
Semantics of Attack-Defense Trees for Dynamic
Countermeasures and a New Hierarchy of

Star-free Languages

Thomas Brihaye1[0000−0001−5763−3130], Sophie Pinchinat2, and Alexandre
Terefenko1,2

1 University of Mons, Belgium
2 University of Rennes, France

Abstract. We present a mathematical setting for attack-defense trees,
a classic graphical model to specify attacks and countermeasures. We
equip attack-defense trees with (trace) language semantics allowing to
have an original dynamic interpretation of countermeasures. Interest-
ingly, the expressiveness of attack-defense trees coincides with star-free
languages, and the nested countermeasures impact the expressiveness of
attack-defense trees. With an adequate notion of countermeasure-depth,
we exhibit a strict hierarchy of the star-free languages that does not
coincides with the classic one. Additionally, driven by the use of attack-
defense trees in practice, we address the decision problems of trace mem-
bership and of non-emptiness, and study their computational complexi-
ties parameterized by the countermeasure-depth.

1 Introduction

Security is nowadays a subject of increasing attention as means to protect criti-
cal information resources from disclosure, theft or damage. The informal model
of attack trees is due to Bruce Schneier3 to graphically represent and reason
about possible threats one may use to attack a system. Attack trees have then
been widespread in the industry and are advocated since the 2008 NATO report
to govern the evaluation of the threat in risk analysis. The attack tree model
has attracted the interest of the academic community in order to develop their
mathematical theory together with formal methods (see the survey [24]).

Originally in [20], the model of attack tree aimed at describing how an attack
goal refines into subgoals, by using two operators OR and AND to coordinate
those refinements. The subgoals are understood in a “static” manner in the sense
that there is no notion of temporal precedence between them. Still, with this
limited view, many analysis can be conducted (see for example [7,5]). Then,
the academic community considered two extensions of attack trees. The first
one, called attack-defense tree (adt, for short), is obtained by augmenting attack
trees with nodes representing countermeasures [10,8]. The second one, initiated

3 https://www.schneier.com/academic/archives/1999/12/attack_trees.html

ar
X

iv
:2

31
2.

00
45

8v
1

 [
cs

.F
L

]
 1

 D
ec

 2
02

3

https://www.schneier.com/academic/archives/1999/12/attack_trees.html

by [16,6], concerns a “dynamic” view of attacks with the ability to specify that
the subgoals must be achieved in a given order. This way to coordinate the
subgoals is commonly specified by using operator SAND (for Sequential AND).
In [1], the authors proposed a path semantics for attack trees with respect to
a given a transition system (a model of the real system). However, a unifying
formal semantics amenable to the coexistence of both extensions of attack trees
– namely with the defense and the dynamics – has not been investigated yet.

In this paper, we propose a formal language semantics of adts, in the spirit
of the trace semantics by [2] (for defenseless attack trees), that allows coun-
termeasure features via the new operator co (for “countermeasure”). Interest-
ingly, because in adts, countermeasures of countermeasures exist, we define the
countermeasure-depth (maximum number of nested co operators) and analyze
its role in terms of expressiveness of the model.

First, we establish the Small Model Property for adts with countermeasure-
depth bounded by one (Theorem 1), which ensure the existence of small traces
in a non-empty semantics. This not so trivial result is a stepping stone to prove
further results.

Second, since our model of adts is very close to star-free extended regular
expressions (SEREs for short), that are star-free regular expressions extended
with intersection and complementation, we provide a two-way translation from
the former to the latter (Theorem 2). It is known that the class of languages
denoted by SEREs coincides with the class of star-free languages [18], that can
also be characterized as the class of languages definable in first-order logic over
strings (FO[<]). We make explicit a translation from adts into FO[<] (Lemma 1)
to shed light on the role played by the countermeasure-depth. Our translation
is reminiscent of the constructions in [13] for an alternative proof of the result
in [22] that relates the classic dot-depth hierarchy of star-free languages and the
FO[<] quantifier alternation hierarchy. In particular, we show (Lemma 2) that
any language definable by an adt with countermeasure-depth less than equal to
k is definable in Σk+1, the (k+1)-th level of the first-order quantifier alternation
hierarchy.
Starting from the proof used in [22] to show the strictness of the dot-depth hi-
erarchy, we demonstrate that there exists an infinite family of languages whose
definability by an adt requires arbitrarily large countermeasure-depths. It should
be noticed that our notion of countermeasure-depth slightly differs from the
complementation-depth considered in [21] for extended regular expressions4, be-
cause the new operator and is rather a relative complementation. As a result,
the countermeasure-depth of adts induces a new hierarchy of all star-free lan-
guages, that we call the ADT-hierarchy, that coincides (at least on the very
first levels) neither with the dot-depth hierarchy, nor with the first-order logic
quantifier alternation hierarchy.

Third, we study three natural decision problems for adts, namely the mem-
bership problem (ADT -memb), the non-emptiness problem (ADT -ne) and the
equivalence problem (ADT -equiv). The problem ADT -memb is to determine if

4 arbitrary regular expressions extended with intersection and complementation.

a trace is in the semantics of an adt. From a practical security point of view,
ADT -memb addresses the ability to recognize an attack, say, in a log file. The
problem ADT -ne consists of, given an adt, deciding if its semantics is non-
empty. Otherwise said, whether the information system can be attacked or not.
Finally, the problem ADT -equiv consists of deciding whether two adts describe
the same attacks or not. Our results are summarized in Table 1.

The paper is organized as follows. Section 2 proposes an introductory ex-
ample. Next, we define our model of adts in Section 3, their trace semantics
and countermeasure-depth, and present the Small Model Property for adts with
countermeasure-depth bounded by one. We then show in Section 4 that adts
coincide with star-free languages. We next study the novel hierarchy induced
by the countermeasure-depth (Section 5) and study decision problems on adts
(Section 6).

2 Introductory Example

Consider a thief (the proponent) who wants to steal two documents inside two
different safes (Safe 1 and Safe 2), without being seen. The safes are located
in two different but adjacent rooms (Room 1 and Room 2) in a building; the
entrance/exit door of the building leads to Room 1. The rooms are separated by
a door and each room has a window. Initially, the thief is outside of the building.
A strategy for the proponent to steal the documents is to attempt to open Safe
1 until it succeeds, then open Safe 2 until it succeeds (and finally to exit the
building). However, this strategy can be easily countered by the company, say
by hiring a security guard visiting the rooms on some regular basis.

Security experts would commonly use an adt to describe how the proponent
may achieve her goal and, at the same time, the ways its opponent (the company)
may prevent the proponent from reaching her goal. An informal adt expressing
the situation is given in Figure 1a, where traditionally goals of the proponent are
represented in red circles, while countermeasures of the opponent are represented
in green squares. An arrow from a left sibling to a right sibling specifies that
the former goal must be achieved before starting the latter. A countermeasure
targeting a proponent goal is represented with dashed lines.

As said, the graphical model of Figure 1a is informal and cannot be exploited
by any automated tool for reasoning. With the setting proposed in this contri-
bution, we make it formal, and in particular we work out a new binary operator
co for “countermeasure”, graphically reflected with a curved dashed line between
two siblings: the left sibling is a proponent’s goal while the right sibling is the
opponent’s countermeasure – with this convention, we can unambiguously re-
trieve the player’s type of an adt node. The more formal version of the adt in
Figure 1a is drawn in Figure 1b (details for its construction can be found in
Example 4).

The proposed semantics for adts also allows us to consider nested co opera-
tors to express countermeasures of countermeasures. For example, a proponent
countermeasure against the company countermeasure could be to be disguised

(a) A countermeasure from the Company. (b) Formal representation of the adt

Fig. 1: Adts for the thief and company problem.

as an employee working in the building; we formalise this situation in Exam-
ple 4. It should be observed that nested countermeasure is a core aspect of our
contribution and the main subject of Section 5.

3 Attack-Defense Trees and Countermeasure-Depth

Preliminary notations For the rest of this paper, we fix Prop a finite set of
propositions and we assume that the reader is familiar with propositional logic.
We use typical symbol γ for propositional formulas over Prop and write a val-
uation of the propositional variables a as an element of Σ := 2Prop, that will
be viewed as an alphabet. A trace t over Prop, is finite word over Σ, that is
a finite sequence of valuations. We denote the empty trace by ε, and we define
Σ+ := Σ∗\{ε}. For a trace t = a1...an, we define |t| := n, its the length, as the
number of valuations appearing in t, and we let t[i] := ai, for each i ∈ {1, . . . , n}.
We define the classic concatenation of traces: given two traces t = a1...an and
t′ = a′1...a

′
m, we define t · t′ := a1...ana

′
1...a

′
m. We also lift this operator to sets

of traces in the usual way: given two sets of traces L and L′ ⊆ Σ∗, we let
L ·L′ := {t · t′ : t ∈ L and t′ ∈ L′}. For a trace t = a1...an ∈ Σ∗ and 1 ≤ i ≤ n,
the trace t′ = a1...ai is a prefix of t, written t′ ⪯ t.

