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Abstract. A proper Helly circular-arc graph is an intersection graph of
a set of arcs on a circle such that none of the arcs properly contains
any other arc and every set of pairwise intersecting arcs has a common
intersection. The Proper Helly Circular-arc Vertex Deletion
problem takes as input a graph G and an integer k, and the goal is
to check if we can remove at most k vertices from the graph to obtain
a proper Helly circular-arc graph; the parameter is k. Recently, Cao
et al. [MFCS 2023] obtained an FPT algorithm for this (and related)
problem. In this work, we obtain a polynomial kernel for the problem.

1 Introduction

The development of parameterized complexity is much owes much to the study
of graph modification problems, which have inspired the evolution of many im-
portant tools and techniques. One area of parameterized complexity is data
reduction, also known as kernelization, which focuses on the family of graphs
F and the F-Modification problem. Given a graph G and an integer k, this
problem asks whether it is possible to obtain a graph in F using at most k
modifications in G, where the modifications are limited to vertex deletions, edge
deletions, edge additions, and edge contractions. The problem has been exten-
sively studied, even when only a few of these operations are allowed.

Here we deal on the parameterization of the F-Vertex Deletion prob-
lem, which is a special case of F-Modification where the objective is to find
the minimum number of vertex deletions required to obtain a graph in F . This
problem encompasses several well-known NP-complete problems, such as Ver-
tex Cover, Feedback Vertex Set, Odd Cycle Transversal, Planar
Vertex Deletion, Chordal Vertex Deletion, and Interval Vertex
Deletion, which correspond to F being the family of graphs that are edge-
less, forests, bipartite, planar, chordal and interval, respectively. Unfortunately,
most of these problems are known to be NP-complete, and therefore have been
extensively studied in paradigms such as parameterized complexity designed to
cope with NP-hardness. There have been many studies on this topic, including
those referenced in this paper, but this list is not exhaustive.
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In this article, we focus on the F-Vertex Deletion problem, specifically
when F refers to the family of proper Helly circular-arc graphs. We refer to this
problem as Proper Helly Circular-arc Vertex Deletion (PHCAVD) for
brevity. A circular-arc graph is a graph whose vertices can be assigned to arcs on
a circle such that there is an edge between two vertices if and only if their cor-
responding arcs intersect. If none of the arcs properly contains one another, the
graph is a proper circular-arc graph. These graphs have been extensively stud-
ied, and their structures and recognition are well understood [9,13,17]. These
graphs also arise naturally when considering the clique graphs of a circular-arc
graph. However, the lack of the Helly property, which dictates that every set
of intersecting arcs has a common intersection, contributes to the complicated
structures of circular-arc graphs. A Helly circular-arc graph is a graph that ad-
mits a Helly arc representation. All interval graphs are Helly circular-arc graphs
since every interval representation is Helly. The class of proper Helly circular-
arc graphs lies between proper circular-arc graphs and proper interval graphs.
A graph is a proper Helly circular-arc graph if it has a proper and Helly arc
representation. Circular-arc graphs are a well-studied graph class due to their
intriguing combinatorial properties and modeling power [12]. Additionally, there
exists a linear-time algorithm to determine if a given graph is a circular-arc
graph and construct a corresponding arc representation if so [20], even for Helly
circular-arc graphs, such algorithm exists [18].
For graph modification problems, the number of allowed modifications, k, is
considered the parameter. With respect to k, such a problem is said to be fixed-
parameter tractable (FPT) if it admits an algorithm running in time f(k)nO(1)

for some computable function f . Also, the problem is said to have a polynomial
kernel if in polynomial time (with respect to the size of the instance) one can
obtain an equivalent instance of polynomial size (with respect to the parameter),
i.e., for any given instance (G, k) of the problem, it can be reduced in time nO(1)

to an equivalent instance (G′, k′) where |V (G′)| and k′ are upper bounded by
kO(1). A kernel for a problem immediately implies that it admits an FPT algo-
rithm, but kernels are also interesting in their own right. In particular, kernels
allow us to model the performance of polynomial-time preprocessing algorithms.
The field of kernelization has received considerable attention, especially after the
introduction of methods to prove kernelization lower bounds [3]. We refer to the
books [5,8], for a detailed treatment of the area of kernelization.
Designing polynomial kernels for problems such as Chordal Vertex Dele-
tion [1] and Interval Vertex Deletion [2] posed several challenges. In fact,
kernels for these problems were obtained only recently, after their status being
open for quite some time. Proper Helly Circular-arc Vertex Deletion
has remained an interesting problem in this area. Recently, Cao et al. [4] studied
this problem and showed that it admits a factor 6-approximation algorithm, as
well as an FPTalgorithm that runs in time 6k · nO(1).
A natural follow-up question to the prior work on this problem is to check
whether PHCAVD admits a polynomial kernel. In this paper, we resolve this
question in the affirmative way.
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Proper Helly Circular-arc Vertex Deletion (PHCAVD)
Input: A graph G and an integer k.
Parameter: k
Output: Does there exist a subset S ⊆ V (G) of size at most k such that
G− S is a proper Helly circular-arc graph?

Theorem 1. Proper Helly Circular-arc Vertex Deletion admits a
polynomial kernel.

1.1 Methods

Our kernelization heavily uses the characterization of proper Helly circular-arc
graphs in terms of their forbidden induced subgraphs, also called obstructions.
Specifically, a graph H is an obstruction to the class of proper Helly circular-
arc graphs if H is not proper Helly circular-arc graph but H − {v} is proper
Helly circular-arc graph for every vertex v ∈ V (H). A graph G is a proper
Helly circular-arc graph if and only if it does not contain any of the following
obstructions as induced subgraphs, which are C∗

3 (claw), S3 (tent), S3 (net),W4

(wheel of size 4) , W5 (wheel of size 5), C6 as well as a family of graphs: C∗
ℓ , ℓ ≥ 4

referred to as a Monad of size ℓ (see fig. 2) [4,16]. We call any obstruction of size
less than 12 a small obstruction, and call all other obstructions large obstructions.
Note that every large obstruction is a Monad of size at least 12.

The first ingredient of our kernelization algorithm is the factor 6 polynomial-
time approximation algorithm for PHCAVD given by Cao et al. [4]. We use
this algorithm to obtain an approximate solution of size at most 6k, or conclude
that there is no solution of size at most k. We grow (extend) this approximate
solution to a set T1 of size O(k12), such that every set Y ⊆ V (G) of size at most
k is a minimal hitting set for all small obstructions in G if and only if Y is a
minimal hitting set for all small obstructions in G[T1]. Notice that G − T1 is a
proper Helly circular-arc graph (we call T1 as an efficient modulator, description
prescribed in lemma 1), where for any minimal (or minimum) solution S of size
at most k, the only purpose of vertices in S \ T1 is to hit large obstructions.
This T1 is the first part of the nice modulator T that we want to construct. The
other part is M , which is a 5-redundant solution (see definition 3) of size O(k6),
which we obtain in polynomial time following the same construction procedure
given by [2]. This gives us the additional property that any obstruction of size
at least 5 contains at least 5 vertices from M and hence also from T = T1 ∪M .
We bound the size of such a nice modulator T by O(k12). Next, we analyze the
graph G− T and reduce its size by applying various reduction rules.

For the kernelization algorithm, we look at G − T , which is a proper Helly
circular-arc graph and hence has a “nice clique partition” (defined in section 2).
Let Q = {Q1, Q2, . . .} denote such a nice clique partition of G−T . This partition
is similar to the clique partition used by Ke et al. [14] to design a polynomial
kernel for vertex deletion to proper interval graphs.
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In the first phase, we bound the size of a clique Qi for each Qi ∈ Q. Our
clique-reduction procedure is based on “irrelevant vertex rule” [19]. In particular,
we find a vertex that is not necessary for a solution of size at most k, and delete
it. And after this procedure, we reduce the size of each clique in G−T to kO(1).

In the second phase, we bound the size of each connected component in G−T .
Towards this, we bound the number of cliques in Q1, Q2, . . . , Qt that contain a
neighbor of a vertex in T (say good cliques). We use small obstructions, and
in particular, the claw, to bound the number of good cliques by kO(1). This
automatically divides the clique partition into chunks. A chunk is a maximal set
of non-good cliques between a pair of good cliques where the non-good cliques
along with the good cliques induce a connected component. We show that the
number of chunks is upper bounded by kO(1). Finally, we use a structural analysis
to bound the size of each chunk, which includes the design of a reduction rule
that computes a minimum cut between the two cliques of a certain distance
from the border of the chunk. With this, we bound the number of cliques in each
chunk and hence the size of each chunk as well as every connected component
by kO(1).

