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Abstract. Detecting if a graph contains a k-Clique is one of the most
fundamental problems in computer science. The asymptotically fastest
algorithm runs in time O(nωk/3), where ω is the exponent of Boolean ma-
trix multiplication. To date, this is the only technique capable of beating
the trivial O(nk) bound by a polynomial factor. Due to this technique’s
various limitations, much effort has gone into designing “combinatorial”
algorithms that improve over exhaustive search via other techniques.
The first contribution of this work is a faster combinatorial algorithm for
k-Clique, improving Vassilevska’s bound of O(nk/ logk−1 n) by two log
factors. Technically, our main result is a new reduction from k-Clique
to Triangle detection that exploits the same divide-and-conquer at the
core of recent combinatorial algorithms by Chan (SODA’15) and Yu
(ICALP’15).
Our second contribution is exploiting combinatorial techniques to im-
prove the state-of-the-art (even of non-combinatorial algorithms) for gen-
eralizations of the k-Clique problem. In particular, we give the first o(nk)
algorithm for k-clique in hypergraphs and an O(n3/ log2.25 n + t) algo-
rithm for listing t triangles in a graph.

1 Introduction

One of the most fundamental problems in computer science is k-Clique: given
an n-node graph, decide if there are k nodes that form a clique, i.e. that have
all the

(
k
2

)
edges between them. Our interest is in the case where 3 ≤ k ≪ n

is a small constant. This is the “SAT of parameterized complexity” being the
canonical problem of the W[1] class of “fixed parameter intractable” problems,
and its basic nature makes it a core task in countless applications where we seek
a small sub-structure defined by pairwise relations.

The naïve algorithm checks all subsets of k nodes and runs in O(k2
(
n
k

)
) time,

which is Θ(nk) for constant k. Whether and how this bound can be beaten (in
terms of worst-case asymptotic time complexity) is a quintessential form of the
question: can we beat exhaustive search?
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The asymptotically fastest algorithms gain a speedup by exploiting fast ma-
trix multiplication – one of the most powerful techniques for beating exhaustive
search. In particular, for the important special case of k = 3, i.e. the Triangle
Detection problem, the running time is O(nω) where 2 ≤ ω < 2.3719 [35] is the
exponent in the time complexity of multiplying two n× n binary matrices.1 For
larger k > 3, there is a reduction to the k = 3 case by Nešetřil and Poljak [48]
that produces graphs of size O(n⌈k/3⌉).2 The resulting time bound is O(n⌈ωk/3⌉).
Except for improvements for k that is not a multiple of 3 [36], and the develop-
ments in fast matrix multiplication algorithms reducing the value of ω over the
years, this classical algorithm remains the state-of-the-art.

The one general technique underlying all fast matrix multiplication, starting
with Strassen’s algorithm [51], is to find some clever formula to exploit cancella-
tions in order to replace multiplications with additions. To date, this is the only
technique capable of beating exhaustive search by a polynomial nε factor for the
k-Clique problem. All techniques have their limitations, and so does Strassen’s.
Consequently, much research has gone into finding “combinatorial algorithms”
that beat exhaustive search by other techniques (see Section 1.2 below). Existing
techniques have only led to polylogarithmic speedups, leading the community to
the following conjectures that have become the basis for many conditional lower
bounds.

Conjecture 1 (Combinatorial BMM). Combinatorial algorithms cannot
solve Triangle Detection in time O(n3−ε) where ε > 0.3

A reduction of Vassilevska and Williams [54] shows that this conjecture is
equivalent to the classical conjecture that combinatorial algorithms cannot solve
Boolean Matrix Multiplication (BMM) in truly subcubic time [44,50]. Following
their reduction, many conditional lower bounds were based on this conjecture,
e.g. [8,31,29,26] (we refer to the survey [53] for a longer list).

Conjecture 2 (Combinatorial k-Clique). Combinatorial algorithms cannot
solve k-Clique in time O(nk−ε) for any k ≥ 3 and ε > 0.

The latter conjecture is stronger than the former, in the sense that faster
algorithms for k = 3 imply faster algorithms for larger k > 3 but the converse
is not known. The first use of this conjecture as a basis for conditional lower
bounds was by Chan [27] to prove an nk−o(1) lower bound for a problem in
computational geometry. Later, Abboud, Backurs, and Vassilevska Williams [2]
used it to prove n3−o(1) lower bounds in P. Several other papers have used it
since then, e.g. [30,23,46,24,1,21,33,5,20,17,40].
1 Simply compute A2 where A is the adjacency matrix of the graph and check if
A2[i, j] > 0 for any {i, j} that are an edge.

2 Each k/3-clique becomes a node and edges are defined in a natural way so that a
triangle corresponds to a k-clique.

3 Note the informality in these combinatorial conjectures stemming from the lack
of precise definition for “combinatorial” in this context. See full paper for further
discussion.
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Previous Combinatorial Bounds. The previous bounds for Triangle detec-
tion (k = 3) fall under three conceptual techniques. We open with an overview of
these techniques (see Section 2.1 for a more detailed review). Note that (log log n)
factors are omitted in this paragraph.

1. The Four-Russians technique [12] from 1970 gives an O(n3/ log2 n) bound,
and is used in all later developments.

2. In 2010, Bansal and Williams [15] use pseudoregular partitions to shave off
an additional log1/4 n factor.

3. In 2014, Chan [28] introduced a simple divide-and-conquer technique to get
an O(n3/ log3 n) bound, and a year later, Yu [56] optimized this technique
to achieve a bound of O(n3/ log4 n).

For k > 3 there are two options: (1) we either apply these algorithms inside
the aforementioned reduction to Triangle, getting a bound of O(nk/ log4 n), or
(2) we apply these combinatorial techniques directly to k-Clique. An early work
of Vassilevska [52] from 2009 applied the Four-Russians technique directly to
get an O(nk/ logk−1) bound. Note that this generalizes the log2 shaving from
the first bullet naturally to all k, and is favorable to the algorithms from option
(1) for k > 5. Vassilevska’s bound remains state-of-the-art, and in this work,
we address the challenge of generalizing the other combinatorial techniques to
k-Clique.

1.1 Our Results

The first result of this paper is a faster combinatorial algorithm for k-Clique for
all k > 3 based on a generalization of the divide-and-conquer technique from
Chan’s and Yu’s algorithms for k = 3. We use divide-and-conquer to design a
more efficient reduction from k-Clique to the k = 3 case. The main feature of this
reduction is that we get an additional log factor shaving each time k increases by
one; this should be contrasted with the classical reduction from option(1) above,
in which we gain nothing when k grows.

Theorem 1 (Reduction from k-Clique to Triangle). Let k ≥ 3, and
let a, b be reals such that there is a combinatorial triangle detection algorithm
running in time O(n3(log n)a(log log n)b). Then there is a combinatorial k-clique
detection algorithm in time O(nk(log n)a−(k−3)(log log n)b+k−3).

Combining our reduction with Yu’s state-of-the-art combinatorial algorithm
for Triangle detection, we improve Vassilevska’s bound by two log factors.

Corollary 1 (Faster Combinatorial k-Clique Detection). There is a
k-clique detection algorithm running in time O(nk(log n)−(k+1)(log log n)k+3).