We define attack-defense trees (adts) over Prop, as well as their trace seman-
tics and their countermeasure-depth, and develop enlightening examples. Adts
are standard labeled finite trees with a dedicated set of labels based on the special
ϵ label and propositional formulas for leaves and on the set {or, sand,and,co}
for internal nodes.

Definition 1. The set ADT of adts over Prop is inductively defined by:

– the empty-word leaf ϵ and every propositional formula γ over Prop are in
ADT;

– if trees τ1, ..., τn are in ADT , so are or(τ1, ..., τn), sand(τ1, ..., τn), and
and(τ1, ..., τn);

– if trees τ and τ ′ are in ADT , so is co(τ, τ ′).

The size of an adt τ , written |τ | is defined as the sum of the sizes of its
leaves, provided the size of ϵ is 1, while the size of γ is its size when seen as a
propositional formula.

Regarding the semantics, adts describe a set of traces over alphabet Σ :=
2Prop, hence their trace semantics. Formally, for an adt τ , we define the language
Traces(τ) ⊆ Σ∗. First, we set Traces(ϵ) = {ϵ}. Now, a leaf adt hosting formula
γ denotes the reachability goal γ, that is the set of traces ending in a valuation
satisfying γ (we use the classic notations ⊤ = p∨¬p and ⊥ = ¬⊤ with p ∈ Prop).
We make our trace semantics compositional by providing the semantics of the
four operators or, sand, co, and and in terms of how the subgoals described
by their arguments interact. Operator or tells that at least one of the subgoals
has to be achieved. Operator sand requires that all the subgoals need being
achieved in the left-to-right order. The binary operator co requires to achieve
the first subgoal without achieving the second one. Finally, operator and tells
that all subgoals need to be achieved, regardless of the order. Without any
countermeasure, and can be seen as a relaxation of the sand, but it is not true
in general (see example 3).

At the level of the property described by an adt, i.e. a trace language, the
operators correspond to specific language operations: or corresponds to union,
sand to concatenation, co to a relativized complementation. Only and corre-
sponds to a less classic operation: a trace t belongs to the language of and(τ1, τ2)
if t belongs to the language of τ1 and has a prefix in the language of τ2 or vice-
versa. Formally:

Definition 2. Let L1, L2 be two languages over alphabet Σ. The each of L1

and L2 is the language L1 ⊓ L2 := (L1 ·Σ∗ ∩ L2) ∪ (L2 ·Σ∗ ∩ L1).

Because operator ⊓ is associative, we can define L1 ⊓ L2 ⊓ . . . ⊓ Ln that
amounts to being equal to

⋃
i∈{1,...,n}(Li ∩

⋂
j ̸=i Lj ·Σ∗).

Example 1. A word w = a1a2 . . . am belongs to L1 ⊓L2 ⊓L3 whenever there are
three (possibly equal) positions i1, i2, i3 = m such that, for each j ∈ {1, 2, 3},
the word prefix a1 . . . aij ∈ Lπ(j), for some permutation π of (1, 2, 3).

We can now formally define the adt semantics.

Definition 3.

– Traces(ϵ) := {ε} and Traces(γ) := {a1...an ∈ Σ∗ : an |= γ};
In particular, Traces(⊤) = Σ+ and Traces(⊥) = ∅;

– Traces(or(τ1, ..., τn)) := Traces(τ1) ∪ ... ∪ Traces(τn);
– Traces(sand(τ1, ..., τn)) := Traces(τ1) · ... · Traces(τn);
– Traces(co(τ1, τ2)) := Traces(τ1) \ Traces(τ2);

– Traces(and(τ1, ..., τn)) = Traces(τ1) ⊓ ... ⊓ Traces(τn).

In the rest of the paper, we say for short that an adt is non-empty, written
τ ̸= ∅, whenever Traces(τ) ̸= ∅. We say that two adts τ and τ ′ are equivalent,
whenever Traces(τ) = Traces(τ ′).

Remark 1. Since all operators ∪, · and ⊓ over trace languages are associative,
the trees of the form OP(τ1, OP(τ2, τ3)), OP(OP(τ1, τ2), τ3), and OP(τ1, τ2, τ3) are
all equivalent, when OP ranges over {or, sand,and}. As a consequence, we may
sometime assume that nodes with such operators are binary.

We now introduce some notations for particular adts to ease our exposition
and provide some examples of adts with their corresponding trace property.

We define a family of adts of the form |≥ℓ|, |<ℓ|, |=ℓ|, where ℓ is a non-
zero natural. We let |≥ℓ| := sand(⊤, ...,⊤) where ⊤ occurs ℓ times; |<ℓ| :=
co(⊤, |≥ℓ|); and |=ℓ| := co(|≥ℓ|, |≥ℓ+ 1|). It is easy to establish that adt |≥ℓ|
(resp. |<ℓ|, |=ℓ|) denotes the set of traces of length at least (resp. at most,
exactly) ℓ. We also consider particular adts and constructs for them.

– all := or(ϵ,⊤),
– not(τ) := co(all, τ), and inter(τ1, τ2) := not(or(not(τ1),not(τ2))),
– ⌉τ⌈:= sand(all, τ,all), ⌉τ := sand(all, τ) and τ⌈:= sand(τ,all).
– Given a formula γ over Prop, we let γ := co(γ, |≥2|).

Based on these notations, we develop further examples.

Example 2. – Traces(all) = Σ∗;
– Traces(not(τ)) = Σ∗ \ Traces(τ);
– Traces(inter(τ1, τ2)) = Traces(τ1) ∩ Traces(τ2);
– Traces(γ) is set of one-length traces whose unique valuation satisfies γ; in

particular, when a valuation a is understood as a formula, namely formula∧
p∈a p ∧

∧
p ̸∈a ¬p, the adt a := co(a, |≥2|) is such that Traces(a) = {a};

– For a valuation a,
• Traces(⌉a⌈) = Traces(⌉a⌈) = Traces(a⌈) = Σ∗aΣ∗;
• Traces(⌉a) = Traces(⌉a) = Traces(a) = Σ∗a;
• also, Traces(a⌈) = aΣ∗.

Example 3. Note that and cannot be seen as a kind of relaxation of sand. For
the set of propositions {p}, if we consider the formula p as a leaf, Traces(p) = {p}
and Traces(¬p) = {∅}. Thus sand(¬p, p) = {t} with trace t = ∅p. However
and(¬p, p) = ∅. Let us notice that the construction of this example uses the co
operator (hidden in p and ¬p).

Example 4. We come back to the situation of our introductory example (Sec-
tion 2). First, we discuss the formal semantics of the informal tree in fig. 1a. To
do so, we propose the following set of propositions: Prop = {E,S1, S2, G} where
E holds when the thief is entering the building, S1 (resp. S2) holds when the first

(resp. second) safe is open, and G is true if a guard is in the building. The situa-
tion can be described by the following adt: τex1

= sand(E,co(S1∧S2, G⌈)), rep-
resented in Figure 1b, where we distinguish sand with a curved line and co with
a dashed line. We have Traces(τex1) = {a1...an ∈ Σ∗ : an |= E} ·

(
{a1...an ∈

Σ∗ : an |= S1 ∧ S2} \ {a1...an ∈ Σ∗ : ∃i such that ai |= G}
)
. If we write

γφ = {a ∈ 2Prop : a |= φ}, we have Traces(τex1) = Σ∗γE ·(Σ∗γS1∧S2 \Σ∗γGΣ
∗).

In other words, we want all traces where E holds at some point and, after it, G
cannot be true and finish by a valuation where S1 ∧ S2 holds.

In order to illustrate the nesting of countermeasures, we now allow the thief
to disguise himself as an employee (assuming that when disguised, the guard
does not identify him as a thief). To do so, we extended the set of proposi-
tions: Prop′ = {E,S1, S2, G,D}, where D holds when the thief is disguised.
The situation is now described by the following adt: τex2 = sand(E,co(S1 ∧
S2, ⌉co(G,D)⌈)). The semantics for τex2

is all traces where E holds at some
point and, after it, G cannot be true, except if D holds at the same time, and
finish by a valuation where S1 ∧S2 holds. A representation of τex2

can be found
in Appendix A

We now stratify the set ADT of adts according to their countermeasure-depth
that denotes the maximum number of nested countermeasures.