In the third and final phase of our kernelization algorithm using the claw
obstruction, we bound the number of connected components in G− T by kO(1).
Using this bound, together with the facts that |T | ≤ kO(1), and that each con-
nected component is of size kO(1), we are able to design a polynomial kernel
for PHCAVD. We conclude this section by summarizing all the steps in our
kernelization algorithm (see fig. 1).

Efficient

Clique

Modulator

Redundant
Solution

Nice
Modulator

Size Bound
PHCAVD

(G, k)

6 Approximate
Solution

ApproxPHCAD

Hitting Set

RedundantPHCAD

R Rule 1

Component

Size Bound

Bound # of

Components

O(k88)
sized kernel

Procedure Mark-1

R Rule 2

R Rule 3,4,5

R Rule 6, 7

Fig. 1. Flowchart of the Kernelization algorithm for PHCAVD.

2 Preliminaries

Sets and Graph Notations. We denote the set of natural numbers by N. For
n ∈ N, by [n] and [n]0, we denote the sets {1, 2, · · · , n} and {0, 1, 2, · · · , n},
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respectively. For a graph G, V (G) and E(G) denote the set of vertices and edges,
respectively. The neighborhood of a vertex v, denoted by NG(v), is the set of
vertices adjacent to v. For A,B ⊆ V (G) with A∩B = ∅, E(A,B) denotes the set
of edges with one endpoint in A and the other in B. For a set S ⊆ V (G), G− S
is the graph obtained by removing S from G and G[S] denotes the subgraph of
G induced on S. A path P = v1, . . . , vℓ is a sequence of distinct vertices where
every consecutive pair of vertices is adjacent. We say that P starts at v1 and
ends at vℓ. The vertex set of P , denoted by V (P ), is the set {v1, . . . , vℓ}. The
internal vertices of P is the set V (P ) \ {v1, vℓ}. The length of P is defined as
|V (P )| − 1. A cycle is a sequence v1, . . . , vℓ of vertices such that v1, . . . , vℓ is a
path and vℓv1 is an edge. A cycle (or path) v1, . . . , vℓ is also represented as the
ordered set {v1, . . . , vℓ}. A set Q ⊆ V (G) of pairwise adjacent vertices is called
a clique. A hole is an induced cycle of length at least four. A vertex is isolated if
it has degree zero. For a pair of sets A,B ⊆ V (G), we say S is an A-B cut in G
if there is no edge (u, v) where u ∈ A \ S, v ∈ B \ S. Such a S with minimum
cardinality is called as minimum A-B cut. The distance between two vertices u
and v denoted by dG(u, v) is the length of a shortest uv path in the graph G.
The complement graph G of a graph G is defined in the same set of vertex V (G)
such that (u, v) ∈ E(G) if and only if (u, v) /∈ E(G). For ℓ ≥ 3, we use Cℓ to
denote an induced cycle on ℓ vertices; if we add a new vertex to a Cℓ and make
it adjacent to none or each vertex in Cℓ we end with C∗

ℓ or Wℓ, respectively.
A Monad is a C∗

ℓ with ℓ ≥ 4. We call the Cℓ as M-Hole and the corresponding
isolated vertex as centre of the Monad. For graph-theoretic terms and definitions
not stated explicitly here, we refer to [6].

Parameterized problems and kernelization. A parameterized problem Π is a sub-
set of Γ ∗×N for some finite alphabet Γ . An instance of a parameterized problem
consists of (X, k), where k is called the parameter. The notion of kernelization
is formally defined as follows. A kernelization algorithm, or in short, a kernel-
ization, for a parameterized problem Π ⊆ Γ ∗ × N is an algorithm that, given
(X, k) ∈ Γ ∗ ×N, outputs in time polynomial in |X|+ k a pair (X ′, k′) ∈ Γ ∗ ×N
such that (a) (X, k) ∈ Π if and only if (X ′, k′) ∈ Π and (b) |x′|, |k| ≤ g(k),
where g is some computable function depending only on k. The output of ker-
nelization (X ′, k′) is referred to as the kernel and the function g is referred to as
the size of the kernel. If g(k) ∈ kO(1) , then we say that Π admits a polynomial
kernel. We refer to the monographs [7,10,21] for a detailed study of the area of
kernelization.

Proper Helly Circular-arc Graphs. A proper Helly circular-arc graph is an in-
tersection graph of a set of arcs on a circle such that none of the arcs properly
contains another (proper) and every set of pairwise intersecting arcs has a com-
mon intersection (Helly). The following is a characterization of proper Helly
circular arc graphs.

Proposition 1 ([16]). A graph is a proper Helly circular-arc graph if and only
if it contains neither claw, net, tent, wheel of size 4, wheel of size 5, complement
of cycle of length 6, nor Monad of length at least 4 as induced subgraphs.
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(a) C∗
3 (claw) (b) S3 (tent) (g) C∗

` (Monad)(f) C6(e) W5(d) W4(c) S3 (net)

` ≥ 4

Fig. 2. Forbidden induced subgraphs of proper Helly circular-arc graphs.

Proposition 2 (Theorem 1.3 [4]). PHCAVD admits a polynomial-time 6-
approximation algorithm, called ApproxPHCAD.

Nice Clique Partition. For a connected graph G, a clique partition Q =
(Q1, Q2, . . . , Q|Q|(= Q0)) is called a nice clique partition of G if (i)

⋃
i V (Qi) =

V (G), (ii) V (Qi) ∩ V (Qj) = ∅ if i ̸= j, and (iii) E(Qi, Qj) = ∅ if |i − j| > 1
holds. In such a nice clique partition every edge of G is either inside a clique in
Q or present between vertices from adjacent cliques. For a proper circular-arc
graph such a partition always exists and can be obtained in nO(1) time using a
procedure similar to that for a proper interval graph [15].

3 Constructing an Efficient Modulator

We classify the set of obstructions for proper Helly circular-arc graphs as follows.
Any obstruction of size less than 12 is known as a small obstruction, while
other obstructions are said to be large. In this section we construct an efficient
modulator T1, of size O(k12) such that G − T1 is a proper Helly circular-arc
graph with some additional properties that are mentioned in later part.

Proposition 3 (Lemma 3.2 [11]). Let F be a family of sets of cardinality
at most d over a universe U and let k be a positive integer. Then there is an
O(|F|(k + |F|)) time algorithm that finds a non-empty family of sets F ′ ⊆ F
such that

1. For every Z ⊆ U of size at most k, Z is a minimal hitting set of F if and
only if Z is a minimal hitting set of F ′; and

2. |F ′| ≤ d!(k + 1)d.

Using proposition 3 we identify a vertex subset of V (G), which allows us to
forget about small obstructions in G and concentrate on large obstructions for
the kernelization algorithm for PHCAVD.

Lemma 1. Let (G, k) be an instance of PHCAVD. In polynomial-time, either
we conclude that (G, k) is a No-instance, or we can construct a vertex subset T1

such that

1. Every set Y ⊆ V (G) of size at most k is a minimal hitting set for all small
obstructions in G if and only if it is a minimal hitting set for all small
obstructions in G[T1]; and
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2. |T1| ≤ 12!(k + 1)
12

+ 6k.

Proof. Using proposition 2, in polynomial-time we construct a 6-approximate
solution T ′. We also construct FG, UG where UG consists of all the vertices
in G while FG contains every minimal set of vertices in G that induces a small
obstruction. Applying proposition 3 on FG, UG, in polynomial-time we construct
a vertex set T ′′. If |T ′| > 6k or |T ′′| > (12+1)!(k+1)12, we conclude that (G, k)
is a No-instance. Otherwise, we have a modulator T1 = T ′ ∪ T ′′ of size O(k12),
such that G− T1 is a proper Helly circular-arc graph, and every set Y ⊆ V (G)
of size at most k is a minimal hitting set of all small obstructions in G if and
only if it is a minimal hitting set for all small obstructions in G[T1]. ⊓⊔

Let S be a minimal (or minimum) solution of size at most k. Then, the only
purpose of the vertices in S ∩ (V (G) \ T1) is to hit large obstructions. We call
the modulator constructed above an efficient modulator. We summarize these
discussions in the next lemma.

Lemma 2. Let (G, k) be an instance of PHCAVD. In polynomial time, we can
either construct an efficient modulator T1 ⊆ V (G) of size O(k12), or conclude
that (G, k) is a No-instance.

4 Computing a Redundant Solution

In this section, our main purpose is to prove lemma 7. Intuitively, this lemma
asserts that in nO(1) time we can compute an r-redundant solution M whose
size is polynomial in k (for a fixed constant r). Such a set M plays a crucial
role in many of the reduction rules that follow this section while designing our
kernelization algorithm. We remark that in this section we use the letter ℓ rather
than k to avoid confusion, as we will use this result with ℓ = k+2. Towards the
definition of redundancy, we require the following notions and definitions.