It may be interesting to note that our reduction can even be combined with
the naïve O(n3) algorithm for Triangle detection, giving a (log n)k−3 shaving for
k-Clique without using the Four-Russians technique.
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Another interesting implication of our reduction is concerning the framework
of Bansal and Williams’ [15]. Their algorithm can be improved if better depen-
dencies for regularity/triangle removal lemmas are achieved. The best known
upper bound on f(ε) in a triangle removal lemma is of the form c

(log∗(1/ε))δ
for

some constants c > 1 and δ > 0.4. Due to this dependency, their first algo-
rithm [15, Theorem 2.1] only shaves a log∗(n) factor from the running times
achieved with the standard Four-Russians technique. However, it is not ruled
out that much better dependencies can be achieved that would accelerate their
algorithm to the point where, combined with our reduction, a k-clique algorithm
with faster running times than Corollary 1 is obtained.5

As discussed in Section 1.2, a primary reason to seek combinatorial algo-
rithms for k-Clique is that the techniques may generalize in ways fast matrix
multiplication cannot (see full paper for detailed discussion). Our second set of
results exhibits this phenomenon by shaving logarithmic factors over state-of-
the-art for general (non-combinatorial) algorithms.

One limitation of the O(nω) algorithm for Triangle detection is that it does
not solve the Triangle listing problem: we cannot specify a parameter t and get
all triangles in the graph in time O(nω + t) assuming their number is up to t.
Listing triangles in an input graph is not only a natural problem, but it is also
connected to the fundamental 3SUM problem (given n numbers, decide if there
are three that sum to zero). A reduction from 3SUM [49,41] shows that in or-
der to beat the longstanding O(n2/ log2 n) bound over integers [16] it is enough
to shave a log6+ε n factor for Triangle listing – i.e., achieve a running time
of O( n3

log6+ε n
+ t) for some ε > 0. Although research has seen some results on

triangle listing [19], we are not aware of any previous o(n3) + O(t) time bound
for this problem (even with non-combinatorial techniques). Our second result
produces such a time bound, showing that the other combinatorial techniques
(namely Four-Russians and regularity lemmas) can be exploited. We shave a
log2.25 n factor for this problem, generalizing the Bansal-Williams bound for
BMM. Note we use the non-standard notation Õ̃(n) = n(log log n)O(1) to sup-
press polyloglog factors.

Theorem 2 (Faster Triangle Listing). There is a randomized combinatorial
algorithm that lists up to t triangles in a given graph in time Õ̃( n3

(logn)2.25 + t),
and succeeds with probability 1− n−100.

Another well-known limitation of Strassen-like techniques is that they are
ineffective for detecting hypergraph cliques. They fail to give any speedup even
for the first generalization in this direction: detecting a 4-clique in a 3-uniform
hypergraph (i.e. a hypergraph where each hyper-edge is a set of three nodes). We
are not aware of any non-trivial o(n4) algorithm for this problem (even with non-
combinatorial techniques). The conjecture that O(n4−ε) time cannot be achieved
4 Fox achieved some improved dependencies with a new proof of the removal

lemma [37], however, it is not clear whether it can be implemented efficiently.
5 Note that the same cannot be said about their second algorithm [15, Theorem 2.1];

see the lower bound for pseudoregular partitions due to Lovasz and Szegedy [47]).
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has been used to prove conditional lower bounds, e.g. [46,25]. Our third result
is a log1.5 n factor shaving for this problem. The following theorem provides our
general bound and strengthens the result for listing (detection can be obtained
by setting t = 1).

Theorem 3 (Faster k-Hyperclique Listing). There is an algorithm for
listing up to t k-hypercliques in an r-uniform hypergraph in time

O

(
nk

(log n)
k−1
r−1

+ t

)

(assuming a word RAM model with word size w = Ω(log n)).

Subsequent Work. Shortly after this work, Abboud, Fischer, Kelly, Lovett,
and Meka announced a combinatorial algorithm for BMM with O( n3

2(log n)ε ) run-
ning time [4]. This implies an improvement for k-Clique as well that is stronger
than any poly-log speedup and thus improves over Corollary 1 (by using pseudo-
regularity techniques rather than divide-and-conquer). Moreover, building on our
proof of Theorem 2 the authors present a speedup for triangle listing as well.
However, our result for hypergraphs in Theorem 3 remains unbeaten.

1.2 On Combinatorial Algorithms

While a single satisfying definition of “combinatorial algorithms” remains elusive,
we believe the search for such algorithms to be of great importance and that the
research entertaining this loosely defined notion has already been invaluable.
To explain this, let us review the limitations of the Strassen-like technique that
motivate us to seek other techniques. The first two motivations in this list are
most commonly mentioned in works on the subject; however, we believe that the
latter two are no less important.

One could ask for a specific definition of a “combinatorial” algorithm satis-
fying each motivation. Indeed, each such definition would be of some interest,
and in fact, it has already been accomplished to some extent (as we discuss
below). However, satisfying one definition does not guarantee satisfying the oth-
ers; an algorithm that generalizes in one setting may not generalize in another
or may not be practical or elegant. At this point of history, in which we are
very much interested in any new technique breaking Conjectures 1 and 2 and
satisfying any of the motivations, it is natural that the community prefers to
work with the most inclusive definition (“anything but Strassen-like techniques”
or “cancellation-free”) that is inevitably loose.

1. Practical efficiency: Strassen’s algorithm, and especially its successors, are
not as efficient in practice as their asymptotic complexity suggests. This has
two reasons: (1) the hidden factors are large, and (2) it is not cache-friendly
since it frequently needs to access remote parts of the matrices. It is hoped
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that achieving comparable running times (and not just log shavings) with
combinatorial techniques will lead to gains in the real world. This concern
has motivated some of the classical works on combinatorial algorithms such
as [44,10]. A definition for this specific notion may have to be empirical, i.e.
“does it work well in practice?”

2. Elegance: The matrix multiplication algorithms may be considered inelegant
and uninterpretable since it is very hard to grasp the relationship between the
intermediate values computed throughout the execution with the very simple
problem at hand (e.g. detecting a triangle). This concern is probably at the
origin of the name “combinatorial” where one imagines algorithms that only
deal with natural combinatorial structures of the input graph such as the
neighborhoods of nodes. Formal models of computations that aim to capture
this definition have been suggested and analyzed [11,34] (strong lower bounds
were obtained). They are unfortunately not satisfying yet because they do
not capture the recent algorithms based on divide-and-conquer or regularity
partitions that are widely acknowledged as “combinatorial” in the same sense
they aim to address.

3. Generalizability: Fine-grained complexity has isolated the Triangle detection
problem as the most basic form of hundreds of problems; several of its gen-
eralizations are the subject of conjectures that form the basis of conditional
lower bounds for dozens of problems. Despite decades of efforts, Strassen-like
techniques have failed to achieve speedups for some of these generalizations,
and one may hope that a different technique breaking Conjecture 1 will also
break the corresponding conjectures (that have nothing to do with “combi-
natorial algorithms”). For example:
– An algorithm that generalizes to weighted graphs (where we ask for

the minimum weight triangle) would break the All-Pairs Shortest-Paths
Conjecture (APSP) [54]. A corresponding conjecture for k > 3 is also
popular (e.g. [9,13,14,21]).

– An algorithm that generalizes to hypergraphs (e.g. to find a 4-clique in
a hypergraph) would break the Hyper-Clique Conjecture [46,3].

