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Abstract. We study a variant of the searching problem where the en-
vironment consists of a known terrain and the goal is to obtain visibility
of an unknown target point on the surface of the terrain. The searcher
starts on the surface of the terrain and is allowed to fly above the terrain.
The goal is to devise a searching strategy that minimizes the competitive
ratio, that is, the worst-case ratio between the distance traveled by the
searching strategy and the minimum travel distance needed to detect the
target. For 1.5D terrains we show that any searching strategy has a com-
petitive ratio of at least

√
82 and we present a nearly-optimal searching

strategy that achieves a competitive ratio of 3
√

19/2 ≈
√
82+0.19. This

strategy extends directly to the case where the searcher has no knowledge
of the terrain beforehand. For 2.5D terrains we show that the optimal
competitive ratio depends on the maximum slope λ of the terrain, and
is hence unbounded in general. Specifically, we provide a lower bound
on the competitive ratio of Ω(

√
λ). Finally, we complement the lower

bound with a searching strategy based on the maximum slope of the
known terrain, which achieves a competitive ratio of O(

√
λ).

1 Introduction

The development of autonomous mobile systems has garnered a lot of attention
recently. With self-driving cars and autonomous path-finding robots becoming
more commonplace, the demand for efficient algorithms to govern the decision-
making of these systems has risen as well. A class of problems that naturally
arises from these developments is the class of searching problems, also known as
searching games: given an environment, move through the environment to find
a target at an unknown location. Many variants of this general problem have
been studied in literature, typically differing in the type of search environment,
the way the searcher can move through the environment, and the way the target
can be detected. In this paper we consider a variant of the problem that is
motivated by searching terrains using a flying (autonomous) drone with mounted
cameras/sensors, as for example in search-and-rescue operations. Specifically, our
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(AGA 2023), Otterlo, The Netherlands, April 7–21, 2023.
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p0

t

pt

Fig. 1. Our searching strategy starts from p0 and then follows the blue searching path.
When the searcher reaches pt, it can see the target t.

environment is defined by a height function Td : Rd → R. For d = 1 we refer
to the terrain as a 1.5D terrain, and for d = 2 we refer to the terrain as a 2.5D
terrain. We omit the dimension d from the terrain function Td when it is clear
from the context. The terrain is known to the searcher, and the searcher can fly
anywhere above the terrain. The target t is discovered if it can be seen by the
searcher along a straight line. The goal is to devise a searching strategy (that
is, a search path) that finds the (unknown) target t as quickly as possible (see
Figure 1). To the best of our knowledge, this natural variant of the searching
problem has not been studied before.

As is common for searching problems, we analyze the quality of the searching
strategy using competitive analysis. For that we consider the ratio between the
travel distance using our searching strategy and the minimum travel distance
needed to detect that target. The maximum value of this ratio over all possible
environments and all possible target locations is the competitive ratio c of the
searching strategy. The goal is to find a searching strategy that minimizes c.

Related work. Searching problems or searching games have been studied ex-
tensively in the past decades. Here, we mostly restrict ourselves to searching
problems with a geometric environment and continuous motion. One of the most
fundamental searching problems is the problem of searching on an infinite line,
where the target is detected only when the searcher passes over it on the line.
An optimal strategy for this problem was discovered by Beck and Newman [3]
and works as follows. Assuming that the distance to the target is at least one,
we first move one to the right from the starting point. Next, we move back to
the starting point and then move two to the left. We then repeat this process,
alternating between moving to the right and left of the starting point, every
time doubling the distance from the starting point. This searching strategy has
a competitive ratio of 9, which is optimal for this problem.

In subsequent work, researchers have studied searching problems for many
other different environments, including lines and grids [1], line arrangements [8],
and graphs [6,7]. Other variants include searching on a line when an upper bound
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on the distance to t is known [5, 15], when turns contribute to the cost of the
solution [10], or when there are multiple searchers [2].

In settings where the environment is 2-dimensional (or higher), it is not pos-
sible to visit every point in the environment, and hence we need to consider
different ways of detecting the target. In these settings, the target is often con-
sidered detected if it can be seen directly from the searcher’s position along a
straight, unobstructed line. One example is the problem of finding a target point
t inside a simple polygon P with n vertices [21]. For this problem the optimal
competitive ratio is unbounded, as it necessarily depends on n [22, 25]. As a
result, researchers have explored this searching problem for special sub-classes
of polygons where a constant competitive ratio can be achieved. A polygon P is
considered a street if there exist two vertices s and t on its border such that the
two boundary chains leading from s to t are mutually weakly visible. Searching
for an unknown point in a street can be done with a competitive ratio of

√
2,

which is optimal [18, 20]. There is a large body of further work on searching
problems in variants of streets [9,23,26], star-shaped polygons [17,24], or among
obstacles [4,19]. For a comprehensive overview of these variants, see [13]. Specif-
ically, López-Ortiz and Schuierer [24] obtain a competitive ratio of 11.51 for
star-shaped polygons; note that 1.5D terrains are a special type of unbounded
star-shaped polygons.

Other problems strongly related to searching problems are the exploration
problems, for which the goal is to move through the interior of an unknown
environment to gain visibility of its entire interior. Here, the competitive ratio
relates the length of the searching strategy to the shortest watchman tour. An
unknown simple polygon can be fully explored with competitive ratio 26.5 [16].
For polygons with holes, the competitive ratio is dependent on the number of
holes [11,12], whereas in a rectilinear polygon without holes a competitive ratio
as low as 3/2 can be achieved [14]. Complementary to this problem is the explo-
ration of the outer boundary of a simple polygon, where a 23.78 or 26.5 compet-
itive ratio can be achieved for a convex or concave polygon, respectively [27].

Contributions. Given a starting position p0 on the surface of the terrain (we
assume without loss of generality that p0 is at the origin and that Td(p0) = 0),
the goal is to devise an efficient searching strategy to find an unknown target
point t on the surface of the terrain, where the searcher can detect t if it is visible
from the searcher’s position along a straight unobstructed line (see Figure 1). In
our problem the searcher is not restricted to the surface of the terrain, but it is
allowed to move to any position on or above the terrain.

