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Abstract. We study the upward point-set embeddability of digraphs on
one-sided convex point sets with at most 1 bend per edge. We provide an
algorithm to compute a 1-bend upward point-set embedding of outerpla-
nar st-digraphs on arbitrary one-sided convex point sets. We complement
this result by proving that for every n ≥ 18 there exists a 2-outerplanar
st-digraph G with n vertices and a one-sided convex point set S so that
G does not admit a 1-bend upward point-set embedding on S.

1 Introduction

A point-set embedding (PSE) of a planar graph G = (V,E) on a given set of
points S, with |S| = |V |, is a planar drawing Γ of G such that every vertex of G
is represented by a point of S and each edge is drawn as a polyline connecting
its end-vertices; if every edge has at most b ≥ 0 bends, Γ is a b-bend PSE.

Gritzmann et al. [22] proved that the class of graphs that admit a PSE
without bends along the edges on every set of points in general position coincides
with the class of outerplanar graphs. Efficient algorithms to compute a PSE with
no bends on any given set of points in general position exist for outerplanar
graphs [9] and trees [10]. Cabello [11] proved that deciding whether a planar
graph admits a PSE without bends on a given set of points is NP-complete.
When bends are allowed, Kaufmann and Wiese [26] proved that every planar
graph admits a PSE on every set of points with at most two bends per edge.

An upward point-set embedding (UPSE) of a directed graph G = (V,E) on
a given set of points S, with |S| = |V |, is a PSE with the additional property
that each edge e is represented as a polyline monotonically increasing in the
y-direction; also in this case we say that Γ is a b-bend UPSE if every edge has
at most b bends. Clearly, for an UPSE to exist G must be an upward planar
graph (and thus it must be a DAG). Different to the undirected case, a charac-
terization of the upward planar digraphs that admit a UPSE without bends on
every point set is still missing even for points in convex position. On the other
hand, Binucci et al. [8] characterize DAGs that admit a 1-bend UPSE on every
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upward one-sided convex (UOSC) point set, i.e., a convex point set such that
the bottommost point and the topmost point are adjacent in the convex hull of
S; the same class has also been characterized by Heath and Pemmaraju [23] as
the class of graphs that admit an upward 1-page book embedding. For points in
convex position Binucci et al. [8] proved that there exist directed trees that do
not admit an UPSE on every convex point set and many partial results exists
about the embeddability of specific subclasses of directed trees on point sets
with different properties [2,3,8,25]. Kaufmann et al. [25] studied the problem
of deciding whether an upward planar graph admits an UPSE on a given set of
points S and show that the problem can be solved in polynomial time for convex
point sets, while it is NP-complete for point sets in general position. Arseneva et
al. [3] proved that the problem remains NP-complete even for trees if one vertex
is mapped to a specific point. As for the undirected case, two bends per edge
suffice for UPSEs of upward planar graphs on any given set of points [21].

The results about (U)PSEs with zero and two bends naturally motivates
the study of (U)PSEs with one bend. Testing whether a (upward) planar graph
admits a 1-bend (U)PSE is NP-complete in both the upward and the non-upward
variants. Indeed, it is easy to see that a 1-bend (U)PSE on a set of collinear points
is, in fact, a 2-page (upward) book embedding and deciding whether a (upward)
planar graph G admits a 2-page (upward) book embedding is NP-complete both
in the non-upward [6] and in the upward case [5]. However, this relation between
1-bend (U)PSEs and 2-page (upward) book embeddings relies on the use of
collinear points, and thus it does not hold for points in general or in convex
position. The following problems are therefore open and worth to investigate.

Problem 1. Does every (upward) planar graph admit a 1-bend (U)PSE on every
set of points in general or in convex position?

Problem 2. What is the complexity of testing whether a (upward) planar graph
admits a 1-bend (U)PSE on a given set of points in general or in convex position?

We study the upward version of Problem 1 and our contribution is as follows.
– On the positive side, we show that every st-outerplanar graph (i.e., an out-

erplanar DAG with a single source and a single sink) admits a 1-bend UPSE
on every UOSC point set (Theorem 1).

– We give a negative answer to the upward version of Problem 1 (Theorem 2).
Namely, we prove that for every n ≥ 18 there exists a 2-outerplanar st-
digraph G with n vertices and an UOSC point set S such that G does not
admit an UPSE on S with at most one bend per edge.

Concerning our second contribution, Di Giacomo et al. [14] proved that every
two-terminal series-parallel digraph admits a 1-bend UPSE on any given set
of points. This result has been extended by Mchedlidze and Symvonis [29] to
the superclass of N -free graphs6. However, there exist st-outerplanar graphs

6 The embedded N -graph is shaped like an N, i.e., it contains four vertices a, b, c, d and
three edges (a, b), (c, b) and (c, d) such that (1) (a, b) enters b to the left of (c, b) and
(2) (c, b) exists c to the left of (c, d). An embedded N -free graph does not contain
the embedded N -graph as a subgraph.
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u w v z

(a)

u vw z

(b) (c)

(d) (e)

Fig. 1. (a) Two edges that cross; (b) two edges that nest; (c) an example of a 2UBE;
(d) an example of a 2UTBE; the bold edges have spine crossings, shown with small
crosses; (e) removal of unnecessary sub-edges.

that are not N -free digraphs (indeed, st-outerplanar graphs may contain the
forbidden N -digraph), and vice-versa. We remark that the study of PSEs is
a classical subject of investigation in the Graph Drawing and Computational
Geometry literature where different (not necessarily upward) variants have been
studied [1,4,12,13,15,16,17,18,20,24,28,31]. In particular, Everett et al. [19] and
Löffler and Tóth [27] considered universal point sets for non-upward 1-bend
drawings.