– An algorithm that lets us output witnesses efficiently (e.g. to listing all
triangles) would break both the 3SUM Conjecture [49,42] and the APSP
Conjecture [55]. Similar connections exist for k > 3 [32].

– An algorithm that generalizes to the online setting (where the nodes are
revealed one at a time) would break the Online Matrix Vector Conjecture
[39,43]. Jin and Xu have recently introduced a corresponding conjecture
for k > 3 [40].

Note that a precise definition of “combinatorial” for each specific motivation
can readily be made by asking for an algorithm that refutes the problem in
parenthesis (and the other conjectures have essentially done this).

4. Being the right technique: It is plausible that Triangle detection can be solved
in O(n2+o(1)) time (in particular, if ω = 2) and that k-Clique can be solved
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in n2k/3 or nk/2 or perhaps even faster. Achieving that with the Strassen-like
technique has been tedious. One may hope that if we get a small speedup
such as n2.9 with the right technique, we would quickly be able to optimize
it and reach the final goal of O(n2). Anecdotally, one could say that such
a discovery was recently made for the All-Pairs Max-Flow problem where
a 60-year-old bound was broken by an O(n2.8334) combinatorial algorithm
[7] (for unweighted graphs) and a complete resolution with an n2+o(1) time
bound quickly followed [6] (even for weighted graphs).

We emphasize that a “combinatorial algorithm” is expected to satisfy at least
one of these motivations, but not all of them. Indeed, some of the contributions
of this work is to show that some of the combinatorial techniques do generalize to
some settings. Specifically, Theorem 3 shows that the Four-Russians technique
applies in hyper-graphs, and Theorem 2 shows that regularity partitions can be
used to give a listing algorithm.

On Combinatorial Lower Bounds. Finally, we would like to remark on the
value of the related work on “combinatorial conditional lower bounds” that are
based on Conjectures 1 and 2, proved by designing “combinatorial reductions”.

Imagine you are an algorithm researcher working on a problem A (e.g. RNA
Folding). You wake up in the morning and try technique T1 on A. It does not
work, so you try T2, and then T3 and so on up to T100 where 100 represents
the number of relevant techniques. Each time, you may spend days or weeks
trying the technique on A, searching for a way to fit into the right framework.
Perhaps you hire new students to work on this fruitlessly each time. Now, suppose
someone comes and tells you, because of a reduction from problem B (k-Clique)
to problem A, that it is useless to try any of T1, ..., T100 on A, because all the
experts have already tried them on B, without any success, and your problem is
at least as hard. The next morning, you wake up knowing that your choices are
either (1) solve A with fast matrix multiplication (the only technique found to
be effective against B), or (2) invent new techniques but try them on k-Clique
first (since its bare-bones nature compared to A makes it a better test-bed).

Success stories of such lower bounds leading to the discovery of breakthroughs
exploiting fast matrix multiplication include the first n3−ε algorithm for RNA
Folding [22], the first nk−ε algorithm for minimum k-cut [45], and new techniques
in pattern matching [18].

This work contributes to this line of work by providing an algorithmic attack
on Conjecture 2.

1.3 Outline

We start with some preliminaries in Section 2. In Section 3 we provide our im-
proved combinatorial k-Clique algorithm. In Sections 4 and 5 we provide the
high-level ideas of our improvements for Triangle Listing and k-Hyperclique De-
tection; due to space constraints we are forced to defer the technical details to
the the full paper.
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2 Preliminaries

Let [n] := {1, . . . , n}. We write Õ(n) = n(log n)O(1) to suppress polylogarithmic
factors and use the non-standard notation Õ̃(n) = n(log log n)O(1).

Throughout we consider undirected, unweighted graphs. In the k-clique prob-
lem, we are given a k-partite graph (V1, . . . , Vk, E) and the goal is to determine
whether there exist k vertices v1 ∈ V1, . . . , vk ∈ Vk such that there is an edge
(vi, vj) ∈ E for every pair i ̸= j. Note that the assumption that the input
graphs are k-partite is without loss of generality, and can be achieved by a triv-
ial transformation of any non-k-partite graph G = (V,E): We create k copies
V1, . . . , Vk of the vertex set and for every (u, v) ∈ E we add the edges (ui, vj)
for every i ̸= j. Another typical relaxation is that we only design an algorithm
that detect the presence of k-cliques (without actually returning one). It is easy
to transform a detection algorithm into a finding algorithm using binary search
without asymptotic overhead.6

We additionally define the following notation for a k-partite graph as before:
For a vertex v, let Ni(v) = {u ∈ Vi : (v, u) ∈ E} denote the neighbourhood of
v in Vi and di(v) = |Ni(v)| denote the degree of v in Vi. Moreover, for a vertex
set V ′ ⊆ V we let G[V ′] denote the subgraph of G induced by the vertex set
V ′. Throughout we further let n = |V1| + · · · + |Vk| denote the total number of
vertices in the graph.

An r-uniform hypergraph is a pair (V,E), where V is a vertex set and E ⊆
(
V
r

)
is a set of hyperedges. In the r-uniform k-hyperclique problem we need to de-
cide whether in a k-partite hypergraph (V1, . . . , Vk, E) there are vertices v1 ∈
V1, . . . , vk ∈ Vk such that all hyperedges on {v1, . . . , vk} are present. Similarly,
the assumption that the hypergraph is a k-partite is without loss of generality.

We are using the standard word RAM model with word size w ∈ Θ log(n).
In this model a random-access machine can perform arithmetic and bitwise op-
erations on w-bit words in constant time.

2.1 Overview of Previous Combinatorial Algorithms

The Four-Russians Method We start with presenting the most basic form
of the Four-Russians method [12], and then move on to a specific variant which
we will use throughout this paper. In the Four-Russians method, we start by
precomputing the solutions for triangle detection on tiny instances. In particular,
we precompute and store the solution to triangle detection on every tri-partite
graph with vertex sets of size s = 0.01

√
log(n), say, and store the answers in

6 More specifically, any detection algorithm can be transformed into a finding algo-
rithm with constant running time overhead by using binary search as follows: Ar-
bitrarily split each of the k vertex parts into two halves. Then for each subgraph
induced by one of the 2k combination of halves whether it contains a k-clique. If
the detection algorithm succeeds on some combination, we continue on this combi-
nation recursively. For any natural running time the recursive overhead becomes a
geometric sum and thus is constant.
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a lookup table; note that there are only n0.02 such graphs. Then, we use this
precomputation to accelerate triangle detection on the input graph: We partition
every vertex set in the input graph into blocks of size s. Then, for each triplet
of blocks we query the lookup table with the subgraph induced by the triplet to
obtain an answer to whether there exists a triangle among these blocks. Assuming
a word-RAM model with w ≥ Ω(log n) (as is standard), and some additional
preprocessing which allows to determine subgraphs on combinations of blocks
efficiently, the running time is dominated by the number of queries to the lookup
table which is O( n3

(logn)1.5 ).
This basic idea can be slightly improved: Given a tri-partite graph G =

((V1, V2, V3), E), we begin by preprocessing the graph: We divide V2 and V3 into
blocks of size ε · log n for some small ε > 0. Now, for every pair (S, S′) where
S is a subset of a block in V2 and S′ is a subset of a block in V3, we check
whether there exists an edge between the two sets and store the answer in a
lookup table. Again this preprocessing is affordable as each block has O(nε)
subsets and the number of blocks in each vertex set is at most O( n

logn ). The
total number of pairs (S, S′) is thus O( n2+2ε

(logn)2 ). To detect a triangle, we can
now, for each v ∈ V1, partition the neighborhoods of v in V2 and V3 into subsets
of blocks, and test whether these subsets are connected by an edge using one
query to the lookup table. In the positive case we have detected a triangle. For
each vertex we perform O( n2

(logn)2 ) queries and therefore the total running time
is O( n3

(logn)2 ). Interestingly, this technique can also be used to list all triangles
in the graph: Instead of storing a flag in the lookup table, we explicitly store a
list of all edges between the sets S and S′.