Definition 4. The countermeasure-depth of an adt τ , written δ(τ), is induc-
tively defined by:

– δ(ϵ) := δ(γ) = 0;
– δ(OP(τ1, ..., τn)) := max{δ(τ1), ..., δ(τn)} for every OP ∈ {or, sand,and};
– δ(co(τ1, τ2)) := max{δ(τ1), δ(τ2) + 1}

We let ADT k := {τ ∈ ADT : δ(τ) ≤ k} be the set of adts with countermeasure-
depth at most k. Clearly ADT 0 ⊆ ADT 1 ⊆ . . . ADT k ⊆ ADT k+1 ⊆ . . ., and
ADT =

⋃
k∈N

ADT k.

Example 5. We list a couple of examples. δ(not(τ)) = 1+δ(τ); δ(inter(τ1, τ2)) =
2+max{δ(τ1), δ(τ2)}; δ(co(co(γ1, γ2), γ3)) = 1 while δ(co(γ3,co(γ2, γ3))) = 2;
δ(|<ℓ|) = δ(|=ℓ|) = 1 while δ(|≥ℓ|) = 0; δ(γ) = 1; In Example 4, δ(τex1) = 1
and δ(τex2

) = 2.
Also, δ(|≥ℓ|) = 0, δ(|<ℓ|) = δ(|=ℓ|) = 1, so that |≥ℓ| ∈ ADT 0; |<ℓ| and

|=ℓ| ∈ ADT 1. Moreover, τex1
∈ ADT 1 and τex2

∈ ADT 2.

We say that a language L is ADT k-definable (resp. ADT -definable), written
L ∈ ADT k (resp. ADT), whenever Traces(τ) = L, for some τ ∈ ADT k (resp.
for some k).

It can be established that non-empty adts in ADT 1 enjoy small traces, i.e.
smaller than the size of the tree.

Theorem 1 (Small model property for ADT 1). An adt τ ∈ ADT 1 is
non-empty if, and only if, there is a trace t ∈ Traces(τ) with |t| ≤ |τ |.

We here only sketch the proof, whose details can be found in Appendix B. The
technique we employ consists in defining a slight variant of the classic relation
of super-word in language theory, that we call the lift binary relation. We prove
that if τ ∈ ADT 1, then there exists a finite set of generators, denoted gen(τ),
which is sufficient to describe Traces(τ) through the lift relation. Next, we can
prove that the traces in gen(τ) have size bounded by the number of leaves of τ .
Notice that the result also holds for ADT 0, since ADT 0 ⊆ ADT 1.

4 Adts, Star-free Languages, and First-Order Logic

We prove that adts coincide with star-free languages and first order formulas.

4.1 Reminders on Star-free Languages and First-Order Logic

The class of star-free languages introduced by [11,4,15] (over alphabet Σ) is ob-
tained from the finite languages (or alternatively languages consisting of a single
one-length word in Σ) by finitely many applications of Boolean operations (∪,
∩ and ∼ for the complement) and the concatenation product (see [18, Chap-
ter 7]). Alternatively, one characterizes star-free languages by first considering
extended regular expressions – that are regular expressions augmented with in-
tersection and complementation, and second by restricting to star-free extended
regular expressions (SEREs, for short) that are extended regular expressions
with no Kleene-star operator. Regarding computational complexity aspects, we
recall the following the subclass of SEREs of extended regular expressions. The
word membership problem (i.e., whether a given word belongs to the language
denoted by a SERE) is in Ptime [9, Theorem 2], while the non-emptiness prob-
lem (i.e., is the denoted language empty?) and the equivalence problem (i.e., do
two SEREs denote the same language?) are hard, both non-elementary [21, p.
162].

We now recall classical results on the first-order logic on finite words FO[<]
(see details in [14, Chapter 29]). The signature of FO[<], say for words over
an alphabet Σ, is composed of a unary predicate a(x) for each a ∈ Σ, whose
meaning is the “letter at position x of the word is a”, and the binary predicate
x < y that states “position x is strictly before position y in the word”. For a
FO[<]-formula, we define its size |ψ| as the size of the expression considered as a
word. A language L is FO[<]-definable whenever there exists a FO[<]-formula ψ
such that a word w ∈ L if, and only if, w is a model of ψ. Similarly, we say that
an adt τ is FO[<]-definable if Traces(τ) is FO[<]-definable. It is well-known
that FO[<]-definable languages coincide with star-free languages [11,22,13].

Also, for a fine-grained inspection of FO[<], let us denote by Σℓ (resp. Πℓ)
the fragments of FO[<] consisting of formulas with at most ℓ alternation of ∃
and ∀ quantifier blocks, starting with ∃ (resp. ∀). The folklore results regarding
satisfiability of FO[<]-formulas [21,12] are: (a) The satisfiability problem for
FO[<] is non-elementary; (b) The satisfiability for Σℓ is in (ℓ − 1)-Expspace.5

5 with the convention that 0-Expspace =Pspace.

We are not aware of any result that establishes a tight lower bound complexity
for the satisfiability problem on the Σℓ fragments of FO[<].

We lastly recall the definition of the dot-depth hierarchy of star-free lan-
guages: level 0 of this hierarchy is B0 := {L ⊆ 2Σ : L is finite or co-finite},
and evel ℓ is Bℓ := {L ⊆ 2Σ : L is a Boolean combination of languages of the
form L1 · ... · Ln where L1, ..., Ln ∈ Bℓ−1}. The dot-depth hierarchy has a tight
connection with FO[<] fragments [22]: for every ℓ > 0, Σℓ ⊆ Bℓ ⊆ Σℓ+1.

4.2 Expressiveness of Adts

The first result of this section consist in showing that adts and star-free extended
regular expressions share the same expressiveness.

Theorem 2. A language L is star-free if, and only if, L is ADT -definable.

For the “only if” direction of Theorem 2, we reason by induction on the class
of star-free languages. For a language of the form {a} where a ∈ Σ one can take
the adt a (that is co(a, |≥2|)). Now we can inductively build adequate adts for
compound star-free languages by noticing that language operations of union and
concatenation are captured by adts operators or and sand respectively, while
complementation and intersection are obtained from the not(.) and inter(., .)
as formalized in Example 2. One easily verifies that that the size of the adt
corresponding to an SERE E is in O(|E|), where |E| denotes the size (number
of characters) of E.

For the “if” direction of Theorem 2, it is easy to translate an adt into an
SERE: the leaf ϵ translates into ϵ, a leaf adt γ translates into

⋃
a|=γ a – notice

that this translation is exponential. For non-leaf adts, since every operator oc-
curring in the adt has its language-theoretic counterpart the translation goes
smoothly. However, the translation is exponential because of the adt operator
and, see Definition 2.

We now dig into the ADT-hierarchy induced by the countermeasure-depth
and compare it with the FO[<] fragments Σℓ and Πℓ.

We first step design a translation from ADT into FO[<], inductively over
adts. The translation of an adt τ is written ψτ . For the base cases of adts ϵ and
γ, and we let: ψϵ := ∀x⊥ and ψγ := ∃x(∀y¬(x < y) ∧

∨
a|=γ a(x)).

Now, regarding compound adts, and not surprisingly, operator or is reflected
by the logical disjunction: ψor(τ1,τ2) := ψτ1∨ψτ2 , while operator co is reflected by
means of the logical conjunction with the negated second argument: ψco(τ1,τ2) :=
ψτ1 ∧¬ψτ2 . On the contrary, the two remaining operators sand and and require
to split the trace into pieces, which can be captured by the folklore operation of
left (resp. right) position relativizations of FO[<]-formulas w.r.t. a position [13,
Proposition 2.1] (see also formulas of the form ϕ[x,y] in [19]). Formally, given a
position x in the trace t and an FO[<]-formula ψ, we define formula ψ≤x (resp.
ψ>x) that holds of t if the prefix (resp. suffix) of t up to (resp. from) position x
satisfies ψ, as follows. For ▷◁ ∈ {≤, >}, we let:

a(y)
▷◁x

= a(y)
(y < z)

▷◁x
= (y < z)

p(y)
▷◁x

= p(y)

(ψ ∨ ψ′)
▷◁x

= ψ▷◁x ∨ ψ′▷◁x

(¬ψ)▷◁x = ¬ψ▷◁x

(∃y ψ)▷◁x = ∃y (y ▷◁ x ∧ ψ▷◁x)

Additionally, we write ψ≤0 and ψ>0 as the formulas obtained from ψ≤x and
ψ>x by replacing every occurrence of expressions y ≤ x and y > x by ⊥ and ⊤
respectively.