The paper is organized as follows. In Section 2 we give preliminary definitions.
In Section 3 we prove necessary and sufficient conditions for the existence of a 1-
bend UPSE. In Section 4 we describe the construction for outerplanar digraphs,
while our negative example is described in Section 5. Open problems are in
Section 6. Proofs marked with (⋆) are sketched or removed.

2 Preliminaries

Let G = (V,E) be an upward planar graph. A 2-page upward book embedding
(2UBE) of G consists of a total order ≺ of V , that is, a topological sorting of
G, and of a partition of E into two sets, called pages, such that no two edges
cross; two edges (u, v) with u ≺ v and (w, z) with w ≺ z cross if the two edges
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are in the same page and u ≺ w ≺ v ≺ z or w ≺ u ≺ z ≺ v (see Fig. 1(a)). Also,
edges (u, v) and (w, z) nest if they are on the same page and u ≺ w ≺ z ≺ v or
w ≺ u ≺ v ≺ z (see Fig. 1(b)). We write u ⪯ v if u precedes or coincides with v.
A 2UBE can be visualized as an upward planar drawing such that all vertices of
G lie along a horizontal line ℓ, called the spine, and each edge is represented as a
semi-circle oriented in the direction of the spine and completely contained either
above the spine (top page) or below the spine (bottom page). See Fig. 1(c) for
an example of a 2UBE. A 2-page upward topological book embedding (2UTBE)
of G is a 2UBE of a subdivision of G. When considering a 2UTBE as a planar
drawing, each subdivision vertex of an edge e can be regarded as a point where
e crosses the spine, and therefore is also called a spine crossing (see Fig. 1(d)).
Further, each of the “pieces” of an edge e defined by the subdivision vertices is
called a sub-edge of e; specifically, the sub-edges that are in the top page are
called top sub-edges and those that are in the bottom page are called bottom
sub-edges. We write (sub-)edge to mean an element that is either an edge or a
sub-edge. We assume that in a 2UTBE no spine crossing has two incident sub-
edges that are in the same page; if so, the two sub-edges can be replaced by a
single (sub-)edge (see Fig. 1(e)). A 2UTBE is a single-top 2UTBE if each edge
has at most one top sub-edge (and hence at most two bottom sub-edges).

A set of points S is an upward one-sided convex (UOSC) point set if the
points of S are in convex position and the lowest point of S is adjacent to the
highest point of S in the convex hull. See Fig. 9(b) for an illustration. We denote
by CH(S) the convex hull of S. We always assume that all the points of S are
to the left of the line passing through the topmost and the bottommost point.

3 Conditions for the existence of a 1-bend UPSE

We begin with a necessary condition for the existence of a 1-bend UPSE.

Lemma 1 (⋆). Let G = (V,E) be an upward planar graph. If G admits a
1-bend UPSE on an UOSC point set, then G admits a single-top 2UTBE.

Proof. Let Γ be a 1-bend UPSE of G on an UOSC point set S. For each edge e
of Γ , replace each intersection point between e and CH(S) that is not an end-
vertex of e, with a dummy vertex. We obtain a 1-bend upward planar drawing
Γ ′ of a subdivision G′ = (V ′, E′) of G, such that each edge is drawn completely
outside CH(S) or completely inside CH(S). Notice that an edge of Γ ′ that is
drawn completely outside CH(S) has necessarily at least one bend, as edges
with no bends necessarily lie inside CH(S). Thus, an edge of Γ can be split by
its intersection points with CH(S) in at most three “pieces”, at most one of
which can be outside CH(S).

We can define a 2UBE γ′ of G′ as follows. The total order of V ′ coincides
with the bottom to top order of the vertices (real and dummy) in Γ ′; the edges
that are drawn inside CH(S) are assigned to the bottom page and those that
are drawn outside CH(S) are assigned to the top page. Since Γ ′ is an upward
drawing, the total order of V ′ is a topological sorting. Further, in γ′, no two
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(a) Type 1 (b) Type 2 (c) Type 3 (d) Type 4

Fig. 2. Forbidden configurations.

edges in the same page cross, as otherwise the same edges would cross in Γ ′.
Since G′ is a subdivision of G, γ′ is a 2UTBE of G. Also, as observed above,
each edge e of G is split so that at most one “piece” is drawn outside CH(S),
hence e has at most one top sub-edge in γ′. ⊓⊔

Given a 1-bend UPSE Γ on an UOSC point set S, we say that the 2UTBE
γ that can be obtained as explained in the proof of Lemma 1 is induced by Γ .

We now give a sufficient condition for the existence of a 1-bend UPSE. We
begin by introducing some additional definitions and technical lemmas. Let γ be
a single-top 2UTBE of an upward planar graph G. A sub-edge (u, v) with u ≺ v
is nested inside another sub-edge (w, z) with w ≺ z if the two sub-edges are in
the same page and w ⪯ u ≺ v ⪯ z. Notice that it cannot be that w = u and
v = z at the same time. An (sub-)edge (w, z) with w ≺ z covers a vertex v if
w ≺ v ≺ z. Let e1 and e2 be two edges of G. Edges e1 and e2 form a forbidden
configuration in γ if the following three conditions hold simultaneously: (a) e1
and e2 both have a top sub-edge, one of the top sub-edges is nested inside the
other, and the two sub-edges can possibly share a vertex; (b) e1 and e2 both
have a bottom sub-edge, one of the bottom sub-edges is nested inside the other,
and the sub-edges do not share a vertex; and (c) each bottom sub-edge covers
at least one vertex and each top sub-edge covers at least two vertices. We have
four possible forbidden configurations: Type 1 forbidden configuration is such
that the top sub-edges do not share a vertex and the two bottom sub-edges
precede the two top sub-edges in the direction of the spine (see Fig. 2(a)); Type
2 forbidden configuration is like the Type 1 forbidden configuration but with
the top edges that share a vertex (see Fig. 2(b)). Type 3 and Type 4 forbidden
configurations are like Type 1 and Type 2 respectively, but the top sub-edges
precede the bottom sub-edges (see Fig. 2(c) and 2(d)). We say that the 7 (or 6)
vertices necessary to have a forbidden configuration are the vertices that define
the forbidden configuration. These are the 4 (or 3) end-vertices of the two edges
forming the forbidden configuration and the three vertices that are covered by
their sub-edges. A single-top 2UTBE is nice if it has no forbidden configuration.