Vassilevska [52] demonstrated how the Four-Russians technique can be used
for k-clique in a similar fashion: Partition V2, . . . , Vk into blocks and for every
(k − 1)-tuple of blocks we precompute whether there is a (k − 1)-clique among
these blocks. This results in time O( nk

(logn)k−1 ) for k-clique detection.

Other Approaches A line of work published in recent years obtained im-
provements beyond the Four-Russians bound. In the first such result, Bansal
and Williams [15] combined regularity lemmas with the Four-Russians method.
The basic intuition is that when looking at large (and therefore time-consuming)
sets of neighbors of some vertex that lie within dense and random-like sets, there
must exist an edge between the sets which reveals a triangle. They combined this
intuition with the important observation that the Four-Russians method can be
altered in a way that compounds sparseness in the graph (see Lemma 1), and
were able to achieve a running time of Õ̃( n3

(log(n))2.25 ).
Chan [28] improved this further using an entirely different approach. His main

observation was that if there is a high-degree node, we can check its neighbors for
the existence of an edge (such an edge exists if and only if the vertex is involved
in a triangle), and recurse smartly on significantly smaller subproblems. This
divide-and-conquer scheme effectively reduces Triangle Detection in dense graphs
to Triangle Detection in sparse graphs, and leads to a running time of Õ̃( n3

(logn)3 ).
Yu [56] later refined this result and achieved a running time of Õ̃( n3

(log(n))4 ).
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3 Combinatorial Log-Shaves for k-Clique

In this section we provide our improved algorithmic reduction from k-clique to
triangle detection (see Theorem 1). In our core we follow a divide-and-conquer
approach for k-clique reminiscent to Chan’s algorithm for triangle detection [28]
with a simple analysis. We start with the following observation:

Observation 1 (Trivial Reduction from k-Clique to (k−1)-Clique).
Let k ≥ 4, let f(n) be a nondecreasing function, and assume that there is a
combinatorial (k− 1)-clique detection algorithm running in time O(nk−1/f(n)).
Then there is a combinatorial k-clique detection algorithm running in time

O

(∑
v∈V1

d2(v) · · · · · dk(v)
f(min{d2(v), . . . , dk(v)})

)
.

Proof. The algorithm is simple: For each vertex v ∈ V1, we construct the sub-
graph Gv = G[N2(v) ∪ · · · ∪ Nk(v)] consisting of all neighbors of v and test
whether Gv contains a (k − 1)-clique. Let nv = d2(v) + · · · + dk(v) denote the
number of vertices in Gv. Our intention is to use the efficient (k − 1)-clique
algorithm—however, simply running the algorithm in time O(nk

v/f(nv)) is pos-
sibly too slow. Instead, we partition each of the k − 1 vertex parts in Gv into
blocks of size dv := min{d2(v), . . . , dk(v)} (plus one final block of smaller size,
respectively). Then, for each combination of k − 1 blocks, we use the efficient
(k− 1)-clique detection algorithm. It is clear that the algorithm is correct, since
we exhaustively test every tuple (v1, v2, . . . , vk). For the running time, note that
testing whether Gv contains a k-clique takes time⌈

d2(v)

dv

⌉
· · · · ·

⌈
dk(v)

dv

⌉
·O
(
(dv)

k−1

f(dv)

)
= O

(
d2(v) · · · · · dk(v)

f(min{d2(v), . . . , dk(v)})

)
,

and thus the total running time is indeed

O

(∑
v∈V1

d2(v) · · · · · dk(v)
f(min{d2(v), . . . , dk(v)})

)

(possibly after preprocessing the graph in time O(n2) to allow for constant-time
edge queries. Note that this also covers the cost of constructing Gv for every
v ∈ V1).

Before moving to the formal proof of Theorem 1, let us give a simplified high-
level description of this algorithmic reduction in the specific case of 4-clique. For a
given 4-partite graph (V1, V2, V3, V4), the core idea is the following: If the degrees
in V1 tend to be small, i.e. if for every v ∈ V1 we have d2(v)·d3(v)·d4(v) ≤ α·|V2|·
|V3|·|V4| for some fraction α ≈ 1

logn , then we can apply Observation 1. Otherwise,
there is a heavy vertex v ∈ V1 with d2(v) ·d3(v) ·d4(v) > α · |V2| · |V3| · |V4|. In this
case, we will check every triplet of the form (u,w, z) ∈ N2(v) ×N3(v) ×N4(v).
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If any of these triplets form a triangle, we have detected a 4-clique. Otherwise,
we have learned that no triplet in N2(v) × N3(v) × N4(v) is part of a 4-clique.
We will therefore recurse in such a way that ensures we never test these triplets
again and thereby make sufficient progress.

Proof. Assume that there is a combinatorial triangle detection algorithm which
runs in time O(n3(log n)a(log log n)b). We prove the claim by induction on k.
The base case (k = 3) is immediate by the assumption there exists a triangle
detection algorithm running in time O(n3(log n)a(log log n)b).

For the inductive step, consider the following recursive algorithm to detect a
k-clique in a given k-partite graph (V1, . . . , Vk, E). Let D and α be parameters
to be determined later and let d be initialized to 0.

KCliqueRec(G = (V1, . . . , Vk, E), d):
1. If d = D, meaning depth D in the recursion is reached, perform exhaustive

search. Return YES if a k-clique was detected, otherwise NO.
2. Test whether there is some v ∈ V1 with d2(v) · . . . · dk(v) ≥ α · |V2| · . . . · |Vk|.

If such a vertex exists:
a. Test whether the subgraph Gv induced by N2(v) ∪ · · · ∪Nk(v) contains

a (k − 1)-clique by exhaustive search. If it does return YES since this
means we’ve found a k-clique involving v.

b. For 2 ≤ i ≤ k, partition Vi into Vi,0 = Vi \Ni(v) and Vi,1 = Vi ∩Ni(v).
Recursively solve the 2k−1 − 1 subproblems on (V1, V2,i2 , . . . , Vk,ik) for
(i2, . . . , ik) ∈ {0, 1}k−1 \ {1k−1}, while incrementing the depth.
In other words, for each (i2, . . . , ik) ∈ {0, 1}k−1 \ {1k−1}, call KCli-
queRec(G[V1 ∪ V2,i2 ∪ · · · ∪ Vk,ik ], d+ 1).

c. If any of the calls returned YES, return YES. Otherwise, return NO.
3. Solve the instance using Observation 1.