In Section 2 we consider the problem for 1.5D terrains. We first prove that
any searching strategy for this problem must have a competitive ratio of at
least

√
82. We then present a searching strategy with a competitive ratio of

3
√
19/2 ≈

√
82 + 0.19. Our searching strategy is a combination of the classic

searching strategy on an infinite line with additional vertical movement.

In Section 3 we consider the problem for 2.5D terrains. Here we show that no
searching strategy can achieve a bounded competitive ratio, as the competitive
ratio necessarily depends on the maximum slope, or Lipschitz constant, λ of the
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terrain function. Specifically, we show that the competitive ratio of any searching
strategy for this problem is at least Ω(

√
λ). We then present a novel searching

strategy that achieves a competitive ratio of O(
√
λ), which is thus asymptotically

optimal in terms of λ.
In our searching problems we assume that the terrain Td is known to the

searcher. In Section 4 we conclude that our strategy for a 1.5D terrain is directly
applicable if this is not the case, and discuss to what degree the results for the
2.5D case extend as well.

2 Competitive searching on 1.5D terrains

In this section we consider our searching problem on a 1.5D terrain, defined by
the height function T1. For 1.5D terrains, the visibility region Vis(t) of a target
t can be defined as the set of all points q for which the line segment tq does
not properly intersect the terrain. That is, the region that contains all points
that can see t. Since we can assume that p0 does not see t, there is a half-line
originating from t that needs to be crossed to enter Vis(t) (see Figure 1). We
call this half-line a visibility ray. Thus, the goal of any searching strategy on
1.5D terrain is to enter Vis(t) by crossing a visibility ray r originating at the
target point t. We first establish a lower bound on the competitive ratio of any
searching strategy.

Theorem 1. The competitive ratio for searching on 1.5D terrains is at least
√
82.

Proof. Consider a terrain with pits at integer x-coordinates that have infinite
slope, and thus cast (near-)vertical visibility rays. Furthermore, there is a rect-
angular mountain infinitely far away casting a horizontal visibility ray at some
height h (see Figure 2). Because of the lower bound of 9 on the competitive ratio
for searching on a line [3], there must be a pit at distance d such that the distance
covered by the optimal strategy for searching on a line is 9d. We set h = d.

Now consider a search path P for this terrain. If P does not reach height h
after covering a horizontal distance of 9d, then P travels a distance of more than√
81d2 + h2 =

√
82d before reaching the horizontal ray at height h, resulting in

a competitive ratio of more than
√
82. Otherwise, P travels a distance of at least√

81d2 + h2 =
√
82d before reaching the pit at distance d. Hence the competitive

ratio of P is at least
√
82.

p0

Fig. 2. The lower bound construction for the 1.5D case.
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Searching strategy. Our strategy is based on the classic searching strategy on
an infinite line with additional vertical movement. Specifically, we construct a
projected path P ∗ that acts as a guide for the actual searching path P . In the
description of our strategy we make use of infinitesimally small steps at the start,
as this simplifies the description and analysis. We later mention how to avoid
this and make our strategy feasible in practice, under the assumption that the
length of the shortest path to the target is bounded from below by some positive
constant. Starting from p0, P

∗ moves diagonally with slope s to one side, for
a horizontal distance of ε, and then moves back to x = 0, again with slope s.
Subsequently, P ∗ alternates between moving left and right of p0, doubling the
horizontal distance when moving away from p0, and always using slope s. As a
result, P ∗ consists of xy-monotone segments, and turning points where the x-
direction swaps. Specifically, P ∗ is defined by the following functions for i ∈ Z:

hi
r(x) = s · (2i + x) for i odd and − 2i−2 ≤ x ≤ 2i−1,

hi
ℓ(x) = s · (2i − x) for i even and − 2i−1 ≤ x ≤ 2i−2.

We call the line segments hi
r the right segments of P ∗, and the line segments

hi
ℓ the left segments of P ∗. Observe that for two consecutive segments, the values

at the ends of the domains coincide, which results in P ∗ being a connected path.
Specifically, we get hi

r(2
i−1) = hi+1

ℓ (2(i+1)−2) and hi−1
ℓ (−2(i−1)−1) = hi

r(−2i−2).
The actual search path P follows P ∗ (see Figure 3). Whenever P hits the

terrain, it follows the terrain upwards until it can continue moving diagonally
with slope s again. This diagonal part of P does not coincide with P ∗, so once
P hits P ∗, P starts following P ∗ again. Observe that P still consists of xy-
monotone polygonal chains and turning points, albeit both can differ from P ∗.
We refer to the monotone chains of P as right and left subpaths of P , when they
are monotone in the positive and negative x-direction, respectively. We also refer
to a line segment in such a right or left subpath as a left or right segment. We
will choose s later to optimize the resulting competitive ratio.

Preliminaries and definitions. The target t can be seen from any point in
the visibility region Vis(t). We consider all possible visibility rays r(sr, dr) that
can separate Vis(t) and p0, where sr is the slope of r in the positive x-direction,
and dr is the distance between r and p0.

Let S be the line segment between p0 and r that is perpendicular to r, so
|S| = dr. Furthermore, let ST be the shortest geodesic path from p0 to r, taking
the terrain T into account. If S does not properly intersect T , then |ST | = dr.
Note that the last line segment of ST is perpendicular to r. Finally, let pt ∈ P
be the point where P crosses r to enter Vis(t).