The next lemma shows that forbidden configurations are obstacles to the
existence of a 1-bend UPSE for specific set of points. We describe 4 types of
UOSC point sets, one for each type of forbidden configuration. See Fig. 3 Let
p1, p2, p3, p4, p5, p6, p7 be a set S of points ordered from bottom to top. Denote
by Ci, with i ∈ {1, 2} the cone defined by the two half-lines starting at pi and
passing through p3 and p4, respectively. Also, denote by Hi, with i ∈ {6, 7} the
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p1

p2

p3

p4

p5
p6

p7

H6

C1

C2

H7

(a) Type 1

p1

p2

p3

p4

p5
p6 = p7

H6 = H7

C1

C2

(b) Type 2

p7

p6
p5

p4

p3p2p1

H2

C7

C6

H1

(c) Type 3

p7

p6

p5

p4

p3p1 = p2

H1 = H2

C7

C6

(d) Type 4

Fig. 3. Impossible point sets.

half plane above the straight line passing through pi−1 and pi. Finally, denote by
T1 the portion of C1 that does not intersect H6 and by T2 the portion of C2 that
does not intersect H7. We say that T1 and T2 cross each other if every segment
connecting p1 to the opposite side of T1 crosses every segment that connects p2
to the opposite side of T2. If S is such that T1 and T2 cross, we say that S is a
Type 1 impossible point set (see Fig. 3(a)). A Type 2 impossible point set is like
a Type 1 impossible point set, but with p6 and p7 coincident – in this case the
two half planes H6 and H7 are also coincident (see Fig. 3(b)). Type 3 and Type
4 impossible points sets are like Type 1 and Type 2 respectively, but mirrored
vertically (see Fig. 3(c) and 3(d)).

Lemma 2. If a single-top 2UTBE γ contains a forbidden configuration of Type
i, with i ∈ {1, 2, 3, 4}, then there does not exist a 1-bend UPSE whose induced
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2UTBE is γ and such that the vertices that define the forbidden configuration
are mapped to an impossible point set of Type i.

Proof. Assume that γ has a Type 1 forbidden configuration (the other cases are
analogous). Denote the two edges forming the forbidden configuration as e1 and
e2, with the top sub-edge of e1 nested inside the top sub-edge of e2. Suppose that
an UPSE exists whose induced 2UTBE is γ and such that the vertices of the
forbidden configuration are mapped to the points of a Type 1 impossible point
set. Then both e1 and e2 have one bend; the bend of e1 is a point of C1 ∩H6,
and the one of e2 is a point of C2∩H7. This implies that the portion of e1 drawn
inside T1 crosses the portion of e2 drawn inside T2 (see Fig. 2(a) and 3(a)). ⊓⊔

In the rest of this section, we prove that if G has a nice single-top 2UTBE
then it admits a 1-bend UPSE on every UOSC point set. Let S be an UOSC point
set of size n. Let γ be a 2UTBE of an n-vertex upward planar graph G and let
v1, v2, . . . , vn′ be the sequence of vertices along the spine obtained by replacing
each spine crossing with a dummy vertex. An enrichment of S consistent with
γ is an UOSC point set S′ such that: (i) S ⊂ S′; (ii) |S′| = n′; and (iii) if we
denote by p1, p2, . . . , pn′ the points of S′ in bottom-to-top order, then pi is a
dummy point if and only if vi is a dummy vertex. See Fig. 4.

Let γ be a single-top 2UTBE of an upward planar graph G, and let γ′ be
the 2UBE obtained by replacing the spine crossings of γ with dummy vertices
and let γ′

top be the 1-page book embedding obtained by γ′ considering only the
top page; we call γ′

top the top-reduction of γ. See Fig. 4(b). Let S be an n-
point one-sided convex point set and let S′ = ⟨p1, p2, . . . , pn′⟩ be an enrichment
of S consistent with γ. We assign to each dummy vertex vi in γ′

top a slope σ,
which has to be used to draw the segment incident to the dummy vertex. If vi
is adjacent to a vertex vj (real or dummy) with j > i, then σ is a slope of the
II-IV quadrant defined by the Cartesian axes, while if vi is adjacent to a vertex
vj (real or dummy) with j < i, then σ is a slope of the I-III quadrant. In either
case the value of σ must be smaller, in absolute value, than the slope of any
segment pkpk+1 for k = i, i+ 1, . . . , j − 1 if i < j or for k = j, j + 1, . . . , i− 1 if
i > j. Such a choice of slopes is called a slope assignment for γ′

top. Let e1 and e2
be two sub-edges with at least one dummy end-vertex each and such that e2 is
nested inside e1. The slope assignment is good for e1 and e2 if for any two slopes
σ1 assigned to e1 and σ2 assigned to e2 in the same quadrant we have |σ1| < |σ2|.
The slope assignment is good if it is good for every pair of nested sub-edges.

Lemma 3 (⋆). Let G be an n-vertex upward planar graph, let S be an UOSC
point set. Let γ be a single-top 2UTBE of G and let γ′

top be the top-reduction of γ.
If a good slope assignment is given, then γ′

top has a 1-bend UPSE on every enrich-
ment S′ of S consistent with γ such that all the edges are drawn outside CH(S′)
and the segment incident to each dummy vertex is drawn with the assigned slope.