Correctness. As soon as the algorithm reaches recursion depth D, the algorithm
will correctly detect a k-clique in step 1. In earlier levels of the recursion, the algo-
rithm first attempts to find a vertex v with d2(v) · . . . · dk(v) ≥ α · |V2| · . . . · |Vk|
in step 2. If this succeeds, we test whether v is involved in a k-clique (and
terminate in this case). Otherwise, we recurse on (V1, V2,i2 , . . . , Vk,ik) for all
combinations (i2, . . . , ik) ∈ {0, 1}k−1 \ {1k−1}. Note that we can indeed ignore
the instance (V1, V2,1, . . . , Vk,1) knowing that (V2,1, . . . , Vk,1) does not contain a
(k − 1)-clique. If the condition in step 2 is not satisfied, we instead correctly
solve the instance by means of Observation 1 (which reduces the problem to an
instance of (k − 1)-clique).

Running Time. Imagine a recursion tree in which every node corresponds to
an execution of the algorithm; the root corresponds to the initial call and child
nodes correspond to recursive calls. Thus, every node in the tree is either a leaf
(indicating that this execution does not spawn recursive calls), or an internal
node with fan-out exactly 2k−1 − 1. The time at a node is the running time of
the respective call of the algorithm (ignoring the cost of further recursive calls).
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In other words, the time at a node is the amount of local work performed in the
corresponding call. To bound the total running time of the algorithm, we bound
the total time across all nodes in the recursion tree.

We analyze the contributions of all steps individually. Let us introduce some
notation first: At a node x in the recursion tree, let (V x

1 , . . . , V x
k ) denote the

instance associated to the respective invocation. Similarly write dx2(v), . . . , dxk(v).

Cost of Step 1. Note that at any node x at depth D in the recursion tree, the
time is O(|V x

1 | · . . . · |V x
k |) since we solve the instance by exhaustive search. Next,

observe that for any internal node x in the recursion tree, we have that

|V x
1 | · . . . · |V x

k | = |V x
1 | ·

∑
i2,...,ik∈{0,1}k−1

|V x
2,i2 | · . . . · |V

x
k,ik

|

≥ |V x
1 | · dx2(v) · . . . · dxk(v) +

∑
y child of x

|V y
1 | · . . . · |V

y
k |

≥ α · |V x
1 | · . . . · |V x

k |+
∑

y child of x

|V y
1 | · . . . · |V

y
k |,

and thus∑
y child of x

|V y
1 | · . . . · |V

y
k | ≤ (1− α) · |V x

1 | · . . . · |V x
k |.

It follows by induction that at any depth d ≤ D in the recursion tree, we have
that ∑

x at depth d

|V x
1 | · . . . · |V x

k | ≤ (1− α)dnk.

In particular, the total time of all nodes at depth D is bounded by O((1−α)Dnk).

Cost of Step 2. Note that the number of nodes in our recursion tree is at most 2kD
since the recursion tree has degree ≤ 2k and the recursion depth is capped at D.
At each node, the time of step 2a is bounded by O(nk−1) and the cost of step 2b
is bounded by O(n2). Therefore, the total time of step 2 across all nodes is
bounded by O(2kDnk−1).

Cost of Step 3. By induction we have obtained a (k − 1)-clique algorithm in
time O(nk−1/f(n)), where f(n) = (log n)−a+k−4(log log n)−b−(k−4). Therefore,
by Observation 1 the total time of step 3 across all nodes x in the recursion tree
is

O

∑
x leaf

∑
v∈V x

1

dx2(v) · . . . · dxk(v)
f(min{dx2(v), . . . , dxk(v)})

.

To bound this quantity, we distinguish two subcases: A pair (x, v) (where x is a
leaf in the recursion tree and v ∈ V u

1 ) is called relevant if dx2(v), . . . , dxk(v) ≥
√
n
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(where n is the initial number of nodes). On the one hand, it is easy to bound
the total cost of all irrelevant pairs by

O

 ∑
(x, v) irrelevant

dx2(v) · . . . · dxk(v)
f(min{dx2(v), . . . , dxk(v)})

 ≤ O(2kDnk−1/2),

since there are at most 2kD nodes in the recursion tree. On the other hand,
for any relevant pair (x, v), we have min{dx2(v), . . . , dxk(v)} ≥

√
n. Moreover,

since we reach step 3 of the algorithm we further know that dx2(v) · . . . · dxk(v) ≤
α|V x

2 | · . . . · |V x
k | (as otherwise the condition in step 2 had triggered). It follows

that

O

 ∑
(x, v) relevant

dx2(v) · . . . · dxk(v)
f(min{dx2(v), . . . , dxk(v)})


≤ O

 ∑
(x, v) relevant

α|V x
2 | · . . . · |V x

k |
f(
√
n)


≤ O

(
nk · α

f(
√
n)

)
.

Choosing the Parameters. Summing over all contributions computed before, the
total running time is bounded by

O

(
nk · (1− α)D + nk · α

f(
√
n)

+ nk−1/2 · 2kD
)
.

We pick D = log n/(4k) such that the latter term becomes nk−1/4. Next, we
pick α = log((−a+ k) log n)/D = Θ((log n)−1 log log n) such that the first term
becomes

nk · (1− α)D ≤ nk · 2−αD ≤ nk(log n)a−k.

All in all, the total running time is dominated by the second term

nk · α

f(
√
n)

≤ O(nk · α · (log n)a−(k−4)(log log n)b+k−4)

≤ O(nk(log n)a−(k−3)(log log n)b+k−3),

which is as claimed.

4 Combinatorial Log-Shaves for Triangle Listing by Weak
Regularity

In this section we reformulate and reanalyze Bansal and Williams’ BMM algo-
rithm [15] to support triangle listing. Specifically, they provide a combinatorial
algorithm for Boolean matrix multiplication in time Õ̃( n3

(logn)2.25 ), and our adap-
tation is as follows:
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Theorem 2 (Faster Triangle Listing). There is a randomized combinatorial
algorithm that lists up to t triangles in a given graph in time Õ̃( n3

(logn)2.25 + t),
and succeeds with probability 1− n−100.

Note that we cannot achieve this running time by applying state-of-the-
art black-box reductions from triangle listing to Boolean matrix multiplication
([54]). Before we can present the algorithm we will need to define the notion
of pseudoregular partitions in graphs and present a lemma by Frieze and Kan-
nan [38] known as the weak regularity lemma.

4.1 Pseudoregularity

Let G = (V,E) be a graph and let S, T ⊆ V be disjoint subsets of vertices. We
define the density of (S, T ) as

δ(S, T ) =
e(S, T )

|S| · |T |
,

where

e(S, T ) = |{(u, v) ∈ E : u ∈ S, v ∈ T}|.

Fix a partition P = (V1, . . . , Vk) of the vertices V ; we call the parts V1, . . . , Vk the
pieces of P. For the sake convenience, we often employ the following shorthand
notation: For a subset S ⊆ V and i ∈ [k], write Si := S ∩ Vi. Moreover, we set
δi,j := δ(Vi, Vj). The partition P is called ε-pseudoregular if for every pair of
disjoint subsets S, T ⊆ V we have∣∣∣∣∣∣e(S, T )−

∑
i,j∈[k]

δi,j · |Si| · |Tj |

∣∣∣∣∣∣ ≤ εn2.

We further call the partition P equitable if the sizes of the vertex parts differ by
at most 1 (i.e., | |Vi| − |Vj | | ≤ 1 for all i, j ∈ [k]).

