than 5 pixels (cfr. Fig. 4 (right), Fig. 6
(right), and Fig. 8 (right)). For this portion of the experiments, the visual error
is on average 1.795 ± 0.984 pixels, corresponding to 0.475 ± 0.257 mm of error
in the camera position.

Finally, we perform one last test in which we suddenly move the target object
during the execution of the experiment. We observed the system’s ability to
adjust to such sudden and unexpected movements of the target object (tests
were pursued with both low gain λ = 2 and high gain λ = 10 yielding satisfactory
results in both cases). The results of this experiment can be evaluated from the
accompanying video.

5 Discussion and conclusion

In this work, we have addressed some of the needs that arise from the introduc-
tion of friendly robots in domestic and industrial contexts where users are not
necessarily experts. In these situations, adaptability and easiness of use are must-
haves for robots. Therefore, we have proposed an imitation learning-based visual
servoing framework for target tracking operations that avoids explicit program-
ming, leveraging previous demonstrations of the desired behavior. Our approach
relies on the VS paradigm and the DS-based IL rationale. In particular, we take
advantage of the imitation strategy to learn the compensation term required to
achieve the visual tracking experiment. Our approach permits us to realize the
tracking without the specific implementation of an estimator or observer of the
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Fig. 9: Snapshots of the ILVS experiment with unseen initial position and orien-
tation: robot’s external views (top) and camera images (bottom).

Fig. 10: Camera velocity during the ILVS experiment with unseen initial position
and orientation: linear (top) and angular components (down).

compensation term. The framework has been evaluated with several simulations,
which show the ability to handle unseen initial conditions.

As shown by the experiment in Fig. 6 and Fig. 7, the robot can converge to
the visual target even starting relatively far from the initial value of the demon-
strations. This out-of-domain generalization capability is a structural property
of our approach that effectively combines a stable component (from standard
VS) and a learned one in the closed-loop control law (5). Indeed, the standard
VS component always drives the robot close to the target, i.e., in the training
data domain, where the learning of the compensation term is put in an ideal con-
dition to work. Stronger generalization capabilities (e.g., to handle the doubled
velocity of the conveyor belt seen during the demonstrations) would require re-
training our compensation term. The stability of the proposed controller has not
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been formally investigated (for instance, using tools from the Lyapunov theory).
However, in the conducted experiments, the robot was always able to reach the
target with sub-millimeter precision. Moreover, we also tested the robustness to
disturbances like changes in the object position on the conveyor belt. The fact
that the controller behaved as expected in several practical cases suggests that
it should have some (local) stability property. However, a formal stability proof
is left as future work. Another interesting line for future development is the test
of our framework with velocities of the object that are different from the one
seen during the demonstrations. Indeed in our current study, the velocity of the
object during the validation experiment is the same as the one used during the
collection of the demonstrations. Finally, we plan to test our approach with real
experiments; to this end, further development will be required to handle the
noise in the input data (typical of real-life applications).
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