Definition 1 (t-solution). Let (G, k) be an instance of PHCAVD. A subset
S ⊆ V (G) of size at most t such that G− S is a proper Helly circular-arc graph
is called a t-solution.

Definition 2 (t-necessary). A family W ⊆ 2V (G) is called t-necessary if and
only if every t-solution is a hitting set for W.

Given a family W ⊆ 2V (G), we say that an obstruction O is covered by W if
there exists W ∈ W, such that W ⊆ V (O).

Definition 3 (t-redundant). Given a family W ⊆ 2V (G) and t ∈ N, a subset
M ⊆ V (G) is t-redundant with respect to W if for every obstruction O that is
not covered by W, it holds that |M ∩ V (O)| > t.

Definition 4. Let G be a graph, U ⊆ V (G), and t ∈ N. Then, copy(G,U, t) is
defined as the graph G′ in the vertex set V (G)∪{vi | v ∈ U, i ∈ [t]} and the edge
set E(G)∪{(ui, v) | (u, v) ∈ E(G), u ∈ U, i ∈ [t]}∪{(ui, vj) | (u, v) ∈ E(G), u, v ∈
U, i, j ∈ [t]} ∪ {(v, vi) | v ∈ U, i ∈ [t]} ∪ {(vi, vj) | v ∈ U, i, j ∈ [t], i ̸= j}.
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Informally, copy(G,U, t) is simply the graph G where for every vertex u ∈ U ,
we add t twins that (together with u) form a clique. Intuitively, this operation
allows us to make a vertex set “undeletable”; in particular, this enables us to
test later whether a vertex set is “redundant” and therefore we can grow the
redundancy of our solution, or whether it is “necessary” and hence we should
update W accordingly. Before we turn to discuss computational issues, let us
first assert that the operation in definition 4 does not change the class of the
graph, which means it remains a proper Helly circular-arc graph. We verify this
in the following lemma.

Lemma 3. Let G be a graph, U ⊆ V (G), and t ∈ N. If G is a proper Helly
circular-arc graph, then G′ = copy(G,U, t) is also a proper Helly circular-arc
graph.

Proof. Suppose that G is a proper Helly circular-arc graph. Then G admits a
proper circular-arc representation and has Helly property (no three arcs cover
the circle [4]) i.e. all its vertices can be presented as arcs on a circle C. Notice
that the newly introduced vertices in G′ are twin (copy) vertices of G. These
twin vertices are given the same arc representations on C as the original vertices
in G. It is easy to see that this indeed is a proper circular-arc representation of G′

with Helly property and hence G′ is also a proper Helly circular-arc graph. ⊓⊔

Now, we present two simple claims that exhibit relations between the algo-
rithm ApproxPHCAD and definition 4. After presenting these two claims, we will
be ready to give our algorithm for computing a redundant solution. Generally
speaking, the first claim shows the meaning of a situation where ApproxPHCAD
returns a “large” solution; intuitively, for the purpose of the design of our algo-
rithm, we interpret this meaning as an indicator to extend W.

Lemma 4. Let G be a graph, U ⊆ V (G), and ℓ ∈ N. If the algorithm ApproxPHCAD
returns a set A of size larger than 6ℓ when called with G′ = copy(G,U, 6ℓ) as
input, then {U} is ℓ-necessary.

Proof. Suppose that ApproxPHCAD returns a set A of size larger than 6ℓ when
called with G′ as input. Then, (G′, ℓ) is a No-instance. If (G, ℓ) is a No-instance,
then trivially, we can say that {U} is ℓ-necessary (as there is no solution of
size at most ℓ, so the statement is vacuously true). Now consider the case when
G has an ℓ-solution S such that S ∩ U = ∅. In particular, Ĝ = G − S is a
proper Helly circular-arc graph such that U ⊆ V (Ĝ). However, this means that
copy(Ĝ, U, 6ℓ) = G′−S, which by lemma 3 implies that G′−S is a proper Helly
circular-arc graph. Thus, S is an ℓ-solution for G′, which is a contradiction (as
(G′, ℓ) is a No-instance). ⊓⊔

Complementing our first claim, the second claim exhibits the meaning of
a situation where ApproxPHCAD returns a “small” solution A; we interpret this
meaning as an indicator of growing the redundancy of our current solution M
by adding A —- indeed, this lemma implies that every obstruction is hit one
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more time by adding A to a subset U ⊆ M (to grow the redundancy of M , every
subset U ⊆ M will have to be considered).

Algorithm 2: RedundantPHCAD (G, ℓ, r)

1. Initialization:
M0 := ApproxPHCAD(G),
W0 := ∅,
T0 := {(v) | v ∈ M0}.

2. If |M0| > 6ℓ, return “(G, ℓ) is a No-instance”.
Otherwise, i = 1 and go to Step 3.

3. While i ≤ r, for every tuple (v0, v1, . . . , vi−1) ∈ Ti−1:
(a) A := ApproxPHCAD(copy(G, {v0, v1, . . . , vi−1}, 6ℓ)).
(b) If |A| > 6ℓ, Wi := Wi−1 ∪ {{v0, v1, . . . , vi−1}}.
(c) Otherwise,

Mi := Mi−1 ∪ {u | u ∈ (A ∩ V (G)) \ {v0, v1, . . . , vi−1}},
Ti := Ti−1 ∪ {(v0, v1, . . . , vi−1, u) | u ∈ (A ∩ V (G)) \
{v0, v1, . . . , vi−1}}.

(d) i = i+ 1;
4. Return (Mr,Wr).

Lemma 5. Let G be a graph, U ⊆ V (G), and ℓ ∈ N. If the algorithm ApproxPHCAD
returns a set A of size at most 6ℓ when called with G′ = copy(G,U, 6ℓ) as input,
then for every obstruction O of G, |V (O)∩U |+1 ≤ |V (O)∩ (U ∪ (A∩ V (G)))|.

Now, we describe our algorithm, RedundantPHCAD, which computes a redun-
dant solution. First, RedundantPHCAD initializes M0 to be the 6-approximate
solution to PHCAVD with (G, ℓ) as input, W0 := ∅ and T0 := {(v) | v ∈ M0}. If
|M0| > 6ℓ, then RedundantPHCAD concludes that (G, ℓ) is a No-instance. Other-
wise, for i = 1, 2, . . . , r (in this order), the algorithm executes the following steps
(Step 3 in the figure below) and eventually, it outputs the pair (Mr,Wr). In the
RedundantPHCAD algorithm, by ApproxPHCAD (H) we mean the 6-approximate
solution returned by the approximation algorithm to the input graph H.

Let us comment that in this algorithm we make use of the sets Ti−1 rather
than going over all subsets of size i of Mi−1 in order to obtain a substantially
better algorithm in terms of the size of the redundant solution produced.

The properties of the algorithm RedundantPHCAD that are relevant to us
are summarized in the following lemma and observation, which are proved by
induction and by making use of Lemmata lemma 3, lemma 4 and lemma 5.
Roughly speaking, we first assert that, unless (G, ℓ) is concluded to be a No-
instance, we compute sets Wi that are ℓ-necessary as well as that the tuples in
Ti “hit more vertices” of the obstructions in the input as i grows larger.

Lemma 6. Consider a call to RedundantPHCAD with (G, ℓ, r) as input that did
not conclude that (G, ℓ) is a No-instance. For all i ∈ [r]0, the following conditions
hold:
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1. For any set W ∈ Wi, every solution S of size at most ℓ satisfies W ∩S ̸= ∅.
2. For any obstruction O of G that is not covered by Wi, there exists (v0, v1, . . . , vi) ∈

Ti such that {v0, v1, . . . , vi} ⊆ V (O).

Proof. The proof is by induction on i. In the base case, where i = 0, Condition
item 1 trivially holds as W0 = ∅, and thus there are no sets in W0. Condition
item 2 holds as M0 is a solution (so each obstruction must contain at least one
vertex from M0) and T0 simply contains a 1-vertex tuple for every vertex in M0.
Now, suppose that the claim is true for i− 1 ≥ 0, and let us prove it for i.

To prove Condition item 1, consider some set W ∈ Wi. If W ∈ Wi−1,
then by the inductive hypothesis, every solution of size at most ℓ satisfies
W ∩ S ̸= ∅. Thus, we next suppose that W ∈ Wi \ Wi−1. Then, there exists
a tuple (v0, v1, . . . , vi−1) ∈ Ti−1 in whose iteration RedundantPHCAD inserted
W = {v0, v1, . . . , vi−1} into Wi. In that iteration, ApproxPHCAD was called with
copy(G,W, 6ℓ) as input, and returned a set A of size larger than 6ℓ. Thus, by
lemma 4, every solution S of size at most ℓ satisfies W ∩ S ̸= ∅.