We can think about pseudoregularity in the following way: We compare the
density between the pieces to the density of subsets of these pieces. In a random
graph these densities are expected to be equal. If this was indeed the case, then
e(S, T ) =

∑
i,j∈[k] δi,j |Si| · |Tj |. Pseudoregularity requires that these quantities

are only approximately equal, allowing an error term of εn2.
The following weak regularity lemma by Frieze and Kannan [38] shows that

we can always find a pseudoregular partition with relatively few parts, and that
such a partition can be computed efficiently:

Theorem 4 ([38, Theorem 2 and Section 5.1]). Let ε, δ > 0. Given an
n-vertex graph, we can construct a ε-pseudoregular partition with at most 2O(1/ε)

pieces in time 2O(1/ε2) · n2 · ε−2 · δ−3 by a randomized algorithm that succeeds
with probability at least 1− δ.
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4.2 Triangle Listing

We now turn to the triangle listing algorithm à la Bansal-Williams [15], starting
with an informal overview. For a given tripartite graph G = (V1, V2, V3, E), we
first compute an ε-pseudoregular partition of the bipartite graph G[V2 ∪ V3].
We then distinguish between two types of pieces—pieces with low density (less
than

√
ε) and pieces with high density. Based on this we divide the instance

into two triangle listing instances—GL which only includes edges connecting
low density parts between V2 and V3 in G, and its complement GH consisting of
edges connecting the high-density parts between V2 and V3. In the former case
we can exploit the sparsity (by construction the total number of edges GL is
at most

√
εn2). In the latter case, due to the pseudoregularity, there must be

many triangles in GH . We can thus charge the extra cost of computing with GH

towards the output-size.
The key ingredient is the following Lemma 1 that applies the Four-Russians

method to sparse graphs. Recall that the standard Four-Russians technique
we presented in the introduction leads to a triangle listing algorithm in time
O( n3

log2(n)
+ t).

Lemma 1 (Sparse Four-Russians). There is an algorithm which lists up to t
triangles in a given graph (V1, V2, V3, E) (with n = min{|V1|, |V2|, |V3|}) in time

Õ̃

(
|V1| · |V2| · |V3|

(log n)100
+
∑
v∈V1

d2(v) · d3(v)
(log n)2

+ t

)
.

Proof. The idea is similar to the standard Four-Russians method: Let s,∆ be pa-
rameters to be determined. We partition V2 into g = ⌈|V2|/s⌉ blocks V2,1, . . . , V2,g

of size at most s, and similarly partition V3 into h = ⌈|V3|/s⌉ blocks V3,1, . . . , V3,h.
Then consider the following three steps:

1. We precompute, for each pair i ∈ [g], j ∈ [h] and for each pair of sub-
sets S, T ⊆ [s] with size at most |S|, |T | ≤ ∆, the list of all edges in the
induced graph on the vertex sets V2,i ∩ S and V3,j ∩ T . Here, to represent
a set S ⊆ [s] of size ∆ we fix a bit-representation consisting of at most
⌈log

(
s
∆

)
⌉ bits. We will later pick s and ∆ in such a way that

(
s
∆

)
≤ n0.1;

note that any such set S can be represented by O(1) machine words.

2. For each vertex v ∈ V1, we write N2,i = N2(v)∩V2,i and N3,j = N3(v) ∩ V3,j .
Let us further set d2,i = |N2,i| and d3,j = |N3,j |. We arbitrarily partition
the set N2,i(v) into ⌈d2,i

∆ ⌉ subsets of size at most ∆; denote this partition
by Si(v). We also compute a partition Tj(v) of N3,j(v) with analogous proper-
ties. Here we represent each set S ∈ S(v), T ∈ T (v) in its bit-representation.

3. For each v ∈ V1, for each i ∈ [g], j ∈ [h], and for each S ∈ Si(v), T ∈ Tj(v),
list all edges (v2, v3) ∈ S×T (as precomputed in the first step). For each such
edge, we report (v, v2, v3) as a triangle. (If at some point we have listed t
triangles, we stop the algorithm.)
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The correctness is straightforward: For each triangle (v, v2, v3), we eventually
test the indices i ∈ [g], j ∈ [h] and sets S ∈ Si(v), T ∈ Tj(v) where v2 ∈ S and
v3 ∈ T .

To analyze the running time, we choose the parameters s = ⌊(log n)100⌋ and
∆ = ⌊ logn

1000 log logn⌋. Note that for this choice we indeed have(
s

∆

)
≤ s∆ = (log n)

100 log n
1000 log log n = n0.1.

Moreover, the precomputation produces a table of size O(g2 ·
(
s
∆

)
2) = O(g2n0.2)

and can be performed in time O(g2 ·
(
s
∆

)
2 · s2) = O(n2.2). The second step takes

time O(n2s) = Õ(n2). Finally, in the third step we spend time

O

∑
v∈V1

∑
i∈[g]

∑
j∈[h]

|Si(v)| · |Tj(v)|+ t


= O

∑
v∈V1

∑
i∈[g]

⌈
d2,i(v)

∆

⌉ ·

∑
j∈[h]

⌈
d3,j(v)

∆

⌉+ t


= O

(
|V1| · |V2| · h+ |V1| · g · |V3|+

∑
v∈V1

d2(v) · d3(v)
∆2

+ t

)

= O

(
|V1| · |V2| · |V3|

(log n)100
+
∑
v∈V1

d2(v) · d3(v)
∆2

+ t

)
,

which is as claimed.

Corollary 2 (Sparse Four-Russians). There is an algorithm which lists up
to t triangles in a given graph (V1, V2, V3, E) (with n = min{|V1|, |V2|, |V3|}) in
time

Õ̃

(
|V1| · |V2| · |V3|

(log n)100
+

n · e(V2, V3)

(log n)2
+ t

)
.

Proof. Apply the previous lemma to the graph (V2, V1, V3, E). Since we can
bound∑

v∈V2

d1(v) · d3(v)
(log n)2

≤ ne(V2, V3)

(log n)2
,

the claim follows.

Proof of Theorem 2. As a first step, we show how to list all triangles in the given
graph in time Õ̃( n3

(logn)2.25 + tG), where tG is the total number of triangles in G.
We will later remove this restriction.

Let U = V2 ∪ V3 and consider the bipartite graph G[U ]. Let ε > 0 be a pa-
rameter to be determined later. We apply Theorem 4 to G[U ] with parameters ε
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and δ = n−0.1 to compute an ε-pseudoregular partition P = (U1, . . . , Uk) into at
most k = 2O(1/ε2) pieces. Then, for each pair i, j ∈ [k], construct the tripartite
induced subgraph on V1, V2,i := V2 ∩ Ui and V3,j := V3 ∩ Uj , and use Lemma 1
or Corollary 2 to list all triangles in that graph (whichever is faster).

The correctness is immediate (and we will analyze the success probability
later). It remains to argue that this algorithm runs in the claimed time budget.
We need some notation: For a node v ∈ V1 and i ∈ [k], let N2,i(v) = N1(v) ∩ Ui

and let d2,i = |N2,i(v)| (and similarly for N3,i, d3,i). Moreover, as before, let
δi,j := δ(Ui, Uj) denote the density between the pieces Ui and Uj . Let us ignore
the preprocessing for now. Then, writing

Ti,j = min

{∑
v∈V1

d2,i(v) · d3,j(v)
(log n)2

,
n · e(V2,i, V3,j)

(log n)2

}
,

the running time is bounded by

Õ̃

 ∑
i,j∈[k]

(
n2 +

|V1| · |V2,i| · |V3,j |
(log n)100

+ Ti,j

)
+ tG


= Õ̃

k2n2 +
n3

(log n)100
+
∑

i,j∈[k]

Ti,j + tG

.

