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Jacques Saraydaryan1,3, Fabrice Jumel1,3 and Olivier Simonin2,3
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Abstract. Personal assistance, delivery services, and crowd navigation
through robots fleet are complex activities that involve human-robot
interaction and fleet coordination. Human location estimation is one of
the key factors in assisting robots in their tasks. This paper proposes an
efficient process for propagating human presence probability based on
partial observation of humans by the robot fleet. This process provides
real-time information about the most probable region on the map where
humans can be found.
We propose a new problem representation allowing us to efficiently paral-
lelize the propagation. To deal with the learned model and the real time
robot observations, we propose to include a gaussian rotation probability
process (VonMises [11]) combined with the previous learned observation
to adapt the propagation. A set of experiments has been conduced with
simulated environments that include real data allowing us to evaluate
the model and to compare with the standard approach.

1 INTRODUCTION

Building robotic systems that can interact with humans remains a challeng-
ing task today. Knowledge about human behavior is crucial to develop human-
acceptable and safe solutions. Navigating in populated environments or serving
humans through robot fleets requires to understand human motion.

In this paper, we propose a scalable method to predict human motions in
a closed environment from the observations colleted by a fleet of robots along
the time. According to [14] our approach aims at computing human presence
probability at middle term (> 10s). Indeed, middle term prediction is particu-
larly important for robot fleet tasks achievements, where a robot could benefit
of other robots observation to adapt its behavior and decision. In other words,
we build a Human Presence Probability Map from robot observations.

We build our approach over an existing discrete human orientation prob-
ability map [5], called Flow Grid Map, similar to [9,19]. Then we are able to
propagate online human observation information which is exploited by robots to
navigate efficiently and to find humans in order to serve them.

The figure 1 shows an example of Human presence probability propagation
on an entire closed environment. Here, an existing flow grid is used to help the



propagation. Each time a robot detects a human, the algorithm begins to propa-
gate the information. The cumulative information through all robot observations
results in a map highlighting the probability to meet pedestrian.

This paper is organized as follows: Section 2 describes related works in human
flow modeling and human motion trajectory prediction. The section 3 explains
Human flow grid models used as computation baseline. The section 4 describes
our human presence probability propagation computation and associated opti-
mizations. Finally, the section 5 shows experiments and results.

Fig. 1: HPP Map representation on closed environment

2 RELATED WORK

Human motion prediction get a growing interest recent years. Human motion
prediction could be divided into two different objectives: short term prediction
(1−2s) and long term prediction (up to 20s) [14]. Moreover Rudenko and al. [14]
propose to distinguish different kind of modeling approaches. Physics-based
modeling aims at simulating a set of explicitly defined dynamics equation that
follow a physics-inspired model. Such methods predicts human motion after sens-
ing the environment and are mostly used in short term prediction (e.g [7]).
Planning based methods are more focused on long-term motion. After sensing
the environment, hypothesis are used to estimate path used by human to reach
their goals. Finally, Pattern-base methods intents to learn motion model after
sensing the environment. This kind of methods (sequential methods) could learn
conditional models over time and recursively apply learned transitional function
for inference or model the distribution over full trajectories. In this paper we
particularly focus on Pattern-based approaches and especially sequential meth-
ods. In such approaches conditional models are learned from observation and
mainly used Markov models. Some works intends to model local transition such
as probabilities of transition between cells on a grid map [5,12,8]. Other methods



use Recurrent Neural Networks (RNN) or Long Short-term Memory (LSTM) to
learn sequence of motions. Such recent methods gives good result especially on
short therm prediction [20], nevertheless lots of data is needed for training such
network and computed models are sensitive to motion habits changes. Other
interesting approaches compute clusters on observed trajectories to predict hu-
man motion [4,21]. Despite very good prediction results, these methods suffers
of same limitation as RNN or LSTM approaches. Moreover, most these methods
needs either a complete trajectory monitoring (e.g start and goal position of
pedestrian) or a capacity to re-identify pedestrian. Such constraints do not fit
our current hypotheses of partial pedestrian observation thought a robot fleet.

As presented in section 1, the human motion prediction can help robot to
compute a better navigation (socially acceptable, reducing travel time) or in-
crease the service to human. With partial human motion observation, we need
to inform the robots about human motion with learned trend and with recent
observation. Furthermore, the more the map used for navigation will be in-
formed, the more the service to human efficiency will increase. Such information
is precious to help the robots to navigate [3,15]. This kind of hypotheses reduces
the choose of modeling approaches. We choose to improve methods modeling
transitions between cells with an efficient probability propagation process. We
extends such methods [5,12,8] with the help of both learned trends and recent
observation to deal with our context constraints.