To prove Condition item 2, consider some obstruction O of G that is not
covered by Wi. By the inductive hypothesis and since Wi−1 ⊆ Wi, there exists
a tuple (v0, v1, . . . , vi−1) ∈ Ti−1 such that {v0, v1, . . . , vi−1} ⊆ V (O). Consider
the iteration of RedundantPHCAD corresponding to this tuple, and denote U =
{v0, v1, . . . , vi−1}. In that iteration, ApproxPHCAD was called with copy(G,U, 6ℓ)
as input, and returned a set A of size at most 6ℓ. By lemma 5, |V (O)∩U |+1 ≤
|V (O) ∩ (U ∪ (A ∩ V (G)))|. Thus, there exists vi ∈ (A ∩ V (G)) \ U such that
U∪{vi} ⊆ V (O). However, by the specification of ApproxPHCAD, this means that
there exists (v0, v1, . . . , vi) ∈ Ti such that {v0, v1, . . . , vi} ⊆ V (O). ⊓⊔

Towards showing that the output set Mr is “small”, let us upper bound the
sizes of the sets Mi and Ti.

Observation 1 Consider a call to RedundantPHCAD with (G, ℓ, r) as input that
did not conclude that (G, ℓ) is a No-instance. For all i ∈ [r]0, |Mi| ≤

∑i
j=0(6ℓ)

j+1,
|Ti| ≤ (6ℓ)i+1 and every tuple in Ti consists of distinct vertices.

Proof. The proof is by induction on i. In the base case, where i = 0, the correct-
ness follows as ApproxPHCAD returned a set of size at most 6ℓ. Now, suppose that
the claim is true for i − 1 ≥ 0, and let us prove it for i. By the specification of
the algorithm and inductive hypothesis, we have that |Mi| ≤ |Mi−1|+6ℓ|Ti−1| ≤∑i+1

j=1(6ℓ)
j and |Ti| ≤ 6ℓ|Ti−1| ≤ (6ℓ)i+1. Moreover, by the inductive hypothesis,

for every tuple in Ti, the first i vertices are distinct, and by the specification of
ApproxPHCAD, the last vertex is not equal to any of them. ⊓⊔

By the specification of RedundantPHCAD, as a corollary to lemma 6 and ob-
servation 1, we directly obtain the following result.

Corollary 1. Consider a call to RedundantPHCAD with (G, ℓ, r) as input that did
not conclude that (G, ℓ) is a No-instance. For all i ∈ [r]0, Wi is an ℓ-necessary
family and Mi is a

∑i
j=0(6ℓ)

j+1-solution that is i-redundant with respect to Wi.
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Lemma 7. Let r ∈ N be a fixed constant, and (G, ℓ) be an instance of PH-
CAVD. In polynomial-time, it is possible to either conclude that (G, ℓ) is a
No-instance, or compute an ℓ-necessary family W ⊆ 2V (G) and a set M ⊆ V (G),
such that W ⊆ 2M and M is a (r + 1)(6ℓ)r+1-solution that is r-redundant with
respect to W.

Proof. Clearly, RedundantPHCAD runs in polynomial-time (as r is a fixed con-
stant), and by the correctness of ApproxPHCAD, if it concludes that (G, ℓ) is a No-
instance, then this decision is correct. Thus, since

∑r
i=0(6ℓ)

i+1 ≤ (r+1)(6ℓ)r+1,
the correctness of lemma 7 now directly follows as a special case of corollary 1.
Thus, our proof of lemma 7 is complete. ⊓⊔

In light of lemma 7, from now on, we suppose that we have an ℓ-necessary
family W ⊆ 2V (G) along with a (r + 1)(6ℓ)r+1-solution M that is r-redundant
with respect to W for r = 5. Let us note that, any obstruction in G that is
not covered by W intersects M in at least six vertices. We have the following
reduction rule that follows immediately from lemma 6.

Reduction Rule 1 Let v be a vertex such that {v} ∈ W. Then, output the
instance (G− {v}, k − 1).

From here onwards we assume that each set in W has a size at least 2.
Nice Modulator. Once we construct both the efficient modulator T1 and re-
dundant solution M , we take their union and consider that set of vertices as a
modulator, we called it as nice modulator.

From here onwards, for the remaining sections, we assume that

We have a nice modulator T ⊆ V (G) along with (k + 2)-necessary family
W ⊆ 2T satisfying the following:
• G− T is a proper Helly circular-arc graph.
• |T | ≤ O(k12).
• For any large obstruction O containing no W ∈ W, we have |V (O)∩T | ≥
6.

5 Bounding the Size of each Clique

In this section, we consider a nice modulator T of G obtained in the previous
section and we bound the size of each clique in a nice clique partition Q of G−T
in polynomial time. If there is a large clique in Q of size more than O(k12), we
can safely find and remove an irrelevant vertex from the clique, thus reducing
its size. Next, we prove a simple result that will later be used to bound the size
of each clique in G− T .

Lemma 8. Let H be an induced path in G. Consider a vertex v ∈ V (G)\V (H).
If v has more than four neighbors in V (H) then G[V (H)∪{v}] contains a small
obstruction (claw).
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Proof. Assume that |N(v) ∩ V (H)| ≥ 5. Let H be an induced path from x to
y for some x, y ∈ V (G). Let v1, v2, v3, v4, v5 ∈ V (H) be the first 5 neighbours
of v that appear as we traverse H from x to y. Since the path is induced so
(v1, v3), (v3, v5) /∈ E(G). So {v, v1, v3, v5} induces a C∗

3 (claw), which is a small
obstruction. ⊓⊔

Marking Scheme. We start with the following marking procedure, which marks
kO(1) vertices in each clique Qi ∈ Q.

We will now bound the size of the set T (Qi).

Remark 1. Observe that the procedure Mark-1can be executed in polynomial
time. Also, note that |T (Qi)| ≤ 2(k + 1)|T |4.

Reduction Rule 2 If there exists a vertex v ∈ Qi \ T (Qi) for some clique
Qi ∈ Q ⊆ V (G) \ T , then delete v.

Lemma 9. Reuction Rule 2 is safe.

Proof. Consider an application of reduction rule 2 in which a vertex, say v ∈
Qi \ T (Qi) was deleted from some clique Qi ∈ Q. we claim the following.

Claim. (G, k) is a Yes-instance of PHCAVD if and only if (G − v, k) is a Yes-
instance of PHCAVD.

(⇒) If (G, k) is a Yes-instance, then so is (G− v, k), since G− v is an induced
subgraph of G.
(⇐) To prove the other direction we use contradiction. Suppose (G − v, k) is a
Yes-instance but (G, k) is not. And let X ⊆ V (G − v) be a solution of size at
most k. That is (G − v) − X is a proper Helly circular-arc graph. Since (G, k)
is a No-instance, G − X can not be a proper Helly circular-arc graph. Hence
G−X must contain an obstruction, say, O. Clearly, v must be a vertex in V (O),
otherwise, O would also be an obstruction in (G− v)−X, which contradicts the
fact that (G− v)−X is a proper Helly circular-arc graph.

We first claim that O is a large obstruction. Suppose it is not, i.e. O is a small
obstruction. Note that X hits all obstructions in G− v, and G[T ] is a subgraph
of G − v as v /∈ T . So X also hits all obstructions in G[T ], in particular, also
all small obstructions in G[T ]. Let Y ⊆ X be a minimal hitting set for all small
obstructions in G[T ]. Then, by the definitions of T and Y , we can conclude that
Y hits all small obstructions in G as well (using lemma 1). But since O is an
obstruction contained in G − X and Y ⊆ X, O has to be a large obstruction
in G − Y , a contradiction. Thus, O being a large obstruction in G − X must
be Cℓ

∗ (Monad) where ℓ > 12. Also v ∈ V (O). So there is no small obstruction
containing v in G−X.

Next, we claim that such an obstruction O can not contain any W ∈ W. As
X ∪ {v} is a (k + 1)-solution for G, X ∪ {v} is a hitting set for the (k + 2)-
necessary family W. But O ∩ (X ∪ {v}) ̸= ∅. This implies that O does not
contain any W ∈ W. So, M and hence T contains at least five vertices from O
i.e. |V (O) ∩ T | ≥ 5.
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To show equivalence between the instances (G, k) and (G − v, k), we either
find an obstruction O′ in (G − v) − X or we show that v is a part of small
obstruction in G − X. We argue for the following two cases depending on the
nature of v in V (O). We use prev(v) and next(v) to denote the adjacent vertices
of v in V (O) (here the selection is arbitrary). Let g denote the centre of this
Monad O.