Remark 2. For every formula ψ ∈ Σℓ, we also have ψ≤x, ψ>x ∈ Σℓ.

We can now complete the translation from ADT into FO[<] by letting (w.l.o.g.,
by Remark 1, we can consider binary sand and and):

ψsand(τ1,τ2) := ∃x[ψτ1
≤x ∧ ψτ2

>x] ∨ (ψτ1
≤0 ∧ ψτ2)

ψand(τ1,τ2) := ∃x[(ψτ1
≤x∧ψτ2)∨(ψτ2

≤x∧ψτ1)]∨(ψτ1
≤0∧ψτ2)∨(ψτ2

≤0∧ψτ1).

Lemma 1. – For any t ∈ Σ∗, t |= ψτ iff t ∈ Traces(τ).
– For any adt τ , formula ψτ is of size exponential in |τ |.

In the rest of the paper, we use mere inclusion symbol ⊆ between subclasses
of ADT and subclasses of FO[<], with the canonical meaning regarding the
denoted trace languages.

An accurate inspection of the translation τ 7→ ψτ entails that every ADT k-
definable adt can be equivalently represented by aΣk+2-formula, namelyADT k ⊆
Σk+2. However, we significantly refine this expressiveness upperbound for ADT k.

Lemma 2. 1. ADT 0 ⊆ Σ2 ∩Π2 – with an effective translation.
2. For every k > 0, ADT k ⊆ Σk+1 – with an effective translation.

Regarding Item 1 of Lemma 2, it can be observed that, whenever τ ∈ ADT 0,
the quantifiers ∀ and ∃ commute in ψτ (see Appendix C). Now, for Item 2, the
proof is conducted by induction over k (see Appendix C). We sketch here the
case k > 1. First, remark that if τ1, ..., τn ∈ ADT k−1 are Σk-definable, then
or(τ1, ..., τn), sand(τ1, ..., τn) and and(τ1, ..., τn) remain Σk-definable, as for-
mulas are obtained from conjunctions or disjunctions of Σk-definable formulas.
Moreover, if τ1 and τ2 are Σk-definable, then τ = co(τ1, τ2) is Σk+1-definable
as a formula can be obtained from a boolan combination of two Σk-definable
formulas. Finally, with k still fixed, it can be shown by induction over the size
of an adt τ that, if τ ∈ ADT k, since all its countermeasures operators are of the
form co(τ1, τ2) where τ1 ∈ ADT k and τ2 ∈ ADT k−1, we have that adt τ is also
Σk+1-definable, which concludes.

We can also establish lowerbounds in the ADT-hierarchy.

Lemma 3. 1. Bℓ ⊆ ADT 2ℓ+2, and therefore Σℓ ⊆ ADT 2ℓ+2

2. Σ1 ⊆ ADT 0 – with an effective translation.

Item 1 of Lemma 3 is obtained by an induction of ℓ. Regarding Item 2,
the translation consists in putting the main quantifier-free subformula of a Σ1-
formula in disjunctive normal form, and to focus for each conjunct on the set of
"ordering" literals of the form x < y or ¬(x < y) (leaving aside the other literals
of the form a(x) or ¬a(x) for a while). Each ordering literal naturally induces a
partial order between the variables. We expend this partial order constraint over
the variables as a disjunction of all its possible linearizations. For example, the
conjunct x < y ∧ ¬(y < z) is expended as the equivalent formula (x < y ∧ y =
z) ∨ (x < z ∧ z < y) ∨ (z = x ∧ x < y) ∨ (z < x ∧ x < y). Now, each disjunct
of this new formula, together with the constraints a(x) (or ¬a(x)), can easily be
specified by a sand-rooted adt (ie. the root is a sand). The initial Σ1-formula
then is associated with the or-rooted tree that gathers all the aforementioned
sand-rooted subtrees (see Remark 3 in Appendix B). Notice that the translation
may induce at least an exponential blow-up.

The reciprocal of Item 2 in Lemma 3 is an open question. Still, we have little
hope that it holds because ψγ seems to require a property expressible in Σ2 \Σ1.

5 Strictness of the ADT-Hierarchy

One can notice that the adt |<2| ∈ ADT 1 defines the finite language of traces of
length at most 1, while it can be established that languages arising from adts in
ADT 0 are necessarily infinite – if inhabited by a non-empty word (see Lemma 4
of Appendix B). Thus, we can easily deduce ADT 0 ⊊ ADT 1. This section aims
at showing that the entire ADT-hierarchy is strict:

Proposition 1. For every k ∈ N, ADT k ⊊ ADT k+1, even if Prop = {p}.

To show that ADT k ⊊ ADT k+1, we use a family of languages, originally in-
troduced in [23], that we write {Wk}k∈N over the two-letter alphabet Σ obtained
from Prop = {p}. For readability, we use symbol a (resp. b) for the valuation
{p} (resp. ∅) of Σ. Formally, we define Wk ⊆ Σ∗ as follows – where ∥w∥ denotes
the number of occurrences of a minus the number of occurrences of b in the word
w:

We let w ∈Wk whenever all the following holds.

– ∥w∥ = 0;
– for every w′ ⪯ w, 0 ≤ ∥w′∥ ≤ k;
– there exists w′′ ⪯ w s.t. ∥w′′∥ = k.

In [23, Theorem 2.1], it is shown that Wk ∈ Bk \Bk−1, for all k ≥ 1.
We now determine the position of Wk languages in the ADT-hierarchy. We

show Proposition 2.

Proposition 2. For each k > 0, Wk ∈ ADT k+1 \ADT k−2.

First, Wk /∈ ADT k−2 because Wk is not Σk−1-definable ([23]). By an in-
ductive argument over k (see Appendix D), we can build an adt µk ∈ ADT k+1

that captures Wk. We only sketch here the case k = 1. For W1, we set µ1 :=
co(b,or(b⌈, ⌉co(|≥2|,and(a⌈, b⌈))⌈)), depicted in Figure 2a. Note that δ(µ1) =
2 and that by a basic use of semantics, we have Traces(µ1) = (ab)+ =W1.

(a) Representation of µ1

ADT 0

Σ1

ADT 1

ADT 2

...

Σ2

Σ3

...

(ab)+ Π2

/∈

∈

ADT k−1

ADT k−2

ADT k Bk

Σk

Σk+1

Σk−1

Bk−1

ADT k+1

...

ADT 2k+2

Bk+1

Σk+2

...

...

...

...

Wk

/∈

∈

(b) Summary of the results on ADT-hierarchy

Now we have all the material to prove Proposition 1. Indeed, assuming the
hierarchy collapses at some level will contradict Proposition 2. Notice that this
argument is not constructive as we have no witness of ADT k ⊊ ADT k+1 but
for k = 1 where it can be shown that (ab)+ ∈ ADT 2 \ ADT 1 (see Appendix B,
Example 7 and Proposition 3). Our results about the ADT-hierarchy are depicted
on Figure 2b.

6 Decision Problems on Attack-Defense Trees

We study classical decision problems on languages, through the lens of adts, with
a focus on the role played by the countermeasure-depth in their complexities.
The problems are the following.

– The membership problem, written ADT -memb, is defined by:
Input: τ an attack-defense tree and t a trace.
Output: "YES" if t ∈ Traces(τ), "NO" otherwise.

– The non-emptiness problem, written ADT -ne, is defined by:
Input: τ an attack-defense tree.
Output: "YES" if Traces(τ) ̸= ∅, "NO" otherwise.

We use notations ADT k-memb and ADT k-ne whenever the input adts of
the respective decision problems are in ADT k, with a fixed k. Our results are
summarized in Table 1, and we below comment on them, row by row.

ADT 0 ADT 1 ADT k (k ≥ 2) ADT

ADT -memb Ptime Ptime Ptime Ptime
ADT -ne NP-comp NP-comp (k + 1)-Expspace non-elem

1 ≥ Nspace(g(k − 5, c
√

n−1
3

))

ADT -equiv coNP-comp 4-Expspace (k + 2)-Expspace non-elem
2 ≥ Nspace(g(k − 4, c

√
n−1
3

))

1 if k ≥ 5.
2 if k ≥ 4.

Table 1: Computational complexities of decision problems on adts.

Regarding ADT -memb (first row of Table 1), we recall that adts and SEREs
are expressively equivalent, but with a translation (Theorem 2) from the former
to the latter that is not polynomial. We therefore cannot exploit [9, Theorem
2] for a Ptime complexity of the word membership problem for SEREs, and
have instead developed a dedicated alternating logarithmic-space algorithm in
Appendix E.