3 Flow grid reminder

The authors in [5] defined a map reflecting the probability to meet a human with
a certain direction. This map is computed as follows.
In each cell cx,y, we discretize the possible flow directions by a set of K di-
rections, and we note ki ∈ K each direction 1. For instance, we can set K =
{North,NorthEast, ..., South}. We note Zt the set of observation performed by
all the robots up to time t. An observation, in a cell cx,y, consists in identifying
a human direction, eventually none, and its duration. By hypothesis, only one
human can occupy a cell at a given time. In practice, we consider cell sizes from
0, 25m2 to 1m2.
Let note R = r1, r2, ..., rn the set of robots. We note tcx,y(r) the sum of the du-
rations of all observation (human observed or not) performed by the robot r on
cell cx,y. tcx,y,k(r) is the sum of durations of the observation of a human moving
in direction k in cell cx,y.
We set Mflow = ∀x∀y∀k(Mcx,y,k

) the grid of human motion likelihood in every
direction k of each cell cx,y, called Flow grid. By considering that human flows
are stationary processes, each cell value is computed (updated) as follows:

Mcx,y,k
(Zt) =

∑|R|
n=1 tcx,y,k

(rn)∑|R|
n=1 tcx,y

(rn)
(1)

1 When a robot detects a human in x, y pose with θ orientation zx,y,θ, we approximate
the orientation θ to a discrete orientation k.



To deal with non stationary processes a forgetting factor could be added as
is was done in [15]. By extension, the probability to meet a pedestrian in a given
cell is defined by:

Mprescx,y
(Zt) =

∑
k∈K

Mcx,y,k
(Zt) (2)

The Flow grid could be extended if the probabilities is related to some hour
of the day and day of a week as its was suggested in [19]. Thus, the likelihood
to meet a human in a given orientation k is noted M

tday

cx,y,k
where tday represents

the likelihood at a given day/week time (e.g Monday 10h12).

4 Human Presence Probability Map (HPP Map)

4.1 Basic Computation

Fig. 2: Example of human presence probability propagation

Once we are able to compute information about human flow, as it was ex-
plained in section 3, we have to provide a method to propagate pedestrian pres-
ence probability when these ones have been detected by robots.

To do so, we assume that this likelihood Mcx,y,k gives us a transition prob-
ability between the current cell cx,y and the neighbor cell targeted by the given
orientation k. E.g if k means north, an current cell is c1,1, Mc1,1,North ≡ P (c1,1 −→
c0,1).

Without additional information finding the most likelihood human presence
on a given direction could be expressed such as: argmax(Mcx,y,k).
This information only takes into account human presence flow model and not
recent/current human observation. In order to predict the human position in
next seconds and more, we have to combine pre-computed human flow grid and
current set of observation.

A common probability propagation could be expressed as follows:
For each neighbor cells around the discrete observation ztx,y,kθ

, let note P t+1
pres(cx1,y1,k)



the probability to meet the previously observed human on the cell cx1,y1
at t+1

with the orientation k.

P t+1
pres(cx1,y1,k|ztx0,y0,kθ

) =
Mcx1,y1

,k∑||K||
i=1 Mcx1,y1

,ki

× α× P t
pres(cx0,y0,kc

|ztx0,y0,kθ
) (3)

where kc is the orientation pointing to the current cell cx1,y1 , kθ is the approx-
imated orientation θ of the observation, P t

pres(cx0,y0,kc |zx0,y0,kt
θ
) = 1 if kθ = kc,

0 otherwise and α ∈ [0; 1] represents a stationary coefficient.
The figure 2 illustrates this principle. On the left we find input data, the

learnt flow grid and a robot observation. The probability propagation process is
represented from t0 to t3. On the bottom, the likelihood of pedestrian presence
over the time is represented. Each blue arrow on each cell defines the probability
to meet human in a given direction. The total probability to meet a human on
each cell is represented on the top.