Case A Here we consider the case when vertex v is not the centre of the Monad
O := C∗

ℓ , i.e., v ̸= g. We argue for all the following eight cases depending on
whether the vertices prev(v), next(v), and g of O belong to T or not. Notice
that v was deleted because it was an irrelevant (unmarked) vertex. From the
redundant solution property (lemma 7), we know that O has at least five
vertices from T and v is adjacent to at most two of them while non-adjacent
to the rest.

1. prev(v) ∈ T, next(v) ∈ T, g ∈ T . Let u be a vertex in O ∩ T such that
(u, v) /∈ E(G). Note that such a vertex u always exists because of the redun-
dant solution property. During Procedure Mark-1, we have added a set S :=
Marki[A,B] of at least 2(k+1) vertices from Qi where A = {prev(v), next(v)}
and B = {u, g}. Otherwise, we would have added v to T (Qi). So each ver-
tex in S is non-adjacent to both u and g and adjacent to both prev(v) and
next(v). Since |S| > k, there exists a vertex in S which is not in X. Let
v′ be such a vertex (arbitrarily chosen) from S \ X. Assume that u1 and
u2 are the two closest vertices of u along the clockwise and anti-clockwise
directions, respectively in V (O), which are also adjacent to v′. Notice that
there is an induced path P between u1 and u2 passing through u such that
V (P ) ⊆ V (O) and N(v′) ∩ V (P − u1 − u2) = ∅. Clearly, v /∈ P . Let C be
the cycle induced by the vertices V (P )∪ {v′}. Since v′ /∈ X and P ∩X = ∅,
C ∪ {g} forms an obstruction that is contained in (G − v) − X. And this
contradicts the fact that X is a solution to G− v for PHCAVD.

2. prev(v) ∈ T, next(v) ∈ T, g /∈ T . Let u be a vertex in O ∩ T such that
(u, v) /∈ E(G). Recall that during Procedure Mark-1, we have added a
set S := Marki[A,B] of at least 2(k + 1) vertices from Qi where A =
{prev(v), next(v)} and B = {u}. Otherwise, we would have added v to T (Qi).
But each vertex in S is adjacent to both prev(v) and next(v). Since |S| > k,
there exists a vertex in S which is not in X. Let v′ be such a vertex (arbi-
trarily chosen) from S \X. If (v′, g) /∈ E(G), using similar arguments as in
case A.1. we can find an induced subgraph O′ in G which is an obstruction
in (G − v) − X, a contradiction. Else, (v′, g) ∈ E(G). In this case, we can
a find a C∗

3 , in (G− v)−X induced by the vertices {v′, prev(v), next(v), g},
which is an obstruction in (G− v)−X, again a contradiction.

3. prev(v) ∈ T, next(v) /∈ T, g ∈ T . Let u be a vertex in O ∩ T such that
(u, v) /∈ E(G). Note that such a vertex u always exists because of the re-
dundant solution property. Recall that during Procedure Mark-1, we have
added a set S := Marki[A,B] of at least 2(k + 1) vertices from Qi where
A = {prev(v)} and B = {u, g}. Otherwise, we would have added v to T (Qi).
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In S, we must have added the left most (k + 1) vertices, say S1 and the
right most (k + 1) vertices, say S2 in Qi. Since |S1| > k and |S2| > k,
there exists some vertices in each of S1 and S2 which are not in X. Let
v′1 and v′2 be a pair of such vertices (arbitrarily chosen) from S1 \ X and
S2 \ X, respectively. Since v, v′1, v

′
2 ∈ Qi and (v, next(v)) ∈ E(G) , either

v′1 or v′2 must be adjacent to next(v). Without loss of generality, we assume
that (v′1, next(v)) ∈ E(G). Since {prev(v), next(v)} ⊆ N(v′1) and v′1 is non-
adjacent to both u and g, so there must exist two distinct vertices u1 and
u2 in O such that {u1, u2} ⊆ N(v′1) with an induced path P between them
passing through u where V (P ) ⊆ V (O) and N(v′1) ∩ V (P − u1 − u2) = ∅.
Clearly, v /∈ V (P ), as (v, v′1) ∈ E(G). Let C be the cycle induced by the
vertices V (P ) ∪ {v′1}. Now P ∩ X = ∅ and v′1 /∈ X together imply that
O′ := C ∪ {g} is an obstruction in (G− v)−X, a contradiction.

4. prev(v) /∈ T, next(v) ∈ T, g ∈ T . Since the selection of prev(v) and next(v)
is arbitrary, so arguments for this case are similar to that of case A.3.

5. prev(v) ∈ T, next(v) /∈ T, g /∈ T . Let u be a vertex in O ∩ T such that
(u, v) /∈ E(G). Note that such a vertex u always exists because of the re-
dundant solution property. Recall that during Procedure Mark-1, we have
added a set S := Marki[A,B] of at least 2(k + 1) vertices from Qi where
A = {prev(v)} and B = {u}. Otherwise, we would have added v to T (Qi).
In S, we must have added the left most (k+1) vertices, say S1 and the right
most (k + 1) vertices, say S2 in Qi. Since |S1| > k and |S2| > k, there exist
some vertices in each of S1 and S2 which are not in X. Let v′1 and v′2 be a pair
of such vertices (arbitrarily chosen) from S1 \X and S2 \X, respectively. As
v, v′1, v

′
2 ∈ Qi and (v, next(v)) ∈ E(G) , either v′1 or v′2 must be adjacent to

next(v). Without loss of generality, we assume that (v′1, next(v)) ∈ E(G). If
(v′, g) /∈ E(G) using arguments similar to that in case A.3. , we can find an
induced subgraph O′ in G which is an obstruction in (G− v)−X, a contra-
diction. Else, (v′, g) ∈ E(G). In this case, we can a find a C∗

3 , in (G−v)−X
induced by the vertices {v′, prev(v), next(v), g}, which is an obstruction in
(G− v)−X, again a contradiction.

6. prev(v) /∈ T, next(v) ∈ T, g /∈ T . Since selection of prev(v) and next(v)
is arbitrary, so arguments for this case is similar to that of case A.5.

7. prev(v) /∈ T, next(v) /∈ T, g ∈ T . Let u be a vertex in O ∩ T such that
(u, v) /∈ E(G). Note that such a vertex u always exists because of the re-
dundant solution property. Recall that during Procedure Mark-1, we have
added a set S := Marki[A,B] of at least 2(k + 1) vertices from Qi where
A = ∅ and B = {u, g}. Otherwise, we would have added v as well to T (Qi).
If there exists a vertex v′ ∈ S \ X such that (v′, prev(v)) /∈ E(G) and
(v′, next(v)) /∈ E(G), then we get an induced subgraph C∗

3 , in G − X in-
duced by the vertices {v, v′, prev(v), next(v)}, which is a small obstruction
in G−X. This is a contradiction to the fact that there is no small obstruc-
tion containing v in G − X. If there exists a vertex v′ ∈ S \ X such that
(v′, prev(v)) ∈ E(G) and (v′, next(v)) ∈ E(G), then using the same procedure
as in case A.1. , we can find an induced subgraph O′ in G which is an obstruc-



A Polynomial Kernel for Proper Helly Circular-arc Vertex Deletion 15

tion in (G−v)−X, a contradiction. Else, each vertex in S is adjacent to ex-
actly one of prev(v) and next(v). During the procedure Mark-1, in S we must
have added the left most (k + 1) vertices, say S1 and the right most (k + 1)
vertices, say S2 in Qi. Since |S1| > k and |S2| > k, there exist some vertices
in each of S1 and S2 which are not in X. Let v′1 and v′2 be a pair of such ver-
tices (arbitrarily chosen) from S1 \X and S2 \X, respectively. Without loss
of generality, we assume that (v′1, prev(v)) ∈ E(G) and (v′2, next(v)) ∈ E(G).
Clearly, (v′2, prev(v)) /∈ E(G) and (v′1, next(v)) /∈ E(G). Since u is non-
adjacent to both v′1 and v′2, there exists a pair of vertices u1 and u2 in O such
that (u1, v

′
1) ∈ E(G), (u2, v

′
2) ∈ E(G) with an induced path P ⊆ O between

u1 and u2 passing through u where N({v′1, v′2})∩V (P−u1−u2) = ∅. Clearly,
v /∈ P , as (v, v′1), (v, v

′
2) ∈ E(G). Let C be the cycle induced by the vertices

V (P ) ∪ {v′1, v′2}. Now P ∩X = ∅, v′1, v′2 /∈ X, N(g) ∩ {v′1, v′2} = ∅ together
imply that O′ := C ∪ {g} is an obstruction in (G− v)−X, a contradiction.