Regarding ADT -ne (second row of Table 1), and because SEREs can be
translated as adts (see “if” direction in the proof of Theorem 2), the problem
ADT -ne inherits from the hardness of the non-emptiness of SEREs [21, p.
162]. In its full generality, ADT -ne is therefore non-elementary (last column).
Moreover, by our exponential translation of ADT k into the FO[<]-fragment
Σk+1 (Lemma 2), we obtain the (k+ 1)-Expspace upper-bound complexity for
ADT k-ne (recall satisfiability problem for Σℓ is (ℓ−1)-Expspace). Additionally,
a lower-bound for ADT k-ne is directly given by [21, Theorem 4.29]: for SEREs
that linearly translate as adts with countermeasure-depth k, their non-emptiness
is at least Nspace(g(k − 5, c

√
n−1
3)). Interestingly, the Small Model Property

(Theorem 1) yields an NP upper-bound complexity forADT 1-ne, also applicable
for ADT 0-ne, that is optimal since one can reduce the NP-complete satisfiability
of propositional formulas to the non-emptiness of leaf adts.

Finally regarding ADT -equiv (last row of Table 1), one can observe that
ADT -ne and ADT -equiv are very close. First, ADT -ne is a particular case of
ADT -equiv with the second input adt τ2 := ∅. As a consequence, ADT -equiv
inherits from the hardness of ADT -ne, and is therefore non-elementary (last
column). Also, because deciding the equivalence between τ1 and τ2 amounts to

deciding whether or(co(τ1, τ2),co(τ2, τ1)) = ∅, we get reduction from ADT k-
equiv into ADT k+1-ne which provides the results announced in Columns 1-3.

7 Discussion

First, we discuss our model of adts with regard to the literature. However,
we do not compare with settings where adts leaves are actions [10], as they yield
only finite languages, and address other issues [24].
Our adts have particular features, but remain somehow standard. Regarding the
syntax, firstly, even though we did not type our nodes as proponent/opponent,
the countermeasure operator fully determines the alternation between attack and
defense. Also, we introduced the non-standard leaf ϵ for the singleton empty-trace
language, not considered in the literature. Still, it is a very natural object in the
formal language landscape, and anyhow does not impact our overall computa-
tional complexity analysis. Regarding the semantics, it can be shown that the
definition of our operator and together with the reachability goal semantics of
the leaves coincides with the acknowledged semantics considered in [1,2].

Second, we discuss our results. We showed the strictness of theADT -hierarchy
in a non-constructive manner. However, exhibiting an element of ADT k+1 \
ADT k (k ≥ 2) is still an open question. Since W1 ∈ ADT 2 \ ADT 1, languages
Wk are natural candidates. We conjecture it is the case and we are currently
working on Erenfeucht-Fraissé(EF)-like games for adts (in the spirit of [23] for
SEREs) to prove it. Moreover, EF-like games for adts may also help to better
compare the ADT-hierarchy and the FO[<] alternation hierarchy, in particular,
whether the hierarchies eventually coincide. For now, finding a tighter inclu-
sion of Σℓ in some ADT k for each ℓ seems difficult; recall that we established
Σℓ ⊆ ADT 2ℓ+2. Any progress in this line would be of great help to obtain tight
complexity bounds for ADT k-ne and ADT k-equiv. Finally, determining the
level of a language in the ADT-hierarchy seems as hard as determining its level
in the dot-depth hierarchy, recognised as a difficult question [17,3].

References

1. M. Audinot, S. Pinchinat, and B. Kordy. Is my attack tree correct? In European
Symposium on Research in Computer Security, pages 83–102. Springer, 2017.

2. T. Brihaye, S. Pinchinat, and A. Terefenko. Adversarial formal semantics of attack
trees and related problems. In P. Ganty and D. D. Monica, editors, Proceedings
of the 13th International Symposium on Games, Automata, Logics and Formal
Verification, GandALF 2022, Madrid, Spain, September 21-23, 2022, volume 370
of EPTCS, pages 162–177, 2022.

3. V. Diekert and P. Gastin. First-order definable languages. In J. Flum, E. Grädel,
and T. Wilke, editors, Logic and Automata: History and Perspectives [in Honor
of Wolfgang Thomas], volume 2 of Texts in Logic and Games, pages 261–306.
Amsterdam University Press, 2008.

4. S. Eilenberg. Automata, languages, and machines. Academic press, 1974.

5. O. Gadyatskaya, R. R. Hansen, K. G. Larsen, A. Legay, M. C. Olesen, and D. B.
Poulsen. Modelling attack-defense trees using timed automata. In Formal Modeling
and Analysis of Timed Systems: 14th International Conference, FORMATS 2016,
Quebec, QC, Canada, August 24-26, 2016, Proceedings 14, pages 35–50. Springer,
2016.

6. R. Jhawar, B. Kordy, S. Mauw, S. Radomirović, and R. Trujillo-Rasua. Attack
trees with sequential conjunction. In IFIP International Information Security and
Privacy Conference, pages 339–353. Springer, 2015.

7. B. Kordy, S. Mauw, S. Radomirović, and P. Schweitzer. Attack–defense trees.
Journal of Logic and Computation, 24(1):55–87, 2014.

8. B. Kordy, M. Pouly, and P. Schweitzer. Computational aspects of attack–defense
trees. In Security and Intelligent Information Systems: International Joint Con-
ferences, SIIS 2011, Warsaw, Poland, June 13-14, 2011, Revised Selected Papers,
pages 103–116. Springer, 2012.

9. O. Kupferman and S. Zuhovitzky. An improved algorithm for the membership
problem for extended regular expressions. In Mathematical Foundations of Com-
puter Science 2002: 27th International Symposium, MFCS 2002 Warsaw, Poland,
August 26–30, 2002 Proceedings 27, pages 446–458. Springer, 2002.

10. S. Mauw and M. Oostdijk. Foundations of attack trees. In International Conference
on Information Security and Cryptology, pages 186–198. Springer, 2005.

11. R. McNaughton and S. A. Papert. Counter-Free Automata (MIT research mono-
graph no. 65). The MIT Press, 1971.

12. A. R. Meyer. Weak monadic second order theory of succesor is not elementary-
recursive. In Logic Colloquium: Symposium on Logic Held at Boston, 1972–73,
pages 132–154. Springer, 2006.

13. D. Perrin and J.-E. Pin. First-order logic and star-free sets. Journal of Computer
and System Sciences, 32(3):393–406, 1986.

14. J. Pin, editor. Handbook of Automata Theory. European Mathematical Society
Publishing House, Zürich, Switzerland, 2021.

15. J. E. Pin and M. P. Schützenberger. Variétés de langages formels, volume 17.
Masson Paris, 1984.

16. S. Pinchinat, M. Acher, and D. Vojtisek. Towards synthesis of attack trees for sup-
porting computer-aided risk analysis. In C. Canal and A. Idani, editors, Software
Engineering and Formal Methods - SEFM 2014 Collocated Workshops: HOFM,
SAFOME, OpenCert, MoKMaSD, WS-FMDS, Grenoble, France, September 1-2,
2014, Revised Selected Papers, volume 8938 of Lecture Notes in Computer Science,
pages 363–375. Springer, 2014.

17. T. Place and M. Zeitoun. The tale of the quantifier alternation hierarchy of first-
order logic over words. ACM SIGLOG News, 2(3):4–17, 2015.

18. G. Rozenberg and A. Salomaa. Handbook of Formal Languages: Volume 3 Beyond
Words. Springer Science & Business Media, 2012.

19. I. Schiering and W. Thomas. Counter-free automata, first-order logic, and star-
free expressions extended by prefix oracles. Developments in Language Theory, II
(Magdeburg, 1995), Worl Sci. Publishing, River Edge, NJ, pages 166–175, 1996.

20. B. Schneier. Attack trees. Dr. Dobb’s journal, 24(12):21–29, 1999.
21. L. J. Stockmeyer. The complexity of decision problems in automata theory and

logic. PhD thesis, Massachusetts Institute of Technology, 1974.
22. W. Thomas. Classifying regular events in symbolic logic. Journal of Computer

and System Sciences, 25(3):360–376, 1982.
23. W. Thomas. An application of the ehrenfeucht-fraïssé game in formal language

theory. Bull. Soc. Math. France, 16(1):1–21, 1984.

24. W. Wideł, M. Audinot, B. Fila, and S. Pinchinat. Beyond 2014: Formal methods for
attack tree–based security modeling. ACM Computing Surveys (CSUR), 52(4):1–
36, 2019.