By setting ε = Θ( 1√
logn

) for an appropriately small hidden constant, this be-
comes

= Õ̃

n2.5 +
n3

(log n)100
+
∑

i,j∈[k]

Ti,j + tG

.

It remains to bound the sum
∑

i,j Ti,j . To this end we distinguish two cases: On
the one hand, we have that∑

i,j∈[k]
δi,j≤

√
ε

Ti,j ≤
∑

i,j∈[k]
δi,j≤

√
ε

n · e(V2,i, V3,j)

(log n)2
≤

∑
i,j∈[k]
δi,j≤

√
ε

√
εn · |V2,i| · |V3,j |

(log n)2
≤

√
εn3

(log n)2
.

On the other hand,∑
i,j∈[k]
δi,j>

√
ε

Ti,j ≤
∑

i,j∈[k]
δi,j>

√
ε

∑
v∈V1

d2,i(v) · d3,j(v)
(log n)2

≤ 1√
ε

∑
i,j∈[k]

δi,j
∑
v∈V1

d2,i(v) · d3,j(v)
(log n)2

≤ 1√
ε

∑
v∈V1

∑
i,j∈[k]

δi,j · d2,i(v) · d3,j(v)
(log n)2
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This is where finally the pseudoregularity becomes useful. Let v ∈ V1 be arbi-
trary, let S = N2(v) and T = N3(v) (and write Si = N2,i(v) and Tj = N3,j(v) as
before). By the ε-pseudoregularity we have

∑
i,j∈[k] δi,j |Si| · |Ti| ≤ e(S, T )+ εn2,

and thus

≤ 1√
ε

∑
v∈V1

εn2 + e(N2(v), N3(v))

(log n)2

Since clearly
∑

v∈V1
e(N2(v), N3(v)) = tG, we finally obtain:

≤
√
εn3

(log n)2
+

tG√
ε(log n)2

.

All in all, the remaining term in the running time can indeed be bounded by∑
i,j∈[k]

Ti,j = O

(
εn3

(log n)2
+

tG√
ε(log n)2

)
= O

(
n3

(log n)2.25
+ tG

)
.

Finally, recall that the preprocessing (to compute the pseudoregular partition)
runs in time 2O(1/ε2) · n2 · ε−2 · δ−3 = 2O(1/ε2) · Õ(n2.3) (Theorem 4) which by
our choice of ε becomes O(n2.5), say.

Concerning the success probability, note that the only source of error in the
algorithm is the computation of the pseudoregular partition which fails with
probability at most δ = n−0.1. But even if computing this partition fails, we
will nevertheless correctly report all triangles, and only the running time of our
algorithm is affected. We can thus run our algorithm 1000 times in parallel and
stop as soon as the first copy reports an answer. The probability that all calls
exceed their time budget is at most (n−0.1)1000 = n−100 as claimed.

It remains to remove the assumption that we list all triangles, and instead
only list triangles up to a given threshold t. To this end, we apply the following
preprocessing to a given tripartite graph (V1, V2, V3, E): Split V1 into g := Θ(

√
n)

blocks V1,1, . . . , V1,g of size Θ(
√
n), say, and similarly for V2 and V3. For each

triple i, j, k ∈ [g] we list all triangles in the induced graph Gi,j,k := G[V1,i∪V2,j∪
V3,k] in time

Õ̃

(
n3/2

(log n)2.25
+ tGi,j,k

)
We stop as soon as we have listed t triangles in total. Note that the total running
time is thus bounded by Õ̃( n3

(logn)2.25 + t) plus Õ̃(maxi,j,k tGi,j,k
) = Õ̃(n3/2) for

listing the surplus triangles. This overhead is negligible and the running time is
as claimed.

Note that from Theorem 2 it easily follows that we can list all triangles in
time O(n3/(log n)2.25+tG), even in a black-box way. We simply apply Theorem 2
with t = n3/(log n)2.25 and list up to t triangles. As long as the graph contains
at least t triangles we double t and repeat. The total running time is a geometric
sum and thus bounded by O(n3/(log n)2.25 + tG) as claimed.
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5 Combinatorial Log-Shaves for k-Hyperclique

We first provide an intuitive description of the algorithm in the simplest case
k = 4, r = 3 (detecting a 4-clique in a 3-uniform hypergraph in faster than O(n4)
time), for complete and general specification refer to the full paper. We are given
a 4-partite 3-uniform graph G = (V1, V2, V3, V4, E) with vertex sets of size n. For
each v ∈ V1, we can define a tri-partite graph Gv = (V2, V3, V4, E

′) in which we
draw an edge between two vertices if and only if they share a hyperedge with v
in G. It is easy to check that there is a 4-hyperclique in G if and only if there
are vertices v2, v3, v4 that form a triangle in Gv and in G (meaning they are a
hyperedge in G). The naive search for such a triplet would take O(n3), and we
present an algorithm that accelerates this search:

1. Let s =
√
c log n for some small constant c > 0, and partition V2, V3 and V4

each into g = ⌈n/s⌉ blocks of size at most s. We let Vi,j denote the j’th
block in Vi.

2. For every combination j2, j3, j4 ∈ [g]:
a. Create a lookup table Tj2,j3,j4 with an entry for every possible tripar-

tite graph on the vertex sets V2,j2 , V3,j3 , V4,j4 (there are 2s
2

= nc such
graphs).

b. For every entry corresponding to a graph G′ store whether G′ has a
triangle that is a hyperedge in G.

Note that this preprocessing is fast: We construct n3

s3 tables, each consisting
of nc entries, and each entry takes O(s3) time to determine. So, the total pre-
processing time is O(n3+c). Given these tables we can now search for a 4-clique
more efficiently: For each v ∈ V1 we break Gv into triples of blocks as before,
and query Tj2,j3,j4 for the graphs Gv[V2,j2 ∪ V3,j3 ∪ V4,j4 ], for all j2, j3, j4. If one
the answers is positive we have found a hyperclique. Assuming every query is
performed in constant time, the running time is determined by the number of
queries which is

O

(
n · n

3

s3

)
= O

(
n4

(log n)1.5

)
.

All that is left now is to justify the assumption that every query is per-
formed in constant time. The main question is given v ∈ V1 and a combina-
tion of blocks V2,j2 , V3,j3 , V4,j4 , how can we determine the key corresponding
to Gv[V2,j2 , V3,j3 , V4,j4 ] in Tj2,j3,j4 in constant time? For this purpose, we de-
fine in the proof a compact representation of tripartite graphs (on vertex sets of
size s) used to index the tables Tj2,j3,j4 . This compact representation is chosen in
such a way which allows to efficiently precompute the compact representations
of all such graphs Gv[V2,j2 , V3,j3 , V4,j4 ].