8. prev(v) /∈ T, next(v) /∈ T, g /∈ T . Let u be a vertex in O ∩ T such that
(u, v) /∈ E(G). Note that such a vertex u always exists because of the re-
dundant solution property. But during Procedure Mark-1, we have added a
set S := Marki[A,B] of at least 2(k + 1) vertices from Qi where A = ∅ and
B = {u}. Otherwise, v would have been added to T (Qi).
If there exists a vertex v′ ∈ S \ X such that v′ is non-adjacent to both
prev(v) and next(v), then we can a find a C∗

3 in G − X induced by the
vertices {v, v′, prev(v), next(v)}, which is a small obstruction containing v in
G−X, a contradiction.
If there exists a vertex v′ ∈ S \ X such that (v′, g) ∈ E(G) and v′ is
adjacent to both prev(v) and next(v), then we can a find a C∗

3 induced by
the vertices {v′, prev(v), next(v), g}, which is an obstruction in (G− v)−X,
a contradiction.
If there exists a vertex v′ ∈ S \ X such that (v′, g) ∈ E(G) and v′ is
adjacent to exactly one of prev(v) and next(v), then we argue as follows.
Without loss of generality, we assume that (v′, prev(v)) ∈ E(G). Suppose
v∗ is the adjacent vertex of prev(v) other than v in the obstruction. When
(v′, v∗) /∈ E(G), we can a find a S3, in G − X induced by the vertices
{v, v′, prev(v), v∗, g, next(v)}, which is a small obstruction containing v, a
contradiction. Else, when (v′, v∗) ∈ E(G), we can a find a C∗

3 , in G − X
induced by the vertices {v′, v, v∗, g}, which is a small obstruction containing
v in G−X, a contradiction.
If there exists a vertex v′ ∈ S \ X such that (v′, g) /∈ E(G) and v′ is
adjacent to both prev(v) and next(v), then using the same arguments as in
case A.1. , we can find an induced subgraph O′ in G which is an obstruction
in (G− v)−X, a contradiction.
Else, each vertex in S that is non-adjacent to g, must be adjacent to exactly
one of prev(v) and next(v). During the procedure Mark-1, in S, we would
have added the left most (k + 1) vertices, say S1 and the right most (k + 1)
vertices, say S2 from Qi. Since |S1| > k and |S2| > k, there exist some
vertices in each of S1 and S2, that are not in X. Let v′1 and v′2 be a pair
of such vertices (arbitrarily chosen) from S1 \ X and S2 \ X, respectively.
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Without loss of generality, let (v′1, prev(v)) ∈ E(G) and (v′2, next(v)) ∈ E(G).
Since u is non-adjacent to both v′1 and v′2, there exists a pair of vertices u1

and u2 in O such that (u1, v
′
1) ∈ E(G), (u2, v

′
2) ∈ E(G) with an induced

path P in the obstruction O between u1 and u2 passing through u where
N({v′1, v′2}) ∩ V (P − u1 − u2) = ∅. Clearly, v /∈ P , as (v, v′1), (v, v

′
2) ∈ E(G).

Let C be the cycle induced by the vertices V (P )∪{v′1, v′2}. Since P ∩X = ∅,
v′1, v

′
2 /∈ X, N(g)∩{v′1, v′2} = ∅, O′ := C∪{g} is an obstruction in (G−v)−X,

a contradiction.

Case B Here we consider the case when v is the centre in the Monad O := C∗
ℓ ,

i.e., v = g. So there exists a cycle H in O such that g is not adjacent to
any vertex of V (H). We have deleted the vertex v since it was an irrelevant
(unmarked) vertex. Let u be a vertex in O ∩ T . Clearly, (u, v) /∈ E(G). Let
Qi be a clique in Q containing v. During Procedure Mark-1, we have added
a set S := Marki[A,B] of at least 2(k+1) vertices from Qi where A = ∅ and
B = {u}. Otherwise, we would have added v to T (Qi). Since |S| > k, there
exists some vertex in S which is not in X. Let v′ be such a vertex (arbitrarily
chosen) from S \X.
– If the vertex v′ has no neighbour in H, then O′ := H ∪ {v′} is an

obstruction in (G− v)−X, a contradiction.
– If the vertex v′ has exactly one neighbour, say u′ in H, then we can a find

a C∗
3 , in (G− v)−X, induced by the vertices {u′, prev(u′), next(u′), v′},

which is an obstruction in (G− v)−X, a contradiction.
– If the vertex v′ has exactly two neighbours, say u′ and u′′ in H, then

we argue as following. When (u′, u′′) /∈ E(G), we can find a C∗
3 , in

G − X induced by the vertices {v′, u′, u′′, g}, a contradiction. When
(u′, u′′) ∈ E(G), then we can find a S3, in G−X induced by the vertices
{v′, u′, u′′, prev(u′), next(u′′), g}. For both these sub-cases, we are able to
find small obstructions in G−X containing v, which is a contradiction.

– Else the vertex v′ has at least three neighbours say u1, u2 and u3 in H
where (u1, u3) /∈ E(G) (note that such u1, u3 always exist as H is large).
Then we can find a C∗

3 , in G−X induced by the vertices {v′, u1, u3, g},
which is a small obstruction in G−X containing v, a contradiction.

This completes the proof. ⊓⊔

Procedure Mark-1. Let Qi be a clique. For a pair of disjoint subsets
A,B ⊆ T , where |A| ≤ 2 and |B| ≤ 2, let Marki[A,B] be the set defined
by {v ∈ Qi | A ⊆ N(v), B ∩N(v) = ∅}. We initialize T (Qi) = ∅, and do
as follows:

– If |Marki[A,B]| ≤ 2(k+1), we add all vertices from the set Marki[A,B]
to T (Qi).

– Else, we add the left most (k+1) vertices (clockwise order of vertices
according to their corresponding arc representation) and the right
most (k + 1) vertices (anticlockwise order) in Marki[A,B] to T (Qi).
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With the help of reduction rule 2, after deleting all unmarked vertices from
each Qi ∈ Q, size of each clique Qi is reduced to kO(1). Therefore, we have the
following result. Notice that Q (with the reduced cliques) is also a nice clique
partition of G′ − T in the reduced instance (G′, k).

Lemma 10. Given an instance (G, k) of PHCAVD and a nice modulator T ⊆
V (G) of size kO(1), in polynomial time, we can construct an equivalent instance
(G′, k) such that T ⊆ V (G′) and there exists a nice clique partition Q of G′ − T
such that the size of each clique in Q is bounded by kO(1).

6 Bounding the Size of each Connected Component

From lemma 10, we can assume that the size of every clique in the nice clique
partition Q = (Q1, . . .) of G−T for a given instance (G, k) is bounded by kO(1).
In this section, we will bound the size of each connected component in G − T .
For this purpose, it is sufficient to bound the number of cliques Qi’s from Q
appearing in each connected component.

Let C be such a connected component. Without loss of generality, we assume
that C =

⋃
i(Qi) i.e. in the nice clique partition Q, in the connected component

C, the cliques appear in clockwise direction starting from Q1 as Q1, Q2, . . . etc.
We denote (Q1, Q2, . . .) from C by QC .

Reduction Rule 3 Let v be a vertex in T . If v is contained in at least k + 1
distinct claws (v, ai, bi, ci) intersecting exactly at {v}, where ai, bi, ci ∈ V (G) \T
then delete v from G, and reduce k by 1. The resultant instance is (G−v, k−1).

The correctness of the above reduction rule is easy to see as every solution
to (G, k) of PHCAVD must contain the vertex v. From here onward we assume
that the reduction rule 3 is no longer applicable.

Reduction Rule 4 Let v be a vertex in T . If v has neighbors in more than
6(k + 1) different Qi’s (ai’s being the corresponding neighbors), then remove v
from G and reduce k by 1. The resultant instance is (G− v, k − 1).

Lemma 11. Reduction Rule 4 is safe.

Proof. By the pigeonhole principle, there are at least 3(k + 1) non-consecutive
cliques that have neighbors of v. Let these non-consecutive cliques be denoted
by (Q′

1, Q
′
2, . . .). Now we can construct a set of k + 1 mutually distinct claws

formed by {v, ai, ai+1, ai+2} intersecting exactly and only at {v} where each
aj ∈ Q′

j . But this implies that any solution to (G, k) of PHCAVD must contain
the vertex v. ⊓⊔

From now on, we assume that the reduction rules 3 and 4 are no longer
applicable i.e. every vertex v ∈ T has neighbors in at most 6(k+1) different Qi’
from QC . And we have the following result.
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T
consecutive
good cliques

∈ E ∈ E

Qc

(G, k)

T
∈ E ∈ E

(G′, k)

DL DRF

DL
DR

S

Reduction rule 4

Fig. 3. Description of reduction rule 5.

Lemma 12. Let C be a connected component in G− T . Then there are at most
6(k + 1)|T | many distinct cliques Qi’s from QC such that N(T ) ∩Qi ̸= ∅.