Proof. Let v1, v2, . . . , vn′ be the vertices in γ′
top according to the spine order. Let

S′ = ⟨p1, p2, . . . , pn′⟩ be an enrichment of S consistent with γ. (See Fig. 4(c)).
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(a)

v1 v2v3 v6 v7 v8 v9 v10v5 v11v12v13v4

(b)

p1
p2

p3
p4
p5
p6
p7

p8
p9
p10
p11
p12

p13

(c)

p1
p2

p3
p4
p5
p6
p7

p8
p9
p10
p11
p12

p13

(d)

Fig. 4. (a) A single-top 2UTBE γ; (b) the top-reduction γ′
top of γ; (c) an enrichment of

an UOSC point set S (black squares) consistent with γ with a good slope assignment.
(d) A 1-bend UPSE of γ′

top on S′ computed as in Lemma 3.

The edges are drawn according to an order defined by the nesting, i.e., an
edge is drawn only after that all edges nested inside it are already drawn. Let
e = (vi, vj) be the current edge to be drawn and suppose that i < j, i.e., that
vi ≺ vj . The edge e is drawn as the union of two segments: si incident to vi and
sj incident to vj . The segment si is drawn in the II quadrant, while segment sj
is drawn in the III quadrant. This guarantees that si and sj can meet at a bend
point. If vi (resp. vj) is a dummy vertex, then si (resp. sj) is drawn with the slope
assigned to vi (resp. vj). Notice that the slope assigned to vi (resp. vj) is a slope
of the II-IV quadrant (resp. I-III quadrant). If vi (resp. vj) is a real vertex, then
si (resp. sj ) is drawn with a slope σ of the II-IV quadrant (resp. I-III quadrant)
and such that the value of σ is smaller, in absolute value, than the value of any
other slope used in the edges nested inside (vi, vj) (which have already been
drawn). If no edge is nested inside (vi, vj), then |σ| has to be smaller than the
absolute value of the slope of any segment pkpk+1, for k = i, i+ 1 . . . , j − 1.

The slopes used to draw the edges are such that all the segments are drawn
outside CH(S) except for an endpoint for each segment, which coincides with a
point of S′. This is true because every segment s of an edge is drawn with a slope
(assigned or chosen by the algorithm) that is smaller, in absolute value, than the
slope of any segment of CH(S) that can potentially intersect s. Moreover, the
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(a) (b)

Fig. 5. (a) A 1-bend UPSE of the graph of Fig. 4(a) with one edge removed (the two
end-vertices of the removed edge are highlighted); the top sub-edge of the removed
edge covers only one vertex; (b) the addition of the missing edge (close-up).

slopes of the two segments of an edge e are smaller, in absolute value, than the
slopes of all the segments of the edges nested inside e. This implies that there is
no edge crossing. ⊓⊔

Lemma 4 (⋆). Let G be an n-vertex upward planar graph, let γ be a single-top
2UTBE of G, and let e be a top sub-edge that covers exactly one vertex and
that has no top sub-edge nested inside it. Let γ′ be the 2UTBE obtained from γ
by removing the edge e′ containing the sub-edge e. Let Γ ′ be a 1-bend UPSE of
G\{e′} on an UOSC point set S whose induced 2UTBE is γ′. Then it is possible
to construct a 1-bend UPSE of G on S that has Γ ′ as a sub-drawing.

Proof. Let vi and vj be the two end-vertices of the edge e′ and suppose that
i < j, i.e., that vi ≺ vj . Let vk be the single vertex covered by the top sub-edge
e of e′; clearly, i < k < j, i.e., vi ≺ vk ≺ vj . There is no edge that crosses the
segments vivk and vkvj (although one of these segments can coincide with an
edge) as otherwise there would be an edge crossing e′ in γ. Since no top sub-
edge is nested inside e, we can draw the edge e′ by choosing a bend point slightly
above vk and connecting it with vi and vj (see Fig. 5). ⊓⊔

Lemma 5 (⋆). Let G = (V,E) be an n-vertex upward planar graph. If G admits
a nice single-top 2UTBE, then G admits a 1-bend UPSE on every UOSC point
set S of size n.

Proof. If G admits a nice single-top 2UTBE γ, then we can compute a 1-bend
UPSE on every one-sided convex point set S as follows. Let S′ = ⟨p1, p2, . . . , pn′⟩
be an enrichment of S consistent with γ. We remove all edges that have a top
sub-edge covering only one vertex and nest no edges inside. If after such a re-
moval, some new edges with the same properties are created they are recursively
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removed, until no more edge exists with the same properties. The reason we
remove these edges is to guarantee that, in the description that follows, we can
assume that if a pair of edges satisfies Condition (a) of the definition of forbidden
configuration, they also satisfy Condition (c), and therefore they do not satisfy
Condition (b). The removed edges will be reinserted at the end in reverse order
of removal using Lemma 4.

Let γ′ be the single-top 2UTBE resulting from the edge removal explained
above and let G′ be the corresponding graph. We now compute a 1-bend UPSE
of G′ on S′. We first map each vertex vi to the point pi (i = 1, 2, . . . , n′). Notice
that by the choice of the additional points, the dummy vertices are mapped to
the dummy points. We then draw the (sub-)edges that are in the bottom page as
a straight-line segments inside the convex hull CH(S′) of S′. Since the bottom-
to-top order of the vertices along CH(S′) is the same as in γ′, the (sub-)edges
drawn inside CH(S′) do not cross each other.

Now, in order to draw the top (sub-)edges, we consider the top restriction of
γ′, and define a slope assignment, assigning to each dummy vertex d the slope
of the segment incident to d that is in the bottom page (drawing the segment
incident to d with this slope guarantee that no additional bend is created at
d). We now prove that this slope assignment is good and thus by Lemma 3 all
the top (sub-)edges can be drawn outside the convex hull respecting the slope
assignment, which guarantees that each edge is drawn with one bend.