Complete description. We now turn to describe the algorithm in full gener-
ality and detail. We will in fact extend it to list up to t hypercliques in output-
sensitive time (see Theorem 3). Throughout, G = (V1, . . . , Vk, E) is a k-partite



20 A. Abboud, N. Fischer, Y. Shechter

r-uniform hypergraph. For a vertex v ∈ V1, we define the adjacency subgraph
of v, denoted by Gv, to be the (k − 1)-partite (r − 1)-uniform hypergraph with
vertex sets V2, . . . , Vk which has a hyperedge {u1, . . . , ur−1} if and only there is
a hyperedge {v, u1, . . . , ur−1} ∈ E in G.

Observation 2. Let 3 ≤ r < k, and let (V1, . . . , Vk, E) be a k-partite r-uniform
hypergraph. Then, for every tuple v1 ∈ V1, . . . , vk ∈ Vk, (v1, . . . , vk) is a k-hy-
perclique in G if and only if (v2, . . . , vk) is a (k − 1)-hyperclique in Gv1 and is
also a (k − 1)-hyperclique (or a hyperedge if r = k − 1) in G.

Let us briefly reflect on this observation. To find a k-clique in a graph we
can search through the neighborhoods of each vertex for a (k − 1)-clique. The
Four-Russians method involves preprocessing the graph in order to perform this
search more efficiently. Observation 2 gives rise to an analogous process to find
k-hypercliques in hypergraphs: Searching through the induced adjacency graph
of each vertex for a (k− 1)-hyperclique that is also a clique in G. We present an
adaptation of the Four-Russians method to perform this analogous search more
efficiently.

Theorem 3 (Faster k-Hyperclique Listing). There is an algorithm for
listing up to t k-hypercliques in an r-uniform hypergraph in time

O

(
nk

(log n)
k−1
r−1

+ t

)

(assuming a word RAM model with word size w = Ω(log n)).

Proof. Let s be a parameter to be determined. As a first step, we partition the
vertex sets V2, . . . , Vk into g := ⌈n/s⌉ blocks Vi = Vi,1∪· · ·∪Vi,g of size at most s.
For j = (j2, . . . , jk) ∈ [g]k−1, we let

V j = V2,j2 ∪ · · · ∪ Vk,jk ,

meaning V j denotes some combination of blocks across the vertex sets, and we
let Gj denote the (k − 1)-partite subgraph of G induced by V j . Similarly, for
v ∈ V1, we let Gj

v denote the subgraph of Gv induced by V j . It follows from
the preceding discussion that there is a k-hyperclique in G if and only if there
is some v ∈ V1 and some j ∈ [g]k−1 such that Gj and Gj

v share a common
(k− 1)-hyperclique. To detect whether Gj and Gj

v share a common hyperclique,
we now present an efficient algorithm.

Compressed Representation. A critical feature of the Four-Russians technique is
that we need to compactly represent small graphs. Specifically, let j = (j2, . . . , jk)
and consider a (k − 1)-partite (r− 1)-regular hypergraph (V j , H) on the vertex
set V j . We will fix a description of this graph as a sequence of bits. First, partition
the hyperedges H into parts HI for every set I = {i1 < · · · < ir−1} ⊆ {2, . . . , k},
such that the part HI contains exactly the hyperedges involving the vertex
parts Vi1,ji1

, . . . , Vir−1,jir−1
. We define the compact representation of HI as the
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bit-string of length sr−1 obtained by listing (in an arbitrary but fixed order)
all tuples (vi1 , . . . , vir−1

) ∈ Vi1,ji1
× · · · × Vir−1,jir−1

, where we indicate present
edges by 1 and missing edges by 0. Finally, the compact representation of H is
defined as the concatenation of the compact representations of the parts HI (in
an arbitrary but consistent order).

Note that this compact representation has length exactly L =
(
k−1
r−1

)
· sr−1.

By choosing

s :=

(
log n

2
(
k−1
r−1

)) 1
r−1

= Θ((log n)
1

r−1 ),

the length becomes at most L ≤ 1
2 log n. In particular, we can store the compact

representation of any graph H as before in O(1) machine words.
In the next two claims we show that we can preprocess all graphs H.

Claim 1. In time O(nk−12Lsk) we can compute a data structure that, given j ∈
[g]k−1 and an (r − 1)-uniform hypergraph on V j (represented compactly), tests
in O(1) time whether there are vertices v2, . . . , vk ∈ V j such that

– (v2, . . . , vk) is a (k − 1)-hyperclique in Gj, and
– (v2, . . . , vk) is a (k − 1)-hyperclique in H.

Moreover, we can enumerate all such tuples (v2, . . . , vk) with constant delay.

Proof of Claim 1. The data structure consists of an array of length gk−1 · 2L.
Each position is associated to a pair (j,H), where j ∈ [g]k−1 and where H is
a (r − 1)-uniform hypergraph on V j (that can be represented compactly in L
bits). To fill the array, we enumerate all positions (j,H) and test by exhaustive
search whether there is a tuple (v2, . . . , vk) ∈ V j that forms a hyperclique in Gj

and in H. Each such test requires time O(sk), therefore the total running time
is indeed O(nk−12Lsk).

Each query testing whether there is a common hyperclique in Gj and H
indeed runs in constant time (implemented by one lookup operation). For the
enumeration, we separately store for each entry (j,H) in the array a list of all
common hypercliques (v2, . . . , vk) of Gj and H.

Claim 2. In time O(nk/sk−1) we can compute for all j ∈ [g]k−1 and all v ∈ V1

the graphs Gj
v in compressed representation.

Proof of Claim 2. Recall that the compact representation of Gj
v is the concatena-

tion of the compact representations of (Gj
v)I for all sets I = {i1 < . . . < ir−1} ⊆

{2, . . . , k}. Thus, in a first step we will precompute the compact representations
of (Gj

v)I . Note that this representation only depends on jI := (ji1 , . . . , jir−1)
(and not on the remaining j-indices). We can precompute all compressed repre-
sentations determined by v ∈ V1 and jI ∈ [g]r−1 in time O(n · gr−1) = O(nr).
After this precomputation, we can assemble the compressed representation of
any graph Gj

v in constant time O(
(
k−1
r−1

)
) = O(1). Therefore, the total time

is O(nr + n · gk−1 = nk/sk−1).
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Given the previous Claims 1 and 2, the proof of the theorem is almost com-
plete. We first use Claim 2 to prepare the compressed representations of all
graphs Gj

v (for v ∈ V1 and j ∈ [g]k−1). Using Claim 1 we prepare a data structure
that decide in constant time for each Gj

v whether it shares a (k− 1)-hyperclique
with Gj . Whenever this test succeeds, we enumerate all common hypercliques
(v2, . . . , vk) in Gj and Gj

v with constant delay, and report (v, v2, . . . , vk). If at
some point during the execution we have listed t k-hypercliques, we interrupt
the algorithm. As mentioned before, the correctness follows by Observation 2.
The running time is

O(nk−12Lsk) +O

(
nk

sk−1

)
+O(t) = Õ(nk−1/2) +O

(
nk

sk−1
+ t

)
= O

(
nk

(log n)
k−1
r−1

+ t

)

as claimed.

Corollary 3 (Faster k-Hyperclique Detection). There is an algorithm for
detecting k-hypercliques in r-uniform hypergraphs running in time

O

(
nk

(log n)
k−1
r−1

)

(assuming a word RAM model with word size w = Ω(log n)).

Proof. Call Theorem 3 with t = 1.
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