For a set of observation occurring at different times, noted Z1:t, each cell
accumulates the propagated probability of each observation:

P t
pres(cx,y,k|Z1:t) =

1

||Z1:t||

||Z1:t||∑
i=1

P t
pres(cx,y,k|z

ti
xi,yi,kθi

) (4)

The resulted matrix representing the probability to meet human moving in
a targeted direction is called Human Presence Probability Map (HPP Map)

4.2 Scalability and Propagation Optimization

Fig. 3: Von Mises propagation optimisation: a) no information is held by the flow
grid map, Von Misies coeffient are used to propagate, b) flow grid held information,
propagation only used flow grid, c) both flow grid and Von Mises Coeff are used

To make easier the parallelization of the computation, we propose to reformulate
the problem as follows: On one side, at a time t, a cell get the sum of cumulative



probability from a set of observation Z1:t. On the other side, the cell contributes
to the probability propagation to neighbors cells. We propose to formulate the
probability of presence of a human in a given cell as follows:

P t
pres(cx,y,k|Z1:t) =

α×Mcx,y,k∑||K||
i=1 Mcx,y,ki

×
||N(cx,y)||∑

j=1

P t−1
pres(cxj ,yj , kc|Z1:t)

+ (1− α)× P t−1
pres(cx,y,k|Z1:t)

(5)

where ||N(cx,y)|| is the cardinality of neighbourhood of cx,y,∑||N(cx,y)||
j=1 P t−1

pres(cxi,yi
, kc|Z1:t) represents the probability propagation of each

neighbors cells and (1−α)×P t−1
pres(cx,y,k|Z1:t) the previous cell value minus the

current cell propagation effort to neighbor cells.
Such reformulation allows massive parallelization. At t each HPP Map cells

could computes its t+1 value without waiting computation from neighbors. This
property allows a GPU implementation of the HPP Map computation.

Moreover, some flow grid cell could be uninformed, meaning that no obser-
vation has been made in flowgrid map. In such situation, we assume that human
motion follows a Gaussian orientation change model as described by Von Mises

equation such as: V onMises(θk, θkref
) = e

Ccos(θk−θkref
)

2πI0(C) where 1
C = σ2 and θk

and θkref
represents the angle of a given orientation (e.g if K means North,

θk = π
2 ) respectively for a given orientation and a referent orientation. I0 is the

modified Bessel function of order 0.
Thus, for uninformed flow grid cell, the probability propagation could be

defined as:

P t+1
pres(cx1,y1,k|ztx0,y0,θ) = V onMises(θk, θkc

)× α× P t
pres(cx0,y0,kc

|ztx0,y0,kθ
) (6)

The figure 3.a shows an example of application.
The flowgrid maps give a trend of human motion. In some situation, some

observation not fit computed model. E.g if an observation was made from a cell
to a given direction, if the targeted cell contains high probabilities to go back to
the current cell, the system would not take into account the characteristic of the
current observation. To avoid such behavior, we propose to use again the Von
Mises function to combine current observation motion and human motion trends.
This approach will temper probability propagation by combining the current
observation and the learnt flow grid map. The resulting value is expressed as
follows:

P t+1
pres(cx1,y1,k|ztx0,y0,θ) =

V onMises(θk, θkc
).Mcx,y,k∑||K||

i=1 Mcx,y,ki

×

α× P t
pres(cx0,y0,kc |ztx0,y0,kθ

)

(7)



The figure 3 shows an example of propagation using such equation. In the
figure 3.b situation only flow grid information is used to propagate probability.
In such case half of probability is send back to the cell where the observation
was made. Such behavior means that the human has 50 per cent to half turn. In
the figure 3.c case, we apply Von Mises coefficients to prioritize ongoing moves,
reflecting a more realistic propagation.

5 Experimentation

Fig. 4: Real ATC scenario. On the top,
the original configuration scenario as men-
tioned in [2]. On the bottom, the scenario
played with 3 robots following Hamilto-
nian path, flow grid learning and HPP
computation

Fig. 5: Museum Scenario (Artificial Sce-
nario). On the top, the scenario map and
the set of way points following by 2 pedes-
trian groups. On the bottom, the scenario
played with 4 robots following Hamilto-
nian path, flow grid learning and HPP
computation