We define τ(r) as the distance traversed over P until r is crossed, i.e. from p0
until pt, and c(r) = τ(r)

|ST | as the competitive ratio to cross a ray r. To simplify our

proofs, we additionally introduce the following definitions. Let pt = (x, y), then
we define τ∗(r) = y

√
1 + s2/s. So, τ∗(r) is the length of a path with slope s up

to height y. When P deviates from P ∗, the projected path is intersected by T
and hence P is steeper than P ∗. It follows that τ(r) ≤ τ∗(r). We use the ratio
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p0

t

pt

Vis(t)

ST

r

Fig. 3. The strategy P (blue) and the projected path P ∗ (gray). The goal is seen at pt.

c∗(r) = τ∗(r)
|ST | in our proofs, and analyze the maximum of c∗(r) over all instances

to bound the competitive ratio of our searching strategy from above.
For computing the competitive ratio, we only need to consider visibility rays

originating from one side. This is due to the symmetric nature of our strategy:
we can take any instance with a visibility ray originating left of p0, and transform
it into a case equivalent to having the visibility ray originating from the right
of p0. We achieve this by scaling all distances in P ∗ by 2 to get the horizontally
symmetrical path. To see this observe that for −2i−2 ≤ x ≤ 2i−1 and x′ = −x

hi
r(x) = s · (2i + x) = 2 · s · (2i−1 + x/2) = 2 · hi−1

ℓ (x′/2).

Additionally, we mirror T horizontally in p0, hence r is also mirrored with respect
to p0. We thus consider only visibility rays that originate to the right of p0.

Finally, since T is a height function, the visibility region of any point above
the terrain includes the vertical ray cast upwards from that point. Thus, for the
visibility ray r that separates Vis(t) from p0 it holds that sr ≤ 0.

Proof structure. To determine the competitive ratio of our searching strategy,
we analyze the competitive ratio in a worst-case instance (T, r) for c∗(r), where
T is the terrain and r = r(sr, dr) is the visibility ray from the target. To that end
we first establish several properties that must hold in some worst-case instance.
To exclude various instances from consideration, we can use the following lower
bound on the competitive ratio of our strategy. A competitive ratio below this
bound would contradict the lower bound for searching on a line [3].

Lemma 1. The competitive ratio c∗(r) is at least 9
√
1 + s2.

Proof. Suppose the competitive ratio of c∗ would be strictly smaller than 9
√
1 + s2.

Consider the 1-dimensional searching problem of searching for a target point on a
line. For this problem, we know the competitive ratio is lower bounded by 9 [3]. If
we project the path of our strategy onto this line, we obtain a strategy to search
for a point on the line. If our strategy has τ∗(r) ≤ d, the horizontal distance
traveled is at most d cos(arctan(s)) = d/

√
1 + s2. Thus, the competitive ratio for

searching on a line would be strictly smaller than 9
√
1 + s2/

√
1 + s2 = 9, which

is a contradiction.
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In the remainder of this section we show that a worst-case instance (T, r(sr, dr))
has the following properties:

– The ray r is arbitrarily close to a turning point p ↪→of P when pt lies on a
right subpath (Lemma 4).

– The ray r satisfies sr ≤ −s and pt lies on a right subpath (Lemma 5).
– If p ↪→is not a turning point of P ∗, and thus a local maximum ∧ of T

intersects P ∗ before p ↪→, then ∧ is at p ↪→and r is vertical (Lemma 6).
– If p ↪→coincides with a turning point of P ∗, then r is vertical (Lemma 10).

After establishing these properties, the remaining cases can easily be analyzed
directly in the proof of Theorem 2.

Close to turning point. We first prove two lemmata that help us establish the
properties indicated above. Lemma 2 follows from the quotient rule of derivatives.

Lemma 2. Let f, g, h : R>0 → R>0 be differentiable functions such that f(x) =
g(x)
h(x) and dg

dx ,
dh
dx > 0 for any x > 0. Then, df

dx < 0 if and only if dg
dx/

dh
dx < f(x).

Proof. Given f(x) = g(x)
h(x) , we get

df

dx
=

dg
dxh(x)− g(x)dhdx

h(x)2

Since h(x)2 > 0, this gives us

df

dx
< 0 ⇐⇒

dg

dx
h(x)− g(x)

dh

dx
< 0 ⇐⇒

dg

dx
h(x) < g(x)

dh

dx
⇐⇒

dg

dx
/
dh

dx
<

g(x)

h(x)
⇐⇒

dg

dx
/
dh

dx
< f(x).

Lemma 3. Let (T, r(sr, dr)) be an instance where pt lies on a right subpath of

P with slope s, and let c∗(dr) =
τ∗(r)
|ST | . If

1
9 < s ≤ 1, then dc∗

ddr
< 0.

Proof. By Lemma 2, to prove dc∗

ddr
< 0 it is sufficient to show that dτ∗(r)

ddr
/d|ST |

ddr
<

c∗(dr). Since
d|ST |
ddr

≥ 1, we get that dτ∗(r)
ddr

/d|ST |
ddr

≤ dτ∗(r)
ddr

. Consider decreasing
dr, i.e., moving the ray r towards the origin. If s ≤ 1, we can bound the ratio
between the change in τ∗(r) and the change in dr as follows.

dτ∗(r)

ddr
≤

√
s2 + 1

s
< 9

√
1 + s2 ≤ c∗(dr)

The second step holds for s > 1
9 , and the final step follows from Lemma 1.



8 S. de Berg, N. van Beusekom, M. van Mulken, K. Verbeek, and J. Wulms

Lemma 3 implies that, as long as pt lies on a right subpath of P , decreasing
dr increases c∗(r).

Lemma 4. In a worst-case instance (T, r(sr, dr)) where pt lies on a right sub-
path of P , if 1

9 < s ≤ 1, then r is infinitesimally close to a turning point of P .

Proof. Assume for contradiction that the lowest intersection of r and P lies on a
right subpath of P , but r is further than ε > 0 away from a turning point of P .