A Figure of τex2 in Example 4

B Proof of Theorem 1

We consider the lift binary relation between traces (Definition 5), a slight vari-
ant of the classic relation of super-word in language theory. We use the lift to
define generators of a set of traces (see Definition 6) for τ an adt. We define (in
Definition 7) gen(τ), a finite set of traces, and we show in Proposition 3 that,
if τ ∈ ADT 1, then gen(τ) is a set of generators of the semantics of τ . We also
show in Lemma 5 that an element of gen(τ) has its size bounded by the number
of leaves of τ . Lemma 5 and Proposition 3 are enough to deduce the small model
property of ADT 1, stated in Theorem 1.

Definition 5. A trace t is a lift of a trace t′ = a1...an, written t′ ⊑ t, whenever
t ∈ Σ∗a1...Σ

∗an.

Notice that ⊑ is an order over Σ∗ and that lift relation is like the relation of
super-word where the last letters of the respective traces are identical. It can be
shown by induction of trees that every τ ∈ ADT 0, the set Traces(τ) is ⊑-upward
closed, and is therefore infinite:

Lemma 4. Let τ ∈ ADT 0. If t ∈ Traces(τ), then for each trace t′ such that
t ⊑ t′, we have t′ ∈ Traces(τ).

Proof. We show this result by induction over the shape of an adt.
If τ = ϵ, then there is no lift of ε. If τ is a non-empty leaf γ, the result holds

since the lift relation preserves the last letter.

Now, we assume that the result holds for two adts τ1 and τ2 and we need to
show the result for or(τ1, τ2), sand(τ1, τ2) and and(τ1, τ2).

The three cases are direct and similar, we only write the case τ = sand(τ1, τ2):
if t ∈ Traces(τ) and t ⊑ t′ for a certain trace t′, then we can write t = t1 · t2
with t1 ∈ Traces(τ1) and t2 ∈ Traces(τ2). From the structure of a lift, we can
also write t′ = t′1 · t′2 such that t1 ⊑ t′1 and t2 ⊑ t′2, we can then conclude with
our induction hypothesis.

From Lemma 4, it is immediate that any non-empty semantics of an adt in
ADT 0 is necessarily infinite. We now turn to the notion of generators to establish
the Small Model Property.

Definition 6. Let L ⊆ Σ∗. A set of generators of L is a finite subset G of
L with the following property: for each non-empty trace tL ∈ L there exists
tgen = a1...an ∈ G such that we can write tL = w1a1...wnan and for each
t ∈ Σ∗, if we can write t = w′

1a1...w
′
1an with w′

1a1 ⊑ w1a1, ..., w′
nan ⊑ wnan,

then t ∈ L.

Example 6. For the singleton set of propositions {p}, we consider the set of traces
L = p+ \ {pp}. The set {p, ppp} is a set of generators for T . However, the set
{p} is not because we have ppp ∈ T and p ⊑ ppp but we also have p ⊑ pp ⊑ ppp
and pp /∈ T .

Example 7. For the singleton set of propositions {p}, we let a be the valuation
that makes p true and b the valuation that makes p false. Thus each trace is
a word over the alphabet {a, b}. Now, remark that the set (ab)+ has no set
of generators. Indeed, assume that G ⊆ (ab)+ is a set of generators. We write
(ab)N for the largest element of G, thus (ab)Nab ∈ (ab)+ \ G. However, for
each tgen ∈ G, we have tgen ⊑ (ab)Nb ⊑ (ab)Nab and (ab)Nb /∈ (ab)+, which
contradicts Definition 6.

We now define the set gen(τ) for each adt τ that will be our candidate to
show that every of adts in ADT 1 has a set of generators.

Definition 7. Let τ ∈ ADT 1. The set gen(τ) is inductively defined as follows:

– gen(ϵ) = ∅ and gen(γ) = {a ∈ 2Prop : a |= γ},
– gen(or(τ1, τ2)) = gen(τ1) ∪ gen(τ2),
– gen(sand(τ1, τ2)) = gen(τ1) · gen(τ2),
– gen(co(τ1, τ2)) = gen(τ1) \ Traces(τ2),
– gen(and(τ1, τ2)) = (gen(τ1) ▷◁ gen(τ2)) ∩ Traces(and(τ1, τ2)), where ▷◁ is

the classic shuffle operator inductively defined as: ε ▷◁ t = t ▷◁ ε = {t},
a1t1 ▷◁ a2t2 = a1 · (t1 ▷◁ a2t2) ∪ a2 · (a1t1 ▷◁ t2) and at1 ▷◁ at2 = a · (t1 ▷◁
at2) ∪ a · (at1 ▷◁ t2) ∪ a · (t1 ▷◁ t2).

We can prove the following Lemma 5 by induction over adts.

Lemma 5. For each trace t ∈ gen(τ), its size |t| is bounded by the number of
leaves of τ .

Proof. We show this result by induction over the shape of an adt.
If the adt is the empty leaf ϵ, then there is no element in gen(τ). If adt is a

non-empty leaf γ then all elements of gen(τ) are of size 1.
Now, we assume that the result holds for two adts τ1 and τ2 and we show the

result for gen(or(τ1, τ2)), gen(sand(τ1, τ2)), gen(and(τ1, τ2)) and gen(co(τ1, τ2)).
For the rest of the proof, we write n1 the number of leaves of τ1 and n2 the num-
ber of leaves of τ2.

By induction, if t ∈ gen(or(τ1, τ2)), then |t| ≤MAX{n1, n2}. If t ∈ gen(sand(τ1, τ2))
or t ∈ gen(and(τ1, τ2)), then |t| ≤ n1 + n2. Finally, if t ∈ gen(co(τ1, τ2)), then
|t| ≤ n1. In each case, |t| ≤ n1 + n2 and n1 + n2 is the number of leaves of the
four studied adts, which concludes.

If τ has no nested countermeasures yields the following.

Proposition 3. When τ ∈ ADT 1, the set gen(τ) is a set of generators for
Traces(τ).

Proof. We show this result by induction over the shape of an adt.
If τ = ϵ, then its semantics contains only the empty trace. Thus ∅ is a set of

generators. If τ = γ, then Traces(γ) = {a1...an ∈ Σ∗ : an |= γ} = Σ∗ · gen(γ),
thus gen(γ) ⊆ Traces(γ) and is a set of generators.

Now, for two adts τ1 and τ2, we assume that gen(τ1) and gen(τ2) are sets of
generators and we show that gen(or(τ1, τ2)), gen(sand(τ1, τ2)) and gen(and(τ1, τ2))
are sets of generators for their corresponding adt.

First of all, for τ ∈ {or(τ1, τ2), sand(τ1, τ2),and(τ1, τ2),co(τ1, τ2)}, we have
gen(τ) ⊆ Traces(τ). Indeed, for gen(or(τ1, τ2)) and gen(sand(τ1, τ2)), the
composition rule is the same as the one used for Traces(τ). Moreover, for
gen(and(τ1, τ2)) and gen(co(τ1, τ2)), we intersect with Traces(τ). Furthermore,
from lemma 5, each element of gen(τ) is bounded, thus gen(τ) is a finite set.

It remains to show that for each tτ ∈ Traces(τ), we have that there ex-
ists tgen = a1...an ∈ gen(τ) such that, tτ = t1a1...tnan and for each trace
t = t′1a1...t

′
nan with t′1a1 ⊑ t1a1, ..., t

′
nan ⊑ tnan, we have t ∈ Traces(τ). We

distinguish the four adts operators:

– τ = or(τ1, τ2). If tτ ∈ Traces(τ), then either tτ ∈ Traces(τ1) or tτ ∈
Traces(τ2). With no loss of generality, we assume tτ ∈ Traces(τ1). Since
gen(τ1) is a set of generators for τ1, there exists tgen = a1...an ∈ gen(τ1) ⊆
gen(τ) such that tτ = t1a1...tnan and for each trace t = t′1a1...t

′
nan with

t′1a1 ⊑ t1a1, ..., t
′
nan ⊑ tnan, we have t ∈ Traces(τ1) ⊆ gen(τ).

– τ = sand(τ1, τ2). If tτ ∈ Traces(τ), there exists tgen = a1...an ∈ gen(τ)
such that tτ = t1a1...tnan. Indeed, we can write tτ = t1 · t2 with t1 ∈
Traces(τ1) and t2 ∈ Traces(τ2), thus there exists tgen1

= a1...ai and tgen2
=

ai+1...an with tgen1 ∈ gen(τ1) and tgen2 ∈ gen(τ2). Therefore we can consider
tgen = tgen1 · tgen2 . Moreover, the following holds: property for each trace
t = t′1a1...t

′
nan with t′1a1 ⊑ t1a1, ..., t

′
nan ⊑ tnan, we have t ∈ Traces(τ1) ⊆

gen(τ). Indeed we can simply write t = ta · tb with ta = t′1a1...t
′
iai and tb =

t′i+1ai+1...tnan. So, ta ∈ Traces(τ1) and tb ∈ Traces(τ2) and we conclude
t ∈ Traces(τ).