Let e1 = (vi1 , vj1), with i1 < j1, and e2 = (vi2 , vj2) with i2 < j2 be two
top sub-edges such that e2 is nested inside e1, i.e., such that vi1 ⪯ vi2 ≺ vj2 ⪯
vj1 . Each sub-edge has one or two assigned slopes depending on the number of
dummy vertices. Consider any two slopes, σ1 assigned to an end-vertex of e1
and σ2 assigned to an end-vertex of e2. In order to prove that the described
slope assignment is good we have to prove that either σ1 and σ2 are in different
quadrants, or they are in the same quadrant and |σ1| < |σ2|. Thus, in the
following, assume that σ1 and σ2 are in the same quadrant.

If σ1 is assigned to vi1 and σ2 is assigned to vj2 or σ1 is assigned to vj1 and
σ2 is assigned to vi2 , then they are in different quadrants. So, assume that σ1 is
assigned to vi1 and σ2 is assigned to vi2 (the case when σ1 is assigned to vj1 and
σ2 is assigned to vj2 is symmetric). Consider the bottom sub-edge e′1 = (vk1 , vi1)
that shares vi1 with e1 and the bottom sub-edge e′2 = (vk2 , vi2) that shares vi2
with e2. By Condition (b) of the definition of forbidden configuration, either
vk1

= vk2
or the bottom sub-edges are not nested, i.e., the order of the vertices

is vk1
≺ vi1 ≺ vk2

≺ vi2 ≺ vj2 ⪯ vj1 . In the first case, the two segments that
represent e′1 and e′2 (and that define the slope assigned to e1 and to e2) share an
end-vertex and since vi2 follows vi1 the slope of the segment vk1

vi1 is smaller, in
absolute value than the slope of vk1

, vi2 . In the second case, the segment vk2
, vi2

has both end-vertices after the end-vertices of the segment vk1 , vi1 ; thus from
the one-sided convexity of S it follows that the slope of vk2 , vi2 is larger, in
absolute value, than the slope of vk1

, vi1 . This concludes the proof that the slope
assignment is good and therefore, by Lemma 3, that it is possible to compute a
1-bend PSE of G′ on S′.
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It remains to re-insert all the edges removed at the beginning of the algorithm,
i.e., those that had a sub-edge covering a single vertex and did not have an
edge nested inside them. These edges will be re-inserted in the reverse order
of removal. As a consequence, each time we add one such edge e we are in
the hypothesis of Lemma 4 and it is possible to re-insert e. Once all the edges
of G \ G′, are reinserted and the dummy vertices and points are removed, the
resulting drawing is a 1-bend UPSE of G on S. ⊓⊔

4 1-bend UPSE of st-outerplanar graphs

A graph is outerplanar if it admits an outerplanar drawing, i.e., a planar drawing
in which all vertices belong to the boundary of the outer face, which defines an
outerplanar embedding. Unless otherwise specified, we will assume our graphs to
have planar or outerplanar embeddings. An edge of an embedded planar graph
G is outer if it belongs to the outer face, and it is inner otherwise. The weak
dual G of G is the graph having a node for each inner face of G, and an edge
between two nodes if and only if the two corresponding faces share an edge. If G
is outerplanar, its weak dual G is a tree. If G is a path, G is an outerpath. A fan is
an internally-triangulated outerpath whose inner edges all share an end-vertex.

An st-digraph is a directed acyclic graph with a single source s and a sin-
gle sink t; an st-outerplanar graph (resp. st-outerpath) is an st-digraph whose
underlying undirected graph is an outerplanar graph (resp. an outerpath). An
st-fan is an st-digraph whose underlying graph is a fan and whose inner edges
have s as an end-vertex. An st-outerplanar graph such that the edge (s, t) exists
is one-sided if (s, t) is an outer edge, it is two-sided if (s, t) is an inner edge.

We recall a decomposition of st-outerpaths defined in [7]. The extreme faces
of an st-outerpath G are the two faces that correspond to the two degree-one
nodes of the weak dual G. An st-outerpath G is primary if and only if one
of its extreme faces is incident to s and the other one to t. Observe that this
definition is stronger than the one used in [7], in the sense that a primary st-
outerpath according to our definition is a primary st-outerpath also according
to the definition in [7] (but the converse may not be true). Let G be a primary
st-outerpath. Consider a subgraph F of G that is an xy-fan (for some vertices
x, y of G). Let ⟨f1, . . . , fh⟩ be the list of faces forming the path G ordered from
s towards t. Note that the subgraph F of G is formed by a subset of faces that
are consecutive in the path ⟨f1, . . . , fh⟩. Let fi be the face of F with the highest
index, with 1 ≤ i ≤ h. We say that F is incrementally maximal if i = h or
F ∪ fi+1 is not an xy-fan. For every face fi we denote by mid(fi) the unique
vertex of fi with one incoming edge and one outgoing edge in the boundary of fi.

Definition 1. An st-fan decomposition of a primary st-outerpath G is a se-
quence of siti-fans Fi ⊆ G, with i = 1, . . . , k, such that: (i) Fi is incrementally
maximal for each i = 1, . . . , k; (ii) for any 1 ≤ i < j ≤ k, Fi and Fj do not
share any edge if j > i + 1, while Fi and Fi+1 share a single edge, which we
denote by ei; (iii) s1 = s; (iv) the tail of ei is si+1 for each i = 1, . . . , k − 1; (v)

ei ̸= (si, ti) for each i = 1, . . . , k − 1; and (vi)
⋃k

i=1 Fi = G. Refer to Fig. 6.a-b.
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Fig. 6. (a) An st-fan in the middle of the st-fan decomposition. (b) The first and last
st-fans of the st-fan decomposition. Since the outerpath is primary, the last fan can
always be chosen to be one-sided with edge (sk, tk) regarded as a possible attachment
edge of an appendage (light blue). (c) Gcore is blue and gray, while green subgraphs
represent appendages of Gcore. (d) Illustration of Property 1.b.