Our first series of experiments was made on a simulated environment using
the ROS version of Pedsim simulator [1]. This experiment involved 50 pedes-
trians walking through pre-defined trajectories (Figure 5). The environment is
composed of several corridors and rooms. In this experiment case, we want to
highlight the performance improvement of computing Human Presence Prob-
ability propagation with a standard implementation with python and numpy,
and a GPU implementation using Numba [10]. For experimentation, we use the
flow grid described in our previous worked [5]. In this scenario, 4 robots allowing
wide-ranging observations (360° field of view with a range of 3 meters ) navigate
across the environment according Hamiltonian path [13] (optimising the space
coverage). Thus the robot fleet covers the environment and updates the human



presence (zx,y,kt
θ
) when a pedestrian is met (in the robot field of view). We as-

sumed that probabilities coming on map walls are removed. This experiment
was conducted during 800 seconds. The experiment was made on a laptop i7,
9th gen., 16Go RAM, graphic card NVIDIA Quatro T1000. With an average
processing time of 1.632s (to propagate the HPP of the entire environment at
each processing step) for the standard implementation and 0.052s for the GPU
implementation, this gain of more than 30 times make the usage of the HPP
map computing online realistic.

Fig. 6: Pedestrian position prediction evaluation steps

During this scenario, most probable regions to meet people are clustered
(HPP clusters) and human position ground truth is used to evaluate the dis-
tance between real human position and HPP clusters. In other words, the lower
the average distance is, the more the pedestrian estimation is accurate. The fig-
ure 6.b shows the HPP Cluster centroids. To build such clusters, we first filter
HPP Map (figure 6.a) data that are above a threshold. Here we assume that
probabilities below such threshold are not sufficient to be representative of Hu-
man position estimation. A DBscan [16] clustering algorithm is then applied and
resulted cluster centroids are displayed by a colored cross in the figure 6.b). At
the end, tracked pedestrian are affected to the closest cluster centroid (wave front
propagation from the targeted cluster center) and distance between pedestrian
position and cluster centroid is measured. The error measure could be expressed



by errorhi = arg min
clust∈DBscan(HPPMap)

(
dist(clust, hi)

)
, where clust is a cluster

centroid and hi the ground truth of a pedestrian pose.
We compare our results obtained in such scenario with two other approaches:

– one long term design approach: human affordance map [18] aims at building
a statistical representation of human presence (only human presence per cell
is considered in such approach).

– one short term design approach: Kalman prediction, where humans are
tracked through well known Kalman filter [6].

The human affordance map uses robot observation to update the probability
to meet human on each map cell during the time. The human affordance map is
updated all experimentation long. As it is done for HPP map, at each evaluation
step, a DBscan cluster algorithm distinguishes a set of most probable human
presence area based on the human affordance map. Then each observed human
is affected to the closest cluster. The distance between human and its associated
cluster centroid is considered to evaluate the prediction precision (figure 6.c).

The Kalman prediction is also used to predict pedestrian pose. When robot
meet a pedestrian, a Kalman filter is created and updated as long as the as-
sociated pedestrian is in the field of view of a robot. Otherwise the Kalman
filter continue to predict the next pedestrian position. The distance between
the pedestrian pose ground truth and the Kalman prediction is considered to
evaluate the prediction precision (figure 6.d). All Kalman filter are set with the
associated pedestrian pose, an acceleration of 0.68m.s2 and an acceleration stan-
dard deviation of 0.2 based on recommendation of[17].
The evaluation process was made as follows: pedestrian detected by robot are
tracked (ground truth position) during different time range (from 10s to the end
of experiment). For each tracked pedestrian, the distance between ground truth
pose and associated prediction is measured for each evaluation process:

– HPP : Distance to the closed hpp cluster
– Human affordance : Distance to the closed human affordance cluster
– Kalman prediction : Distance to the associated Kalman filter prediction pose.

The results of the average distance of all ground truth pedestrian poses and
HPP cluster centroids are available in the Figure 7.

In the Figure 7.a, the average distance is measure during the time. Each colors
refers to different pedestrian track duration. For instance, the orange curve refers
to a track during of 10s meaning that over 10s of a pedestrian tracking, this one
is no more tracked and its ground truth position is forgotten. We can notice
that the average distance decrease over the time. This observation is due to the
enrichment of the flow grid map, increasing the accuracy of the HPP. In the
figure 7.b the cumulative average distance is computed. It comes as no surprise
that lower pedestrian tracking duration implies best pedestrian prediction. We
can notice that tracking pedestrian during 30s (brown curve) or tracking over
the whole experimentation (800s, blue curve) results of no significant difference
compare to duration of 10s or 30s.