– τ = and(τ1, τ2). First, let’s remark that, for a trace tτ ∈ Traces(τ), there
exists t1 ∈ Traces(τ1) and t2 ∈ Traces(τ2) and tgen = a1...an ∈ (t1 ▷◁ t2)
such that tτ = t1a1...tnan. Indeed, we can write tτ = ta · tb with either ta ∈
Traces(τ1) and tτ ∈ Traces(τ2) or ta ∈ Traces(τ2) and tτ ∈ Traces(τ1).
If we assume the former case (the latter is symmetrical), then there exists
tgen1

= b1...bm ∈ gen(τ1) such that ta = u1b1...umbm and there exists tgen2
=

c1...cp ∈ gen(τ2) such that tτ = v1c1...vpcp. If we consider the trace tgen as
the trace obtained from tτ by removing all valuations appearing neither in
tgen1 nor in tgen2 . Then, by construction: tgen = a1...an ∈ (tgen1 ▷◁ tgen2)
and tτ = t1a1...tnan. The rest of the proof is similar to the sand as we show
that a trace t = t′1a1...t

′
nan with t′1a1 ⊑ t1a1, ..., t

′
nan ⊑ tnan always can be

written as t = t1 · t2 with t1 ∈ Traces(τ1) and t ∈ Traces(τ2).
– τ = co(τ1, τ2). For a trace tτ ∈ Traces(τ), there exists tgen1 = a1...an ∈
gen(τ1) such that, t = t′1a1...t

′
nan with t′1a1 ⊑ t1a1, ..., t

′
nan ⊑ tnan, we have

t ∈ Traces(τ1). Moreover, if tτ ∈ Traces(co(τ1, τ2)), then tτ /∈ Traces(τ2).
Furthermore, if co(τ1, τ2) is in ADT 1, then τ2 ∈ ADT 0, thus from Lemma 4,
for each t′ such that t′ ⊑ tτ we have t′ /∈ Traces(τ2). This shows us that
tgen1 ∈ Traces(co(τ1, τ2)) and by taking tgen = tgen1 , the property we need
to prove holds.

Remark 3. An adt τ ∈ ADT 0 with a non-empty semantics always can be written
as an or over sand over leaves. Indeed, for an adt τ ∈ ADT 0 and its set
of generator gen(τ) = {t1, ..., tn}, by combining Proposition 3 and Lemma 4,
we have: Traces(τ) =

⋃
a1...am∈gen(τ)

Σ∗a1...Σ
∗am. Therefore, for we can write

τ = or(τt1 , ..., τtn), Where τa1...am
= sand(γ1, ..., γm) with γj is the formula

only satisfied by aj .

By Proposition 3, for τ ∈ ADT 1, if some non-empty trace tτ ∈ Traces(τ),
there is some tgen ∈ gen(τ) with tgen ⊑ tτ that is a witness. Together with
Lemma 5, we conclude the proof of Theorem 1. Remark that, since ADT 0 ⊆
ADT 1, the result also holds for ADT 0.

Observe that our proof technique heavily relies on the notion of set of gener-
ators, which calls for the existence of a set of generators for adts above ADT 1.
There is an adt in ADT 2 that shows it is hopeless: this adt specifies the language
(ab)+ (see Section 5) but has no set of generators (see Example 7).

C Complements of Section 4

Lemma 1. – For any t ∈ Σ∗, t |= ψτ iff t ∈ Traces(τ).
– For any adt τ , formula ψτ is of size exponential in |τ |.

Proof. We will show this result by induction over the adt.
If τ = ϵ, then we have clearly that ψϵ = {ε}. Similarly, for a Boolean formula

γ, we have that Words(ψγ) is all traces finishing with a valuation a such that
a |= γ. Thus, the property holds for leaves attack-defense trees.

Now, if we assume that the property is true for τ1 and τ2, then, since se-
mantics for the or operator is a union of sets and semantics of C operator is a
difference of sets, the property for ψor(τ1,τ2) and ψco(τ1,τ2) trivially holds.

The formulas for and and sand operators are a little more difficult to un-
derstand since we need to distinguish whether an empty trace is in semantics of
τ1 or τ2. Indeed, a t is in semantics of sand(τ1, τ2) if and only if we can find t1
and t2 such that t1 ∈ Traces(τ1) and t2 ∈ Traces(τ2) if t1 is nonempty, then
this is equivalent to say that there exists a position in the trace where we can
cut as done in the first parenthesis of ψsand(τ1,τ2). Otherwise, if t1 is empty, then
we handle this case with the use of ψ≤0

τ1 in the second parenthesis of ψsand(τ1,τ2).
The idea for the and operator is completely symmetrical except that we also
need to consider the case where τ2 has the empty trace in its semantics.

Finally, it is clear that ψτ is of size exponential as subformulas for subtrees
may be duplicated (for sand and and).

For the rest of this section, we often switch from an adt τ to its corresponding
FO[<]-formulas ψτ as defined in Section 4, always while assuming Lemma 1.

Let us recall some basic results on Σk and Πk hierarchies.

Remark 4 ([22], Lemma 2.4).

(a) The negation of a Σk-formula is equivalent to a Πk-formula.
(b) A disjunction or conjunction of Σk-formulas is equivalent to a Σk formula.
(c) A Boolean combination of Σk-formula is equivalent to a Σk+1-formula.
(d) The statements (a)-(c) hold in dual form for Πk-formulas.

Lemma 2. 1. ADT 0 ⊆ Σ2 ∩Π2 – with an effective translation.
2. For every k > 0, ADT k ⊆ Σk+1 – with an effective translation.

Proof. Regarding Item 1, for both cases ADT 0 ⊆ Σ2 and ADT 0 ⊆ Π2, we
construct for each τ ∈ ADT 0 an FO[<]-formula ψτ by induction over τ such
that Traces(τ) = {t ∈ Σ∗ : t |= ψτ}.

To prove that ADT 0 ⊆ Σ2, one can refer to the translation from ADT into
FO[<], and easily verify that formula ψτ ∈ Σ2.

On the contrary, proving that ADT 0 ⊆ Π2 requires some work. First remark
that ψϵ ∈ Π1 ⊆ Π2. Moreover, recall that for a Boolean formula γ,

ψγ ≡ ∀y∃x(¬(x < y) ∧ γ̂(x))

where γ̂(x) :=
∨

a|=γ a(x).
Indeed, both formulae hold for a trace a1...an if, and only if, an |= γ.
Recall (Remark 3) that an arbitrary adt τ ∈ ADT 0, can be equivalently

written or(τ1, ..., τn) where τ1, ...τn are either the empty leaf ϵ or of the form
sand(γ1, ..., γm). Consider the following Π2-formula for sand(γ1, ..., γm):

θsand(γ1,γ2,...,γm) := ∀y ∃x1 ∃x2 . . . ∃xm x1 < x2 < ... < xm ∧ y ≤ xm ∧
γ̂1(x1) ∧ γ̂2(x2) ∧ ... ∧ γ̂m(xm)

Clearly, for a word w ∈ Σ∗, we have w ∈ Traces(sand(γ1, ..., γm)) if, and
only if, w ∈ Σ∗a1 · ... · Σ∗am with a1 |= γ1, ..., am |= γm, which is exactly
described by θsand(γ1,γ2,...,γm) ∈ Π2. We now get back to the construction of
the Π2-formula for τ , that is a disjunction of either ψϵ, or formulae of the form
θsand(γ1,γ2,...,γm)). Since they all belong to Π2, so does their disjunction.

This concludes the proof of Item 1.

For Item 2 of Lemma 2, we start with some notations: let k > 0, for each
d ∈ N, we define ADT k(d) ⊆ ADT k as follows.{
ADT k(0) := ADT k−1 ∪ {co(τ1, τ2) : τ1, τ2 ∈ ADT k−1}
ADT k(d+ 1) := ADT k(d) ∪ {OP(τ1, τ2) : OP arbitrary, and τ1, τ2 ∈ ADT k(d)}

We clearly have
⋃
d∈N

ADT k(d) = ADT k.