Lemma 6 ([7]). Every primary st-outerpath G admits an st-fan decomposition.

Let G be an st-outerplanar graph and let P be a path in the weak dual G
of G whose two endpoints are such that one corresponds to a face containing s
and the other one to a face containing t. Observe that the primal graph Gcore

of P is a primary st-outerpath by construction, we call it the core of G. On the
other hand, if an outer edge (u, v) of Gcore is not an outer edge of G, then it
corresponds to a separation pair in G. In particular, (u, v) belongs to Gcore and
to another subgraph Auv of G which is a one-sided uv-outerplanar graph; we
call Auv an appendage of G attached to (u, v); refer to Fig. 6.c.

Property 1 Let G be an st-outerplanar graph and let Gcore be the core of G.
The following properties hold:

(a) Every outer edge of Gcore is potentially an attachment edge of an appendage.
(b) Let F1, . . . , Fk be an st-fan decomposition of Gcore and let P be its dual path.

Let si, ti denote the source and the sink of Fi. The fans Fi−1 and Fi share
the edge (si, ti−1); See Fig. 6.d (Stronger version of Lemma 3 in [7]).

(c) Path P enters Fi, i = 2, . . . , k through the edge (si, ti−1) and leaves Fi,
i = 1, . . . , k − 1 through the edge (si+1, ti).

(d) Let Fi be a two-sided st-outerpath and let f1, . . . , fa be the faces of Fi as
visited by P . Faces f1, . . . , fa−1, a ≥ 2, lie on one side of (si, ti) and only
the face fa lies on the other side of (si, ti). Refer to Fig. 6.a.

Property (a) holds by definition. If Properties (b) and (c) do not hold, then
Gcore has either more than one sink or more than one source. Finally, assuming
that Property (d) does not hold, implies that Gcore is not an outerpath.
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In this section we utilize a tool, called Hamiltonian completion, that is an-
other way to look at 2UTBEs. An upward planar graph G has a 2UBE if and
only if it is subhamiltonian, i.e., it is a spanning subgraph of an upward planar
st-digraph G̃ that has a directed Hamiltonian st-path [30]. More generally, there
is an analogy between upward topological book embeddings and a more general
form of subhamiltonicity. Let G be an upward planar graph and G̃ = (V, Ẽ) be
an embedded st-digraph such that: (1) G = (V,E) is a spanning subgraph of G̃,
(2) G̃ has a directed Hamiltonian st-path H, and (3) each edge in E is crossed
by at most one edge of Ẽ \E. We say that H is a subhamiltonian path of G and
G̃ is an HP-completion of G. See Fig. 7 for an example of subhamiltonian paths.

Lemma 7 ([30]). An upward planar graph has a 2UTBE with at most one
spine-crossing per edge if and only if it has an HP-completion. The order of the
vertices along the spine in the 2UTBE is the same as in the subhamiltonian path.

The subhamiltonian path crosses some edges of G by splitting them into
sub-edges. We inherit the definition of nesting (sub-)edges from 2UTBE to HP-
completion. Thus, the (sub-)edges (u, v), (w, z) nest in G̃ if in the embedding
of G̃ they are on the same side of the path H and u ≺ w ≺ z ≺ v or w ≺ u ≺
v ≺ z. Since the order of the vertices on the spine of the book and along the
Hamiltonian path coincide, two (sub-)edges nest in G̃ if and only if they nest in
the corresponding 2UTBE. We now prove the key result of this section.

Lemma 8 (⋆). Every primary st-outerpath has an HP-completion without nest-
ing sub-edges.

Proof (sketch). Let G be a primary st-outerpath and F1, . . . , Fk be its st-fan de-
composition. Let P be the dual path of G. Let Gi be the subgraph of G composed
by F1, . . . , Fi, i = 1, . . . , k, therefore G = Gk. We construct the subhamiltonian
path Hi in Gi by induction on i, assuming the next invariants for Hi−1 in Gi−1:

I1 Subhamiltonian path Hi−1 in Gi−1 terminates with the edge (si, ti−1).
I2 Path Hi−1 crosses the edge (si−1, ti−1) (in a point referred to as pi−1) if and

only if Fi−1 is two-sided. No other edge of Fi−1 is crossed by Hi−1.
I3 Hi−1 does not create nesting sub-edges in Gi−1.

We show how to construct Hi so to maintain the invariants. We have three cases
based on whether Fi−1 and Fi are two-sided or not.

Case 1: both Fi−1 and Fi are two-sided. Refer to Fig. 7.a. Consider the
dual path P in Fi and let f1, . . . , fa, be the faces of Fi as visited by P . By
Property 1(d), since Fi is two-sided, faces f1, . . . , fa−1, a ≥ 2, lie on one side
of (si, ti) and only the face fa lies on the other side of (si, ti). Note that, by
Properties 1(b) and 1(c), Fi−1 and Fi share (si, ti−1) and P enters Fi through
(si, ti−1); it follows that mid(f1) = ti−1. By induction hypothesis Hi−1 termi-
nates at (si, ti−1). Therefore, we can set path Hi to be Hi−1 concatenated with
mid(f1), . . . ,mid(fa), ti. Note that mid(fa) = si+1, thus Invariant I1 holds.
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Also, Hi crosses (si, ti) and no other edge of Fi, hence Invariant I2 holds as
well. Finally, concerning the only two edges of Fi−1 and Fi that are crossed by
Hi, the order in which their end-vertices si, ti, si−1, and ti−1 and their crossing
points pi−1 and pi are visited is si−1, pi−1, si, ti−1, pi, ti, which implies that their
sub-edges do not nest. No other sub-edge is created by Hi, thus I3 holds.