Given ray r(sr, dr), decreasing dr gives a worse competitive ratio as long
as r intersects P on a right segment of P with slope s according to Lemma 3,
contradicting that (T, r) is a worst case. By construction, as soon as we can no
longer move the ray towards the origin while keeping its intersection point on a
right segment of P with slope s, we must either encounter a turning point of P ,
or the slope of P is not equal to s.

p0

r

p0

r

Fig. 4. By moving r to the left until we are longer on a right segment with slope s, we
can either hit a left subpath (case on the left), or a right segment with slope greater
than s (case on the right).

In the former case, the lemma is proven, so assume that the latter case
applies. When the slope of P is not s, P must route along T , and hence r would
encounter a local maximum ∧ of T . We distinguish two cases (see Figure 4):
either a left subpath of P is routed over ∧, or a right subpath of P is routed
over ∧. When a left subpath of P is routed over ∧, lowering ∧ to the highest
intersected segment of P ∗ possibly decreases |ST |, while τ∗(r) remains the same.
Hence, the competitive ratio c∗(r) has not decreased either. Next, Lemma 3 can
once again be applied, resulting in a contradiction.

When a right subpath of P is routed over ∧, then ∧ must be located on
the right side of p0, otherwise a turning point of P is located at ∧. Let y be

the height of ∧. This means that |ST | ≥ y and τ∗(r) = y·
√
1+s2

s , so we get a
competitive ratio of

τ∗(r)

|ST |
≤ y

√
1 + s2

ys
=

√
1 + s2

s
< 9

√
1 + s2

In the last step we use that s > 1
9 . As this is below the lower bound of Lemma 1

this contradicts that (T, r) is a worst-case instance.
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Flat visibility rays. Next, we deal with all visibility rays r(sr, dr) for which
sr > −s, which we call flat visibility rays. All other visibility rays, which have a
slope of at most −s, we define as steep visibility rays. We show that r is never
flat in a worst-case instance, and pt must then lie on a right subpath of P .

Lemma 5. In a worst-case instance (T, r(sr, dr)), if
2
9 < s ≤ 1 then sr ≤ −s

and pt lies on a right subpath of P .

Proof. First, assume that sr > −s, we distinguish two cases depending on
whether pt lies on a right or left subpath of P .

When pt lies on a right subpath of P , Lemma 4 implies that the visibility
ray r is infinitesimally close to a turning point. Because sr > −s, it must be that
r passes infinitesimally close to the upper turning point of a left subpath of P .
In this case, Lemma 3 can even be applied until pt lies on the upper turning
point of the left subpath, resulting in the next case.

p0

pt

r

q

Fig. 5. A flat visibility ray r that intersects a left subpath.

If pt lies on a left subpath but does not lie on P ∗, then consider the inter-
section point q of the extension of r with P ∗, see Figure 5. Observe that q is
at least as high as pt. We can therefore consider the instance where q = pt, as
this can only decrease |ST | and increase τ∗(r). If q lies on a right segment of P ∗,
then pt is moved to this right segment as well, which contradicts the assumption
that pt lies on a left subpath. Hence, in the worst case pt lies on a left segment.

Now that we know that in the worst case pt lies somewhere on the ith left
segment, we can derive the following bounds on τ∗(r) and |ST |. We use the
length of P ∗ up to the upper end of hi

ℓ as an upper bound on τ∗(r). Thus τ∗(r) ≤
3 · 2i−1 ·

√
1 + s2. Similarly, as r passes above the lower end of hi

ℓ, the height of
the lower end of hi

ℓ is a lower bound on |ST |. So, |ST | ≥ 3s · 2i−2. Flat visibility
rays hence result in

c∗(r) =
τ∗(r)

|ST |
≤ 3 · 2i−1 ·

√
1 + s2

3s · 2i−2
≤ 2

√
1 + s2

s
< 9

√
1 + s2.

The latter inequality holds when s > 2
9 . As this competitive ratio is below

the lower bound of Lemma 1, this contradicts that (T, r) is a worst case instance.
It follows that in a worst-case instance sr ≤ −s.
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To conclude the proof we consider the case where pt lies on a left subpath
of P and sr ≤ −s. Observe that this is possible only when T intersects P ∗ on the
left side of p0 (similar to Figure 5). Again consider the intersection point q of r
with P ∗, and observe that q must lie on a right segment of P ∗ since sr ≤ −s. We
can then apply the following argument from earlier: q is higher than pt. Thus the
instance where q = pt leads to a worse competitive ratio, since |ST | is unaffected
by removing the obstruction of P ∗ left of p0. This contradicts that (T, r) is a
worst case instance.

Lemma 5 shows that for an upper bound on the competitive ratio we do not
have to consider flat visibility rays r.

From now on, we thus consider only steep visibility rays with pt on a right sub-
path. Let p ↪→denote the turning point infinitesimally close to r. Note that p ↪→

must lie on the final left segment of P ∗ that is on the search path. We denote
this segment by h

↪→

ℓ .

Obstructed search path. For steep visibility rays, first consider the case
where p ↪→is not a turning point of P ∗, i.e. T obstructs the right segment be-
fore h

↪→

ℓ (see Figure 6). We call a local maximum of T a peak, denoted by ∧.
We prove that a worst-case instance (T, r) has the following three properties.

p0

∧
p ↪→h`

↪→ r

Fig. 6. The search path is obstructed and r is steep.

1. If a peak lies on P ∗ at p ↪→, then the visibility ray r is vertical (Lemma 7);
2. if the visibility ray r is vertical, then a peak lies on P ∗ at p ↪→(Lemma 8);
3. either a peak lies on P ∗ at p ↪→, or the visibility ray r is vertical (Lemma 9).

The following lemma follows directly from the above statements.

Lemma 6. Let (T, r(sr, dr)) be a worst-case instance where p ↪→is not a turning
point of P ∗. If 2

9 < s < 4
9 , then a peak lies on h

↪→

ℓ at p ↪→, and sr = −∞.