If QC has more than 300|T |k(k+1) cliques, then by the pigeonhole principle
and lemma 12, there are at least 50k consecutive cliques that do not contain
any vertex from N(T ). Let Q1, Q2, . . . , Q50k be the set of 50k such consecutive
cliques in QC which are disjoint from N(T ). Let DL = {Qi | i ∈ [15k, 20k]} ,
DR = {Qi | i ∈ [30k, 35k]}, F = {Qi | i ∈ [20k + 1, 30k − 1]} and Z = DL ∪
DR ∪F . Observe that, for a vertex v ∈ Z and a vertex u ∈ T , distG(u, v) ≥ 15k.
And hence there can not be any small obstruction containing vertices from Z
(observation 2) which we will use to our advantage in many proofs throughout
the current section. Let τ be the size of minimum (Q20k −Q30k) cut in QC .

Reduction Rule 5 Let F be as defined above. Delete all the vertices of F from
G. Introduce a new clique S of size τ . Also, add edges such that G[V (Q20k) ∪
S] and G[V (Q30k) ∪ S] are complete graphs. The cliques appear in the order
Q20k, S,Q30k.

Let G′ be the reduced graph after application of the reduction rule 5. For an
illustration, see fig. 3. Notice that G′−T is a proper Helly circular-arc graph by
construction.

Observation 2 There are no small obstructions containing any vertices from
DL∪F ∪DR in G. Similarly, there are no small obstructions containing vertices
of DL ∪ S ∪ DR in G′.

Proof. Let O be a small obstruction in G such that V (O)∩ (DL ∪F ∪DR) ̸= ∅.
Since for any vertex v ∈ DL ∪ F ∪ DR and a vertex u ∈ T , distG(u, v) ≥ 15k
and |O| ≤ 12, hence V (O) ∩ T = ∅. But this is a contradiction, since G− T has
no obstructions. So there are no small obstructions containing any vertices from
DL ∪ F ∪ DR.
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Let O′ be a small obstruction in G′ such that V (O′) ∩ (DL ∪ S ∪ DR) ̸= ∅,
Since for any vertex v ∈ DL ∪ S ∪ DR and a vertex u ∈ T , distG′(u, v) ≥ 15k
and |O′| ≤ 12, hence V (O′) ∩ T = ∅. But this is a contradiction, since G′ − T
has no obstructions. So there are no small obstructions containing any vertices
from DL ∪ S ∪ DR. ⊓⊔

Observation 3 Any M-Hole H of a Monad with a centre v in G which contains
a vertex from DL ∪ F ∪DR, intersects all cliques in DL ∪ F ∪DR. And such an
H has size at least 20k.

Proof. Without loss of generality suppose H intersects Qi but does not intersect
some Qi+1 ∈ Z. Then the clique Qi′ where i′ = i − 1 contains at least two
vertices from H. This is only possible when H has size at most four (since it
is a Monad). But then H along with any vertex from Qi−3 or Qi+2 will form a
small obstruction completely contained in G − T , which is not possible. Hence
H intersects all cliques in DL ∪ F ∪ DR. ⊓⊔

Observation 4 Any M-Hole H of a Monad with a centre v in G′ which contains
a vertex from DL ∪ S ∪ DR, intersects all cliques in DL ∪ S ∪ DR. And such an
H has size at least 20k.

Proof. Proof is similar to the proof for observation 3. ⊓⊔

Lemma 13. Reduction Rule 5 is safe.

Proof. We show that (G, k) is a Yes-instance of PHCAVD if and only if (G′, k)
is a Yes-instance of PHCAVD.
(⇒) Suppose (G, k) is a Yes-instance and let X be a minimum size solution.
Recall that DL and DR contain (5k+1) cliques each and τ is the size of minimum
(Q20k−Q30k) cut. We note that this cut may include the vertices from Q20k and
Q30k. Let W be the set of vertices from all the cliques in Q20k+1 ∪ . . .∪Q30k−1.

Claim. Either X ∩W = ∅ or |X ∩W | = τ .

Proof. Suppose that X ∩ W ̸= ∅ and |X ∩ W | < τ . Let v ∈ X ∩ W . As X is
also a minimal solution, for every vertex u ∈ X, there exists an obstruction that
does not contain any other vertex from X. This implies that there exists a Monad
containing v and not containing any vertex from X \ {v}. We first show that v
can not be centre of such a Monad. If it is a centre of Monad H∪{v}, then from
observation 4, H ∩Z = ∅. But in Z we have k+1 many cliques and each vertex
of them can create an obstruction (Monad) with H as an M-Hole. Hence X ∩H
can not be empty, which is a contradiction to the fact that X was a minimal
solution. So the obstruction for v must contain v as one of its M-Hole vertices
i.e. v ∈ V (H). Let the centre of this obstruction be z. Notice that X∩H = {v}.
In the M-Hole H, let v1 and v2 be two vertices from Q20k and Q30k respectively
with no other vertex from Q20k ∪Q30k in between. Between v1 and v2, we have
τ many vertex disjoint (induced) paths, say P in W . Since |X ∩W | < τ , it does
not intersect at least one of the paths from P. But then replacing the segment
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of H between v1 and v2 with the non-intersected path, we get a new M-Hole H ′

where X ∩H ′ = ∅. Adding z as centre, we get an obstruction H ′ ∪ z which is
contained in G − X, a contradiction. Hence |X ∩ W | ≥ τ . If |X ∩ W | > τ , we
construct a new set X ′ = (X \W )∪X ′′, where X ′′ is a τ sized min-cut between
Q20k and Q30k, We claim that G−X ′ is also a proper Helly circular-arc graph.
If not, then there is an obstruction in G − X ′. But such an obstruction must
necessarily contain a vertex from X ∩W . Any obstruction containing a vertex
v ∈ X ∩ W is a large obstruction. If this obstruction contains v as centre,
then by arguments similar to the ones made just above, we can say that X \W
also intersects this obstruction, and hence so does X ′. On the other hand, if the
obstruction contains v as a vertex in its M-Hole, then such an obstruction is
hit by the min-cut between Q20k and Q30k in X ′. But X ′ is a strictly smaller
solution than X, which is a contradiction. Hence the claim is proved.

Using the above claim we consider the following cases: Recall that X is a
solution to the Yes-instance (G, k).
Case 1: X ∩W = ∅
Here we claim that X is also a solution to (G′, k). Suppose it is not true. Then
there is an obstruction O in G′−X. Now V (O)∩S ̸= ∅, otherwise we will have the
same obstruction in G−X. Hence this obstruction must be a large obstruction
(from arguments similar to the ones made in observation 3). Let v ∈ (O ∩ S). If
v is a centre in O, then H (H is the M-Hole of O) is contained in G− (Z ∪X).
But any vertex from any clique between Q24k and Q26k with H will form an
obstruction in G−X. Notice that all these (at least) 2k vertices, each form an
obstruction with H. Hence X must intersect H, which is a contradiction to the
fact that H ∪{v} does not contain any vertex from X. For the other case, when
v is part of the M-Hole in O, let v1 and v2 be two vertices of H from Q20k and
Q30k respectively with no other vertex from Q20k ∪ Q30k in between. Since X
does not intersect any vertex from W , replacing the segment of H ∩ S with a
path between v1 and v2, we get a new M-Hole H ′, where X ∩ H ′ = ∅. Adding
z as a centre we get an obstruction H ′ ∪ z which is contained in G − X, a
contradiction.
Case 2: |X ∩W | = τ
Here we claim that X ′ = (X \W ) ∪ S is also a solution to (G′, k). Suppose it is
not true. Then there is an obstruction O in G′ −X ′. But then V (O) ∩W ̸= ∅.
And this obstruction must be a large obstruction (from arguments similar to the
ones made in observation 3. Let v ∈ (O ∩W ). The vertex v must be a centre
in O, since S (and hence X ′) intersects all paths between Q20k and Q30k. But
then H (H is the M-Hole of O) is contained in G − (Z ∪X). And there are at
least k+1 vertices in Z each of which an obstruction with H and at least one of
them, say u is not contained in X. Hence u along with H forms a Monad that is
contained in G−X, a contradiction. Hence X ′ is also a solution to (G′, k). This
completes the proof in the forward direction.

(⇐) Suppose (G′, k) is a Yes-instance of PHCAVD where Y is a minimum size
solution. Let Z ′ = DL ∪ S ∪ DR.
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Claim. Either Y ∩ S = ∅ or |Y ∩ S| = τ .