Case 2: Fi−1 is one-sided and Fi is two-sided. Again, by Property 1(c),
Hi−1 ends with (si, ti−1). Consider the dual path P in Fi and let f1, . . . , fa, be
the faces of Fi as visited by P . By Property 1(d), since Fi is a two-sided, faces
f1, . . . , fa−1, a ≥ 2 lie on one side of (si, ti), and only the face fa lies on the other
side of (si, ti). Faces f1, . . . , fa−1 lie on the same side of (si, ti) where (si, ti−1)
lies, as P enters Fi through (si, ti−1). Therefore, we can concatenate Hi−1 with
mid(f1) = ti−1, . . . ,mid(fa), ti; see Fig. 6.b. Also in this case mid(fa) = si+1

and therefore Invariant I1 holds. Further, path Hi crosses (si, ti) and Invariant
I2 also holds. Since Hi−1 has no nesting sub-edges, and any sub-edge in Gi−1

ends before the sub-edge of Fi starts (since ti−2 is connected by a directed path
to si) we have that Hi does not have nesting sub-edges and thus also I3 holds.

Case 3: Fi is one-sided. We distinguish two sub-cases depending on whether
ti−1 coincides with ti or not.

Case 3.a: ti−1 ̸= ti (refer to Fig. 6.c-d). Since Hi−1 ends with (si,ti−1), we
can concatenate Hi−1 with mid(f1) = ti−1, . . . ,mid(fa), ti. Also in these cases
mid(fa) = si+1 and Invariant I1 holds. Since Fi is one-sided, Invariant I2 triv-
ially holds. Finally, since Fi is one-sided, all the vertices mid(f1) = ti−1, . . . ,mid(fa), ti
lie on the same side as (si, ti−1) and therefore path Hi does not cross any edge of
Fi. This, and the induction hypothesis I3 imply that Hi does not have nesting
sub-edges.

Case 3.b: ti−1 = ti (refer to Fig. 6.e).In this case a = 1, i.e., Fi consists of
a single triangle si,mid(f1), ti. We remove the edge (si, ti−1) from Hi−1 and
extends the resulting path with the two edges (si,mid(f1)) and (mid(f1), ti).
Invariant I1 holds by construction; Invariant I2 trivially holds because Fi is
one-sided; finally, Invariant I3 holds because it held for Hi−1 and the extension
to Hi cannot create any nesting. ⊓⊔

Lemma 9. Every st-outerplanar graph has an HP-completion without nesting
sub-edges.

Proof. Let G be an st-outerplanar graph and let Gcore be the core of G. By
Lemma 8, Gcore has an HP-completion with subhamiltonian path H ′ that does
not create nesting sub-edges. By Property 1(a), every outer edge of Gcore is
potentially an attachment edge of an appendage of G. We expand the subhamil-
tonian path H ′ of Gcore to a subhamiltonian path H in G as follows, refer to
Fig. 8. Let A be an appendage of P attached to an edge e and let f be the
internal face of Gcore incident to the edge e. We flip A to lie inside f . We visit
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Fig. 8. Augmenting the subhamitonian path to visit appendages.

all the vertices of A that are not the source or the sink of A either immediately
after H ′ visits the source of A (blue appendage in Fig. 8.c) or immediately before
it visits the sink of A (pink appendage in Fig. 8.c), or both things at the same
time (green appendages in Fig. 8.c). After this procedure the edges crossed by
H are exactly the edges of Gcore crossed by H ′, i.e., no new sub-edge is created.
Further, the vertices of Gcore are visited in the same order by H and by H ′.
Hence, since H ′ did not create nesting sub-edges in Gcore, so does H in G. ⊓⊔

By Lemmas 7 and 9 every st-outerplanar graph has a nice 2UTBE with at
most one spine-crossing per edge. By Lemma 5 we have the following.

Theorem 1. Every st-outerplanar graph admits a 1-bend UPSE on every UOSC
point set.

5 1-bend UPSE are not always possible

In this section we describe a 2-outerplanar st-digraphG and an UOSC point set S
such that G does not admit a 1-bend UPSE on S. An st-digraph is 2-outerplanar
if removing all vertices of the outer face yields an outerplanar digraph. The point
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Fig. 9. (a) An st-digraph G and (b) an UOSC point set S for the proof of Lemma 10

set S used in the proof of Lemma 10 is constructed in such a way that, assuming
the existence of a 1-bend UPSE Γ on S, no matter what is the single-top 2UTBE
induced by Γ , there is always a forbidden configuration that is mapped to an
impossible point set, thus implying the existence of a crossing. It is possible to
define many point sets that have this property. The one shown in Fig. 9 has
points with the following exact coordinates:

p1 = (93, 0), p2 = (79, 2), p3 = (73, 4),

p4 = (16, 43), p5 = (8, 49), p6 = (4, 53),

p7 = (2, 56), p8 = (1, 59), p9 = (0, 63),

p10 = (0, 67), p11 = (1, 71), p12 = (2, 74),

p13 = (4, 77), p14 = (8, 81), p15 = (16, 87),

p16 = (73, 126), p17 = (79, 128), p18 = (93, 130).

Lemma 10 (⋆). There exists a 2-outerplanar st-digraph G and an UOSC point
set S such that G does not admit a 1-bend UPSE on S.