Proof. We can apply Lemma 9 to show that in the worst case, either ∧ lies on
the left segment h

↪→

ℓ of P ∗ and ∧ coincides with p ↪→, or that we can rotate r
to be vertical. In the former case we use Lemma 8, while in the latter case we
apply Lemma 7.
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Next we prove Lemmata 7-9, to prove Lemma 6. Let (T, r(sr, dr)) be a worst-
case instance where p ↪→is not a turning point of P ∗ and let ∧ be the last peak on
P before p ↪→. By Lemmata 4 and 5, r is steep and infinitesimally close to p ↪→.

Lemma 7. If the peak ∧ lies on left segment h

↪→

ℓ of P ∗, and hence coincides
with p ↪→, then r is vertical.

Proof. Assume for contradiction that ∧ coincides with p ↪→and that r is not
vertical. We distinguish between two cases: either the line segment through p0
perpendicular to r passes above p ↪→, or not. In the former case, we construct
the terrain T ′ from T by moving ∧ leftwards along h

↪→

ℓ , until we are in the
latter case. This does not affect c∗(r). In the latter case, we rotate r around p ↪→

to become more vertical, resulting in a higher competitive ratio: ST becomes
smaller and τ∗(r) becomes larger. This contradicts that (T, r) is worst case.

Lemma 8. If r is vertical, then the peak ∧ lies on left segment h

↪→

ℓ of P ∗, and
hence coincides with p ↪→, for s < 4

9 .

Proof. Assume for contradiction that r is vertical and that ∧ does not lie on left
segment h

↪→

ℓ . The height value of T at the x-coordinate of ∧ can be increased
towards P ∗, so that ∧ will lie slightly higher. This changes P , as the turning
point p ↪→moves to the left by some arbitrarily small distance d (see Figure 7).
By Lemma 3, in the worst case r also moves to the left by distance d. Due to
the slope s of P ∗, ∧ must have been moved up by a distance of 2ds. This means
|ST | decreases by at least d, due to r moving to the left and being vertical, and
increases by at most 2ds, due to ∧ moving up: in total |ST | decreases by at least
d(1− 2s) > 0, for s < 1/2.

On the other hand, τ∗(r) also decreases. With r moving d towards ∧, τ∗(r)
decreases by d

√
1 + s2. We now consider the ratio dτ∗(r)

d∧ /d|ST |
d∧ ≤ d

√
1+s2

d(1−2s) be-

tween the decrease of τ∗(r) and |ST |. As this ratio is below the lower bound of
9
√
1 + s2 of Lemma 1 for s < 4/9, Lemma 2 implies that slightly moving ∧ to-

wards h

↪→

ℓ increases c∗(r), contradicting that (T, r) is a worst-case instance.

Lemma 9. At least one of the following holds: the peak ∧ lies on left seg-
ment h

↪→

ℓ of P ∗, and hence coincides with p ↪→, or r is vertical.

Proof. Assume for contradiction that neither of the two properties holds. For
now assume that ST is routed over ∧ and let S∧ be the line perpendicular to r
through ∧. We make a case distinction on whether S∧ intersects r above p ↪→

or not. We first consider the case where S∧ hits r above p ↪→(see Figure 8).
Let popt be the point where ST hits r, and let p∧ be the vertex before popt
on the geodesic ST , coinciding with ∧. Let q be the vertex on ST before p∧
(possibly q = p0, as in Figure 8). Consider the line segment qpopt. Because ∧
does not lie on h

↪→

ℓ , qpopt intersects P between ∧ and p ↪→. Let p′∧ be the
intersection point, and let p′opt be the point on r hit by the perpendicular on r
through p′∧. Finally, let ST (q) be the geodesic ST from p0 to q. By the above,

|ST | > |ST (q)|+ |qpopt| > |ST (q)|+ |qp′∧|+ |p′∧p′opt|.
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p0

∧

p
d

2ds

↪→

Fig. 7. Moving ∧ upwards causes p ↪→to
move left. If p ↪→moves a horizontal dis-
tance d, then ∧ must have moved 2ds.

p0

rpopt

p0

∧

r

∧′

Fig. 8. By moving local maximum ∧ to
the green point ∧′, |ST | (red) strictly
decreases, concatenating the green path
from p0 = q to ∧′ and the yellow path.

Consider the terrain T ′ where, compared to T , ∧ moved rightward along P
until it coincides with p′∧ (see Figure 8). For T ′ we know that |ST ′ | = |ST (q)|+
|p′∧q| + |p′optp′∧| < |ST |. Additionally, τ∗(r) is unaffected. Thus, the ratio c∗(r)
strictly increases, contradicting that (T, r) is a worst-case instance.

Notice that, when ∧ is not part of ST , then ST hits r above p ↪→. In this
case, the above modification to T ′ does not affect τ∗(r) and |ST ′ | = |ST |. Now
Lemma 7 applies, contradicting that (T, r) is a worst-case instance.

Finally, consider the case where S∧ hits r below or on p ↪→. When we rotate r
around p ↪→to become more vertical, ST decreases and τ∗(r) increases. This
results in a strictly higher ratio c∗(r), contradicting that (T, r) is a worst case.

Unobstructed search path. Next we consider all steep visibility rays in the
case that p ↪→is a turning point of P ∗, and show the following.

Lemma 10. In a worst-case instance (T, r(sr, dr)), where p ↪→is a turning point
of P ∗, if 1

9 < s ≤ 1, then r is vertical.

Proof. Assume for contradiction that r is not vertical. If ST intersects r be-
low p ↪→, rotating r around p ↪→to become more vertical results in a strictly
higher value c∗(r), as |ST | becomes smaller and τ∗(r) becomes larger, contra-
dicting that (T, r) is a worst case. If ST hits r above p ↪→, then this case is
equivalent to having a peak ∧ at exactly p ↪→, because ∧ does not interfere with
ST . By Lemma 7, r is then vertical in the worst-case.