Proof. Suppose that Y ∩S ̸= ∅ and |Y ∩S| < τ . Let v ∈ Y ∩S. As Y is a minimal
solution, for every vertex u ∈ Y , there exists an obstruction that does not contain
any vertex from Y \{u}. This implies that there exists a Monad containing v and
not containing any vertex in Y \ {v}. We first show that v can not be a centre
of such an obstruction. If it is a centre of an obstruction induced by H ∪ {v},
then by observation 2 H ∩ Z ′ = ∅. But then in Z ′ we have k + 1 many distinct
cliques and each vertex from these cliques can form obstruction with H as a
centre. Hence Y ∩H can not be empty, which is a contradiction to the fact that
Y was a minimal solution. So the obstruction for v must contain v as one of its
M-Hole vertices i.e. v ∈ H. Let the centre of this obstruction be z. Notice that
Y ∩ H = {v}. In the M-Hole H, let v1 and v2 be two vertices from Q20k and
Q30k respectively with no other vertex from Q20k ∪Q30k in between. Between v1
and v2 we have τ many vertex disjoint (induced) paths (P) (each path consists
of exactly one vertex from S). Y does not intersect at least one of these paths
from P. But then replacing the segment of H between v1 and v2 with the non-
intersected path from P, we get a new M-Hole H ′ where Y ∩ H ′ = ∅. Adding
z as the centre, we get an obstruction H ′ ∪ z which is contained in G′ − Y , a
contradiction. Hence Y ∩ S = τ . Hence the claim is proved.

Using the above claim we consider the following cases: Recall that Y is a
minimum size solution to the Yes-instance (G′, k).
Case 1: Y ∩ S = ∅
Here we claim that Y is also a solution to (G, k). Suppose it is not true. Then
there is an obstruction O in G−Y . O∩W ̸= ∅, otherwise we will have the same
obstruction in G′−Y . Hence this obstruction must be a large obstruction (from
arguments similar to the ones made in observation 4). Let v ∈ (O∩W ). If v is a
centre in O, then H (H is the M-Hole of O) is contained in G− (Z ′ ∪ Y ). But
there are at least k+ 1 vertices from Z ′ who along with H form obstructions in
G′ − Y . Hence Y must intersect H, which contradicts the fact that H ∪ {v} is
an obstruction in G − Y . For the other case when v is part of the M-Hole in
O, let v1 and v2 be two vertices from Q20k and Q30k respectively with no other
vertex from Q20k ∪Q30k in between in H. Since Y does not contain any vertex
from S, by replacing the segment of H between v1 and v2 with any vertex of S,
we get a new M-Hole H ′ where Y ∩H ′ = ∅. Adding z as the centre we get an
obstruction H ′ ∪ z which is contained in G′ − Y , which is a contradiction.
Case 2: |Y ∩ S| = τ
Here we claim that Y ′ = (Y \ S) ∪ Y ′′, where Y ′′ is a τ sized min-cut between
Q20k and Q30k, is a solution to (G, k). Suppose it is not true. Then there is an
obstruction O in G−Y ′. But O∩W ̸= ∅ and O must be a large obstruction (from
arguments similar to the ones made in observation 4). Let v ∈ (O ∩W ). Since
there is no path from Q20k to Q30k in G−Y ′, any obstruction must contain v as
its centre only. But then H (H is the M-Hole of O) is contained in G− (Z ∪Y ′)
and hence also in G′− (Z ′∪Y ). And there are k+1 many vertices in Z ′ who can
form obstructions with the M-Hole H. At least one of them is not contained in
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Y . This vertex along with H forms an obstruction that is contained in G′ − Y ,
a contradiction. Hence Y is also a solution to (G, k). This completes the proof
in the reverse direction.
This concludes the proof for the lemma. ⊓⊔

With reduction rule 5, we obtain the following result.

Lemma 14. Given an instance (G, k) of PHCAVD and a nice modulator T ⊆
V (G) of size kO(1), in polynomial time, we can construct an equivalent instance
(G′, k) such that, T ⊆ V (G′) is a nice modulator for G′ and for each connected
component C of G′−T , the number of cliques in QC is at most 300·|T |·k(k+1) =
O(k2 · |T |).

7 Bounding the Number of Connected Components

Until now we have assumed that G − T is connected. Further, in section 6, we
showed that the size of any connected component is upper bounded by kO(1). In
this section, we show that the number of connected components in G−T can be
upper bounded by kO(1). This together with the fact that |T | ≤ kO(1), results in
a polynomial kernel for PHCAVD.

Here we bound the number of connected components with an argument sim-
ilar to the one using which we bounded the neighborhood of the modulator. We
make use of the claw obstruction to get the desired bound. Notice that if any
vertex v in T has neighbors in three different components in G−T , then we get
a claw.

Reduction Rule 6 Let v be a vertex in T such that v has neighbors in at least
3(k + 1) different components in G − T then delete v from G, and reduce k by
1. The resultant instance is (G− v, k − 1).

The correctness of the above reduction rule is easy to see as every solution to
(G, k) of PHCAVD must contain v. From now onwards we assume that reduction
rule 6 is not applicable. And this leads to the following lemma.

Lemma 15. T can have neighbors in at most 3(k + 1)|T | many different com-
ponents.

Now we bound the number of connected components that have no neighbor
in T . Towards that, we classify all such connected components into two classes:
interval connected components (which admit an interval representation) and
non-interval connected components. Here non-interval connected components
cover the entire circle whereas others partially cover the underlying circle.

Claim 1 The number of non-interval connected components in G−T is at most
one.
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Proof. For contradiction suppose there are at least two non-interval connected
components C1, C2 in G − T . Notice that in any proper Helly circular-arc rep-
resentation σ of G− T , the circular-arcs corresponding to all the vertices in C1

together cover the entire circle in the representation. But then there is no other
connected component in G − T that can admit arc representation σ. Hence C2

can not have any circular-arc representation in σ, a contradiction. ⊓⊔

Reduction Rule 7 If there are more than (k + 1) interval connected compo-
nents in G− T that have no neighbor in T , delete all but (k + 1) components.

Lemma 16. Reduction Rule 7 is safe.

Proof. Let (G′, k) be the reduced instance. We show that (G, k) is a Yes-instance
of PHCAVD if and only if (G′, k) is a Yes-instance. The forward direction is
trivial as G′ is an induced subgraph of G. In the backward direction, let (G′, k)
be a Yes-instance. Assume that X is a solution for PHCAVD on (G′, k) and
σ is a proper Helly circular-arc representation of G′ − X. As there are (k + 1)
interval connected components in G − T there always exists a component C in
G−T which has no intersection with X and hence all the vertices in C belong to
G′−X. Now we can always shrink all the arcs corresponding to C in σ to half of
their length. In the freed-up space, we can accommodate the arcs corresponding
to the deleted interval connected components. Hence (G, k) is a Yes-instance.

⊓⊔

From now onwards we assume that reduction rules 6 and 7 are not applicable.
Now these two reduction rules and lemma 15 implies the following result:

Lemma 17. Given an instance (G, k) and a nice modulator T ⊆ V (G) of size
O(k12), in polynomial-time, we can construct an equivalent instance (G′, k′) such
that the number of connected component in G′ − T is O(k · |T |2).

8 Kernel size analysis

Now we are ready to prove the main result of our paper, that is, theorem 1.
Before proceeding with the proof, let us state all the bounds that contributes to
the kernel size.

Size of nice modulator T : O(k12) (from section 4).
Number of connected components in G− T : O(k · |T |2) (by lemma 17).
Number of cliques in any connected component in G− T : O(k2 · |T |) (by
lemma 14).
Size of any clique Qi in G− T : 2(k + 1)|T |4 (by remark 1).

Proof (Proof of theorem 1). From lemma 2 and lemma 7, in polynomial-time, we
can obtain a nice modulator T ⊆ V (G) of size O(k12) or conclude that (G, k) is a
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No-instance. Note that, G−T is a proper Helly circular-arc graph. Next, we take
a nice clique partition of G−T . Now by lemma 17, in polynomial-time we return
a graph G such that G−T has O(k · |T |2) components. By Lemma lemma 14, in
polynomial-time, we can reduce the graph G such that any connected component
in G− T has at most O(k2 · |T |) cliques. Next, we bound the size of each clique
in G − T by 2(k + 1)|T |4 from lemma 10. Hence the graph G − T has at most
O(k · |T |2) · O(k2 · |T |) · 2(k + 1)|T |4, that is, O(k4 · |T |7) many vertices. Recall
that |T | = O(k12). Therefore, the size of the obtained kernel is O(k4 · |T |7), that
is, O(k88). ⊓⊔

9 Conclusion

In this paper, we studied PHCAVD from the perspective of kernelization com-
plexity, and designed a polynomial kernel of size O(k88). We remark that the
size of a kernel can be further optimized with more careful case analysis. How-
ever, getting a kernel of a significantly smaller size might require an altogether
different approach.
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