Proof. Let G be the st-digraph of Fig. 9(a) and let S be the point set of Fig. 9(b)
By Lemma 1, if G has a 1-bend UPSE Γ on S, then Γ induces a single-top
2UTBE. We show that every single-top 2UTBE γ of G has a forbidden configu-
ration of Type i, for some i ∈ {1, 2, 3, 4}, that is necessarily mapped to a Type
i impossible point subset of S. By Lemma 2 a 1-bend UPSE cannot exist. Let
p1, p2, . . . , p18 be the points of S in bottom-to-top order. Let πl be the path from
u to v to the left of (u, v) (red in Fig. 9(a)) and let πr be the path from u to v
to the right of (u, v) (blue in Fig. 9(a)). The edge (u, v) (yellow in Fig. 9(a)) has
vertices on both sides. Thus, in every 2UTBE it crosses the spine either once
or twice and the vertices of πl must appear along the spine in the order they
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Fig. 10. Case 1 of Theorem 2.

appear along πl; the same holds for πr. We have different cases. In each case we
denote by v1, v2, . . . , vn the sequence of vertices along the spine (thus vertex vi
is mapped to point pi). In all cases u is mapped to p2 and v is mapped to p17.

Case 1: Edge (u, v) crosses the spine once (see Fig. 10(a) and 10(c)). The first
sub-edge of (u, v) is either a bottom or a top sub-edge. Int the first (resp. second)
case the vertex w coincides with v6 (resp. v13) and the edges (w, v) and (u, v)
form a Type 2 (resp. a Type 4) forbidden configuration with the spine crossings
between v9 and v10. Since, p2, p6, p9, p10, p16, p17 (resp. p2, p3, p9, p10, p13, p17)
form a Type 2 (resp. a Type 4) impossible point set (see Fig. 10(b) and 10(d)),
by Lemma 2 a 1-bend UPSE cannot exist in this case.

Case 2: Edge (u, v) crosses the spine twice. In this case (u, v) consists of three
sub-edges (u, d1), (d1, d2), and (d2, v), where d1 and d2 are spine crossings. Only
(d1, d2) is a top sub-edge. Thus, the vertices of πl have to be distributed in the
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Fig. 12. Case 2.B of Theorem 2.

two intervals defined by (u, d1) and (d2, v). We distinguish six sub-cases (five are
omitted) depending on the distribution of the vertices of πl.

Case 2.A: w is between u and d1 with a single vertex of πl between d2 and v (see
Fig. 11(a)). In this case w coincides with v6 and both (w, v) and (u, v) cross the
spine between v8 and v9 and between v15 and v16. The edges (w, v) and (u, v)
form a Type 2 forbidden configuration. Since p2, p6, p8, p9, p15, p17 form a Type 2
impossible point set (see Fig. 11(b)), by Lemma 2 a 1-bend UPSE cannot exist.

Case 2.B: Vertex w is between u and d1 and there are two vertices of πl between
d2 and v (see Fig. 12(a)). In this case w coincides with v6 and both edges (w, v)
and (u, v) cross the spine once between v7 and v8 and another time between v14
and v15. Also in this case the edges (w, v) and (u, v) form a Type 2 forbidden
configuration. Since p2, p6, p7, p8, p14, p17 form a Type 2 impossible point set (see
Fig. 12(b)), by Lemma 2 a 1-bend UPSE cannot exist in this case.
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Case 2.C: Vertex w is between u and d1 and there are three vertices of πl

between d2 and v (see Fig. 13(a)). In this case w coincides with v6 and the
vertex z coincides with v15. Edges (w, v) and (w, z) form a Type 4 forbidden
configuration with spine crossings between v13 and v14. Since p6, p13, p14, p15, p17
form a Type 4 impossible point set (see Fig. 13(b)), by Lemma 2 a 1-bend UPSE
cannot exist in this case.
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Fig. 13. Case 2.C of Theorem 2.

Case 2.D: vertex w is between d2 and v and there is only one vertex of πl between
u and d1. The proof is symmetric to the Case 2.A (see Fig. 14(a) and 14(b)).
Case 2.E: vertex w is between d2 and v and there are two vertices of πl between
u and d1. The proof is symmetric to the Case 2.B (see Fig. 14(c) and 14(d)).
Case 2.F: vertex w is between d2 and v and there are three vertices of πl between
u and d1. The proof is symmetric to the Case 2.C (see Fig. 14(e) and 14(f)).

⊓⊔

The following theorem is easily derived from Lemma 10 by suitably adding,
for every n ≥ 18, n− 18 vertices to G and n− 18 points to S.

Theorem 2. For every n ≥ 18 there exists an n-vertex 2-outerplanar st-digraph
G and an UOSC point set S such that G does not admit a 1-bend UPSE on S.

Proof. For every n > 18 we can transform the st-digraphG of Lemma 10 to an st-
digraph G′ with n vertices as follows. We add to G a directed path s0s1 . . . sn′+1,
with n′ = n− 18, so that sn′+1 coincides with the single source s of G; we then
connect each si to the vertices u and t of G, for i = 1, 2, n′. The resulting digraph
is an st-digraph. We also transform the point set S into a point set S′, by adding
n′ points that form a one-sided convex point set together with S and such that
the added points are the lowest of S′. It is easy to see that if G′ admits a 1-bend
UPSE of S′ then G admits a 1-bend UPSE on S. ⊓⊔



20 Di Giacomo et al.

s u v tw

d1 d2

(a)

su

w

v t

S

w

(b)

s u v tw

d1 d2

(c)

su

w

v t

S

w

(d)

s u v twx

d1 d2

(e)

su

w

v t

S

x

x

(f)

Fig. 14. Case 2.D–2.F of Theorem 2.



On 1-bend Upward Point-set Embeddings of st-digraphs 21

6 Open problems

Various questions remain open related to Problem 1 and 2 of Section 1. Among them:

1. Investigate the non-upward version of Problem 1. We observe that the graph
of Theorem 2 is not a counterexample for this problem as it admits a (non-
upward) PSE on the set of points S of Theorem 2 (see Fig. 15).

2. Study Problem 2. In particular, it would be nice to find a characterization
of the digraphs that admit a 1-bend UPSE on every UOSC point set.

S

u

v

x

z

w

v S

w

x

Fig. 15. A (non-upward) PSE of the graph of Fig. 9(a) on the point set of Fig. 9(b).
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