Bounding the competitive ratio. To finish our analysis, we combine the
previous lemmata, and choose s to minimize the competitive ratio across all
cases. To obtain a strategy that is feasible in practice, we assume that |ST | ≥ 1.
That is, we do not use infinitesimally small steps to start in practice. We then
adapt our strategy by first moving upwards at most one, up to the final time
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that P is intersected, and then start following along P . This only shortens the
search path, so the competitive ratio holds for this adjusted path as well.

Theorem 2. Our searching strategy for searching in a 1.5D terrain achieves a
competitive ratio of 3

√
19/2 for s =

√
2/6.

Proof. We consider all visibility rays r(sr, dr), to find a combination of sr and dr
that maximizes c∗(r). By Lemma 5 we know that any visibility ray with sr > −s
or where pt lies on a left subpath of P results in a c∗(r) below the lower bound of
Lemma 1. We thus consider the case where sr ≤ −s and pt is on a right subpath,
both when P ∗ is intersected by T and when P is unobstructed. For both of these
cases, we derive a bound on c∗(r) dependent on s, and then choose a value of s
that minimizes the largest bound.

Case 1: obstructed search path. We know by Lemma 6 that in the worst case
the visibility ray r(sr, dr) lies just behind a local maximum ∧ of T , and intersects
the i-th right subpath of P . Observe that this means that 0 ≤ dr ≤ 2i−3.
Additionally, ∧ touches the (i− 1)-th left segment of P ∗, and sr = −∞. We can
bound the competitive ratio as follows (see Figure 9).

p0
dr

2i−32i−2

dr

2i−2

r

t

pt

Fig. 9. The construction for bounding the competitive ratio when terrain T inter-
sects P ∗ (in grey). The search path P (in blue) crosses visibility ray r on right seg-
ment hi

r to enter Vis(t). Arrows indicate horizontal distances along P ∗, and ST is
shown in red.

As r is vertical, the distance dr coincides with the horizontal distance be-
tween p0 and ∧. To determine τ∗(r), consider the horizontal distance traveled
along P ∗, which is

dr + 2 · 2i−2 + 2 · 2i−3 +
∑
j≥4

2 · 2i−j = dr + 8 · 2i−3.
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We then get τ∗(r) ≤ (dr+8 ·2i−3) ·
√
1 + s2. Next, we find a lower bound on |ST |

by computing the distance between p0 and ∧. For that we use the height of ∧
which is

hi−1
ℓ (0)− s · dr = s · (2i−1)− s · dr = s · (4 · 2i−3 − dr).

It follows that |ST | ≥
√
d2r + s2 · (4 · 2i−3 − dr)2. Observe that the construction

of this worst case is equivalent for any odd i, as both τ∗(r) and |ST | (and the
upper bound on dr) differ by exactly a factor 4 between consecutive odd values
of i. Hence, we may choose i = 3, such that 0 ≤ dr ≤ 1 and

τ∗(r) ≤ (dr + 8) ·
√

1 + s2

|ST | ≥
√
d2r + s2 · (4− dr)2

Thus, when T intersects P ∗, then (8 + dr)
√
1 + s2/

√
d2r + s2(4− dr)2 is an

upper bound on c∗(r). Furthermore, Lemmata 5 and 6 require that 2
9 ≤ s < 4

9 .

Case 2: unobstructed search path. Lemma 10 tells us that in the worst
case, the visibility ray r(sr, dr) is vertical and infinitesimally close to a turning
point. Thus, sr = −∞ and, since hi

r is the lowest segment crossed by r, we
get that |ST | = dr = 2i−3. Similar to the previous case, we have that τ∗(r) =
(dr + 8 · 2i−3) ·

√
1 + s2 = (9 · 2i−3) ·

√
1 + s2. We again choose i = 3, resulting

in dr = 1 and τ∗(r) ≤ 9
√
1 + s2. Thus, in this case the competitive ratio is at

most 9
√
1 + s2 for 1

9 < s ≤ 1.
To finalize the analysis, we choose s such that the value c∗(r) of the case with

largest ratio is minimized. We observe that (8+dr)
√
1 + s2/

√
d2r + s2(4− dr)2 is

decreasing in s (when 0 ≤ dr ≤ 1) and 9·
√
1 + s2 is increasing in s. We can hence

equate the formulas for the two cases and set (8+dr)
√
1 + s2/

√
d2r + s2(4− dr)2 =

9
√
1 + s2 to find a value for s that minimizes the competitive ratio. This equal-

ity is satisfied for s =
√
2/6 and dr = 4/13. This choice of s satisfies all

of the bounds on s and for this s =
√
2/6 this choice of dr maximizes (8 +

dr)
√
1 + s2/

√
d2r + s2(4− dr)2 — a worst-case ray is r(−∞, 4/13). As c∗(r) is

an upper bounded on the competitive ratio c(r) of our strategy, our strategy has
competitive ratio of at most 3

√
19/2 using s =

√
2/6.

3 Competitive searching on 2.5D terrains

In this section we study the searching problem in an environment that is de-
fined by a 2.5D terrain, which is represented by a function T2. It is easy to see
that, without putting additional restrictions on the terrain, achieving a bounded
competitive ratio will be impossible: consider a flat terrain with arbitrarily many
small pits in the terrain that are arbitrarily steep. Any searching strategy would
have to move to the location of each pit in the xy-plane in order to look at the
bottom of the pit. As we can place arbitrarily many pits within a small bounded
distance from the starting point, and the target may be in any of the pits, the
competitive ratio of any searching strategy would always be unbounded. We
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make this argument more concrete in the lower bound construction below. To
restrict the set of 2.5D terrains under consideration, we require that the maxi-
mum slope of the terrain, which corresponds to the Lipschitz constant λ of T2, is
bounded. A strategy of moving upwards from p0 results in a competitive ratio of
O(λ). In the remainder of this section we show that we can achieve a competitive
ratio of O(

√
λ), which matching the lower bound for 2.5D terrains.

Lower bound. We first show a lower bound on the competitive ratio for any
searching strategy on 2.5D terrains. Since this lower bound is a function of λ,
this directly implies that the competitive ratio is unbounded if we do not limit
the maximum slope of the terrain.