The results of the average distances (average of all ground truth pedestrian
poses and cluster centroids/estimators) of each processes are available in the
table 1. In this table, we compare two versions on HPP, one with the VonMises
propagation model, and one without. The capacity of the VonMises propagation
model to balance current pedestrian observation/direction and the learnt flow
gives better results on all different pedestrian tracking duration. The HPP with
VonMises get best results on all pedestrian tracking durations except for 800s
duration. In this case, Human affordance coupled with the flow grid already
learnt get better results. This can be explain by the fact that the more the
tracking duration is the more the pedestrian as a chance to not being met by
a robot and so the static statistical Human probability representation (human
affordance map) get best results. We also highlight the influence of the flow
grid, both learning flow grid from the start and previously learnt flow grid at
the exprimentation start have been played. We can notice that concerning the
Human affordance map or HPP Map results are significantly better when flow
grid is already learnt.

Fig. 7: Average distance from ground truth and HPP clusters during the time. The
figure a shows average distance from HHP cluster using a sliding windows of 20. The
figure b represents the cumulative average error distance over the time.

The second set of experiments was made on a subset of the ATC pedes-
trian tracking data set [2]. This dataset is the result of tracking people on an
ATC shopping center in Japan over about 900m2 between October 24, 2012 and
November 29, 2013. We extract a subset of this dataset (data of the 2012/11/14).
The interaction between robot’s moves and the crowd is considered by integrat-
ing real data into the pedsim simulator:

– Extract consecutive series of individual pedestrian position
– Sample individual pedestrian position
– Convert samples pose into way points
– Create pedestrian at the apparition time, following its associated way points

Between way points, each pedestrian is driven by Pedsim local planner (re-
pulsive and attractive potential forces) and thus avoid collision between other



simulated pedestrian or robot. The same evaluation process used in the first ex-
periment is applied. The results of the average distances (average of all ground
truth pedestrian poses and cluster centroids/estimators) of each processes of the
ATC scenario are available in the table 1.

The results show the same trends found the first experiment. HPP Map
with VonMises get the best results no matter the pedestrian tracking duration.
Results became also better when an already learnt flow grid is used. In this set of
experiment, Human affordance process do not overcome the HPP Map method
for long pedestrian tracking (e.g 800s). This result is mainly due to the fact
that in the ATC dataset pedestrian appear and disappear on quite short period
meaning that a tracking no more exceed 30s.

The experiments carried out are illustrated in the video here 2. Our propo-
sition outperforms other tested models by an average of 17% (and up to 40% in
certain conditions).

Museum Scenario Real ATC scenario

Tracking duration (in s.) 10 15 20 25 30 800 10 15 20 25 30 800

HPP Without VonMises 10.60 12.57 13.96 14.96 15.66 21.31 Not Tested

HPP With VonMises 6.58 8.54 10.20 11.50 12.53 16.12 7.45 8.11 8.52 8.77 8.91 9.00

HPP With VonMises Flow grid learnt3 5.38 6.01 6.81 7.87 8.79 13.02 4.29 4.95 5.44 5.49 5.53 5.81

Human affordance 13.46 13.86 14.01 14.04 13.96 12.99 14.63 15.06 15.84 16.44 16.55 16.55

Human affordance Flow grid learnt 3 9.29 9.27 9.14 9.13 9.14 9.03 9.00 9.83 10.65 11.05 11.26 11.90

Kalman Prediction 13.01 14.83 16.582 18.05 19.11 24.01 11.69 13.67 15.21 16.16 16.57 16.63

Table 1: Average distance (in meter) of pedestrian between computed pedestrian pose
estimation and ground truth from Museum scenario (artificial scenario) and Real ATC
dataset

6 CONCLUSION

In this paper, we propose a new method for propagating human presence prob-
ability based on partial human observation by a robots fleet. With the help
of a Flow grid Map, representing the probability to meet human in a cell in
a direction, we propagate probabilities as soon as a robot observes a human.
By reformulating the problem, we manage to massively parallelize computation
(GPU) allowing online Human Presence Probability propagation. Thanks to the
applied optimization (VonMises), our method is able to handle both learned
trends and current observations. Our experimental results, conducted on two
different scenarios (an artificial and a real-life dataset), demonstrate that our
model outperforms existing long-term (Human Affordance Map) and short-term
(Kalman estimator) human presence estimators.

2 https://youtu.be/H7Ly9nZKNks
3 For ATC Scenario 500000 records was used to learn the flow grid, the next 500000

records are used to evaluate the model

https://youtu.be/H7Ly9nZKNks
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