Theorem 3. The competitive ratio for searching on 2.5D terrains with maxi-
mum slope λ is at least Ω(

√
λ).

Proof. Consider a flat terrain containing a regular grid of k × k pits formed by
a cone of maximum slope λ, where δ = 1/k is the distance between the centers
of two adjacent pits, and ϵ > 0 is the depth of each pit, where ϵ and k will be
chosen later (see Figure 10). For convenience we assume that the starting point
of the searching problem is exactly a distance δ to the left from the lower-left
pit in the grid at height 0. Now consider a searching strategy for this terrain,
represented by a path P .

First assume that the maximum height z that P reaches before being able

to see the bottom of the last pit satisfies z >
√
λ
4 . Then P must travel at least a

distance z >
√
λ
4 before seeing the last pit. The minimum travel distance to see

this pit is less than
√
2. Hence, the competitive ratio is at least

√
λ

4
√
2
= Ω(

√
λ).

Now assume that P stays under the height of z =
√
λ
4 . By construction of

the pits, this implies that the searcher must be within a horizontal distance of
(z+ϵ)/λ from the center of the pit to see the bottom of the pit (this is the radius
of the cone of a pit when extended to height z). As such, after checking one pit,
the searcher must travel at least a distance δ− 2(z+ ϵ)/λ, which is the distance
between two cones at height z, before being able to check another pit. If we choose

ϵ =
√
λ
4 , then this distance is at least δ − 1√

λ
. The total (horizontal) distance

traveled by P before seeing the last pit is then at least k2(δ − 1√
λ
) = k − k2

√
λ
,

1

δ

ϵ

Fig. 10. The terrain construction for the lower bound on 2.5D terrains.
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as there are k2 pits in total. By choosing k =
√
λ
2 this total distance is at least

√
λ
2 −

√
λ
4 =

√
λ
4 . Since the minimum travel distance to see the last pit is again

less than
√
2, the competitive ratio of P is at least

√
λ

4
√
2
= Ω(

√
λ).

Searching strategy. We now present a searching strategy for 2.5D terrains
with a maximum slope λ. The aim is to match the dependency on λ that is
shown in the lower bound. We will use the prior known value of λ to determine
our search path Pλ. To simplify the analysis, our searching strategy consists of
separate vertical and horizontal movement phases, explained in detail below.

In the description of our search strategy, we again make use of arbitrarily
small steps at the start to simplify the analysis. When a minimum value on the
length of the optimal search path is given, all bounds still hold when we simply
move upwards up to this value and then continuing on the described search path.
Overall, our searching path Pλ works as follows: first, we move vertically up by
a distance ε

√
λ, for some arbitrarily small value ε > 0. Next, we construct a

square horizontal grid Gε with total length 2ε centered (horizontally) around
the starting point. This grid will consist of (2k + 1)× (2k + 1) grid cells, where
k is chosen large enough such that the side length of a single grid cell is at most

ε
2
√
2λ
. Specifically, let k be the smallest integer such that 2k + 1 ≥ 4

√
2λ. We

perform a horizontal search through this grid, described in detail below, and
return to the center of the grid. We then move vertically up again until we are
at a height that is 2ε

√
λ above the previous grid. Here we perform a horizontal

search on a grid G2ε with total length 4ε, but where the number of grid cells
is still (2k + 1)× (2k + 1). We then repeat this process, each time doubling the
vertical distance between grids and doubling the total length of the grid, but
keeping the number of grid cells the same (see Figure 11). Note that a grid Gx

for some x ≥ ε is at height (2x− ε)
√
λ by construction. Since we assume that ε

is arbitrarily small, we will simply say that Gx is at height 2x
√
λ.

To perform a horizontal search in a grid Gx for some x > 0, we first consider
the height of the terrain within the grid cells. We say a grid cell σ is eligible
if at least one point inside σ has a height at most the height of Gx (which is
2x

√
λ). We consider the connected set of eligible cells C that includes cell σ0

containing the starting point (note that σ0 is always eligible), where two eligible
cells are connected if they share a side. To perform the horizontal search in Gx

we construct a tour that starts in the center of σ0, visits all the centers of cells
in C, is completely contained within the cells of C, and eventually returns to the
center of σ0 (see Figure 12). During this horizontal search, the terrain may force
the searcher to increase the height, which is allowed. However, the searcher never
moves back down, and hence the height will never decrease anywhere on Pλ.

Analysis. We first establish useful properties on the horizontal searches in grids.
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x
√
λ

2x
√
λ

p0

2x

4x

Fig. 11. Three iterations with grids
constructed with 2k+1 by 2k+1 cells.

Fig. 12. Connected component C in
red. Gray area is where T is above the
grid.

Lemma 11. Let Gx be a horizontal grid used in Pλ for some x > 0.

(1) The number of grid cells in Gx is O(λ).

During a horizontal search in Gx:

(2) The amount of horizontal movement is at most O(x
√
λ).

(3) The amount of vertical movement is at most x
√
λ

2 .

Proof. For (1) recall that the number of cells in Gx is independent of x and is
(2k+1)2 by construction, where k is the smallest integer for which 2k+1 ≥ 4

√
2λ.

This directly implies that k = O(
√
λ) and hence the number of grid cells in Gx

is O(λ).

For (2), we must bound the length of the tour that visits the centers of the
reachable eligible cells in C. For that we consider the minimum spanning tree
(MST) on the centers of the grid cells in C. The edges in this tree can only consist
of edges between two neighboring grid cells that share a side. Thus, every edge
in the MST has a length that corresponds to the side length of a single grid cell,
which is at most x

2
√
2λ

by construction. Since the number of edges in the MST is

|C|, and C contains at most all cells in Gx, the total length of the MST is at most
O(λ)× x

2
√
2λ

= O(x
√
λ) due to (1). Since the length of the optimal tour through

all centers of cells in C is at most twice the length of the MST, the stated bound
follows.

For (3), consider any eligible cell σ in Gx. By definition, there must be a
point inside σ with height at most the height of the grid. Since σ has a side
length of at most x

2
√
2λ
, the maximum horizontal distance between two points

in σ is at most x
2
√
λ
. Given that the maximum slope of the terrain is λ, the

maximum height in σ is at most λ x
2
√
λ
= x

√
λ

2 . Since the tour is contained to

eligible cells by construction and the searcher can never decrease height, this is
also the maximum amount of vertical movement.
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Note that property (3) of Lemma 11 implies that the search path Pλ is indeed
valid, as the distance between grids Gx and G2x is 2x

√
λ, which is greater than

x
√
λ

2 . Thus, it is never necessary to move down again to reach the next grid in
Pλ. We can now bound the length of Pλ at a particular height along the path.

Lemma 12. The length of Pλ up to the point of reaching a horizontal grid Gx

is at most O(x
√
λ).

Proof. The total amount of vertical movement in Pλ simply corresponds to the
height of Gx, which is 2x

√
λ by construction. For the horizontal movement we

have to consider the grids Gx/2, Gx/4, Gx/8, . . ., which by Lemma 11 induce a

horizontal movement of at most
∑∞

i=1 O(x/2i
√
λ) = O(x

√
λ). The stated bound

follows from adding the horizontal and vertical movement in Pλ.

Next, we use λ to determine when a point on Pλ can see the target t.

Lemma 13. If p is a point that can see t, then any point p∗ in the upwards cone
starting at p with slope λ can see t.

Proof. Since the slope is bounded by λ, the upwards cone with slope λ above any
point that lies above the terrain must be unobstructed. Furthermore, the line
segment between p and t is unobstructed. Hence, the upwards wedge with slope
λ over the path between p and t is also unobstructed (see Figure 13). Since the
cone above p is unobstructed and the wedge is unobstructed, the line segment
between p∗ and t is unobstructed.

t

p∗

p

Fig. 13. Illustration of Lemma 13. Since the cone upwards from p is unobstructed, any
point p∗ in the cone can see t.

Theorem 4. Our strategy for searching in a 2.5D terrain with maximum slope λ
achieves a competitive ratio of at most O(

√
λ).
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Proof. Let p be the point with the shortest distance to p0 that can see t, and
let d(p0, p) be the distance from p0 to p. Furthermore, let ∨ be the cone cast

upward from p0 with slope
√
λ
2 . For our analysis we consider two different cases:

(1) p lies inside of ∨, or (2) p lies outside of ∨.
Case 1: p lies within ∨. Let z be the height of p and let r be the horizontal

distance from p0 to p. Since p lies within ∨, we know that z ≥
√
λ
2 r. If we cast

a ray directly upwards from p0, we hit the cone from p with slope λ at height
z∗ = z + λr. By Lemma 13, we see t from that intersection point (or any point
directly above it). The next horizontal grid Gx of Pλ is at height ≤ 2z∗, so
2x

√
λ ≤ 2z∗ or x ≤ z∗

√
λ
. By Lemma 12 this implies that the searcher travels at

most a distance of O(z∗) before seeing t. Since the minimum distance to reach

p is at least z ≥
√
λ
2 r, we get that z∗/z ≤ 1+ 2

√
λ. Hence, the competitive ratio

in this case is at most O(z∗/z) = O(
√
λ).

Case 2: p lies below ∨. Let again z be the height of p and let r be the horizontal

distance from p0 to p. Since p lies below ∨, we know that z <
√
λ
2 r. Consider

the first time that a cell σ directly above p is visited by Pλ during a horizontal
search of a grid Gx. Since x ≥ r, the vertical distance between p and σ is at least
2x

√
λ − z ≥

√
λ(2x − r

2 ) ≥
3x
2

√
λ. Hence, the upwards cone from p with slope

λ intersects the horizontal plane at Gx in a circle with radius 3x
2

√
λ/λ = 3x

2
√
λ
.

Since the side length of σ is at most x
2
√
2λ
, this circle also contains the center of

σ, from which we see t due to Lemma 13. Thus, the target is found at the latest
during the horizontal search on Gx. Lemmata 12 and 11 (property 2 and 3) then
imply that we travel at most a distance of O(x

√
λ) before we find t.

We now consider the distance d(p0, p). By construction, the horizontal search
on grid Gx/2 did not visit a cell above p. We consider two possible cases. If the
grid Gx/2 does not contain any cell directly above p, then r > x/2. In that case

d(p0, p) > x/2 and hence we obtain a competitive ratio of O(x
√
λ)/(x/2) =

O(
√
λ). If Gx/2 does contain a cell σ′ directly above p, then σ′ was not part of C

for Gx/2. But then, in order to reach the point p from p0, we must either reach

a height of x
√
λ (the height of Gx/2), or we must leave the horizontal domain of

Gx/2. In both cases the shortest distance from p0 to p is at least x/2 (or even

x
√
λ in the first case). Thus, we again obtain a competitive ratio of O(

√
λ).

4 Conclusion

The lower and upper bound for 1.5D terrain might be improved with a more
intricate example and more extensive analysis respectively. For our search strate-
gies we assumed that the terrain is given beforehand. However, our searching
strategy for 1.5D terrains is affected by the terrain only when obstructed, thus
the searching strategy can handle unknown terrains. This does not hold for our
strategy on 2.5D terrains. Though we can address terrain on the fly, we crucially
use the maximum slope λ to construct our search path. It would be interesting
to study whether an efficient strategy exists that does not require λ to be known.



20 S. de Berg, N. van Beusekom, M. van Mulken, K. Verbeek, and J. Wulms

Another direction for future research is to extend the result on 2.5D terrains to
special types of polyhedral domains, such as star-shaped polyhedra. An impor-
tant question here is how to redefine the parameter λ for polyhedral domains
such that the competitive ratio can be bounded in terms of that parameter.
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