We establish by a double induction over k > 0 and d ≥ 0 that for each d ∈ N,
ADT k(d) ⊆ Σk+1, which clearly entails ADT k ⊆ Σk+1.

k = 1: that is to show ADT 1(d) ⊆ Σ2, for every d ∈ N.
d = 0: Let adt τ ∈ ADT 1(0). If τ ∈ ADT 0, it is immediate by Item 1 that

Traces(τ) is definable by a Σ2 formula.
Otherwise τ = co(τ1, τ2) where τ1 and τ2 ∈ ADT 0. Again, by Item 1
there exists formulas ψ1 ∈ Σ2 and ψ2 ∈ Π2 that characterize Traces(τ1)
and Traces(τ2) respectively, so that, by the very definition of operator
co, formula ψ1 ∧ ¬ψ2 characterizes Traces(τ) and belongs to Σ2 (see
Remark 4).

d > 0: Let τ ∈ ADT 1(d); note that δ(τ) ≤ 1. If τ ∈ ADT 1(d − 1), we
use the induction hypothesis over d − 1 and we are done. Otherwise,
τ = OP(τ1, τ2).
Suppose OP ∈ {or, sand,and}, and because τ1, τ2 ∈ ADT 1(d − 1), we
know by induction over d−1 that there exist ψ1, ψ2 ∈ Σ2 that character-
ize Traces(τ1) and Traces(τ2) respectively. For OP = or (resp. = sand,
and), formula ψ = ψ1 ∨ ψ2 (resp. = ∃x[ψ1

≤x ∧ ψ2
>x] ∨ (ψ1

≤0 ∧ ψ2),
= ∃x[(ψ1

≤x ∧ ψ2) ∨ (ψ2
≤x ∧ ψ1)] ∨ (ψ1

≤0 ∧ ψ2) ∨ (ψ2
≤0 ∧ ψ1)) charac-

terises Traces(OP(τ1, τ2)) and belongs to Σ2 (see Remark 2).
Now, suppose OP = co. Therefore, τ2 ∈ ADT 0(d−1) otherwise δ(τ) = 2.
By Item 1, we can assume that ψ2 ∈ Π2 Now formula ψ = ψ1 ∧ ¬ψ2

characterises Traces(τ) and is indeed in Σ2 (see Remark 4).
k > 1: that is to show ADT k(d) ⊆ Σk+1, for every d ∈ N.

d = 0: Let τ ∈ ADT k(0). If τ ∈ ADT k−1, we resort to the induction hypoth-
esis over k to conclude since Σk ⊆ Σk+1. Otherwise, τ = co(τ1, τ2) with
τ1 and τ2 ∈ ADT k−1. By induction over k−1, Traces(τ1) and Traces(τ2)
can be equivalently characterized by Σk-formulas, say ψ1 and ψ2 respec-
tively. Now the formula ψ := ψ1 ∧ ¬ψ2 characterizes Traces(τ) and, by
Remark 4 is clearly in Σk+1.

d > 0: Let τ ∈ ADT k(d). If τ ∈ ADT k(d − 1), we use the induction hy-
pothesis on d− 1. Otherwise, τ = OP(τ1, τ2) with τ1, τ2 ∈ ADT k(d− 1).

We can proceed in a way similar to what we did for the previous case
k = 1, d > 0, by noticing that for the case where OP = co, namely
τ = co(τ1, τ2), the tree τ2 ∈ ADT k−1 otherwise τ would not belong to
ADT k.

Lemma 3. 1. Bℓ ⊆ ADT 2ℓ+2, and therefore Σℓ ⊆ ADT 2ℓ+2

2. Σ1 ⊆ ADT 0 – with an effective translation.

Proof. For Item 1, the proof is conducted by induction over ell. We start by
showing that B0 ⊆ ADT 2. We recall that a language L is in B0 if it is finite or
co-finite. We distinguish the two cases.

If L is finite, we have that L = {t1, ..., tn} = {t1}∪ ...∪{tn} where t1, ..., tn ∈
Σ∗. For a trace t = a1, ..., an, we use the notation τt to express the adt sand(a1, ..., an).
Clearly, Traces(τt) = {t} and τt ∈ ADT 1. Then if we consider the adt τL =
or(τt1 , ..., τtn), we have by construction that Traces(τL) = L. Moreover τL ∈
ADT 1 since an adt τt only uses non-nested co.

If L is co-finite, then it can be written asΣ\L′ with L′ a finite language. Thus,
by definition of co, if we consider τL = co(⊤, τL′), we have Traces(τL) = L.
We also have τL ∈ ADT 2. Since τL′ ∈ ADT 1. We concludes that B0 ⊆ ADT 2.

Now, for k > 0, we assume Bℓ−1 ⊆ ADT 2ℓ and we show that Bℓ ⊆ ADT 2ℓ+2.
Let L ∈ Bℓ, so L is a Boolean combination of languages of the form L1 · ... ·Ln

with L1, ..., Ln ∈ Bℓ−1. With no loss of generality, we can assume the Boolean
combination written in disjunctive normal form where each conjunct is of the
form M1 ∩ ...∩Mm, where the sets Mi can be written either as L1 · ... ·Ln or as
(L1 · ... ·Ln)

c with L1, ..., Ln ∈ Bℓ−1. Moreover, We can rewrite each conjunct by
using the equality M1 ∩ ...∩Mm = (M c

1 ∪ ...∪M c
m)c to suppress all intersections

of the Boolean expression, it results an expression only using union operators
and complement operators. Furthermore, the maximal tower of complementary
operator is 2. By induction hypothesis, we know that an expression L1 · ... · Ln

with L1, ..., Ln ∈ Bℓ−1 is definable in ADT 2ℓ, indeed we consider the sand of
the adts associated with the languages L1, ... Ln. Then, we can use the Boolean
expression to construct the adt for L, where the union is replaced by the or
and the complementation is replaced by not(.). Since the maximal tower of
complementary operator of the Boolean expression is 2, we need at most two
more nested co to express the full Boolean expression. Therefore, the final adt
is in ADT 2ℓ+2, which concludes.

Item 1 of Lemma 3 is an immediate corollary of the fact that Σk ⊆ Bℓ.
Regarding Item 2 of Lemma 3, let ψ ∈ Σ1 a first-order formula of the form

∃x1, ...,∃xnψ′(x1, ..., xn) with ψ′ quantifier-free. With no loss of generality, we
consider ψ′ = C1∨ ...∨Cm in disjunctive normal form, in other words C1, ..., Cm

only use conjunctions of literals of the form xi < xj , or a(x), or their negations.
As expected, the adt corresponding to ψ is of the form or(τC1 , . . . , τCm), and
we now explain how to build τC .

If clause C is not satisfiable, we associate adt ⊥, otherwise we proceed as
follows.

First, we show that with no loss of generality clause C of ψ′ specifies a linear
order over x1, ..., xn together with literals based on predicates a(xi). To do so, we

decompose the clause C, according to C< ∧Ca, where the first conjunct gathers
all <-based literals and the second gathers the rest. Now, the sub-clause C<

naturally induces a partial order between all free variables x1, ..., xn of ψ′. It is
easy to see that clause C< is equivalent to a disjunctive formula ψC< where each
disjunct describes a possible linearization of this partial order. For example, if
C< = x < y ∧ ¬y < z then ψC< = (x < y ∧ y = z) ∨ (x < z ∧ z < y) ∨ (z =
x∧x < y)∨(z < x∧x < y), so that C is equivalent to (x < y∧y = z∧Ca)∨(x <
z ∧ z < y ∧Ca)∨ (z = x∧ x < y ∧Ca)∨ (z < x∧ x < y ∧Ca), which concludes.

In clause C (which now specifies a linear order of the variables), if xi = xj
with i ̸= j, we replace all occurrences of xj by xi in C and obtain a clause equiv-
alent to C of the form xi1 < ... < xiℓ ∧P1(xi1)∧ ...∧Pℓ(xiℓ) where each Pk(xik)
is the conjunction of literals of the form a(xik) and ¬a(xik). For convenience, we
still write C this clause.

We associate with clause C the adt τC = sand(γ1, ..., γℓ)⌈ where γi is made
of the conjunction of the propositional formulas stemming from the valuations,
or negation of valuations, that occur in Pk(xik). It can be shown that a trace
t ∈ Traces(τC) if, and only, if t |= ∃xi1 ...∃xiℓxi1 < ... < xiℓ∧P1(xi1)∧...∧Pℓ(xiℓ).

D Complements of Section 5

We start this section with some results and definitions to help us to prove Propo-
sition 2. We then conduct the proof of Proposition 2, and we finish with the proof
of Lemma 8, a useful result to prove Proposition 1.

Lemma 6. Let t1, t2, t ∈ {a, b}∗. The following assertions hold:

1. ∥t1 · t2∥ = ∥t1∥+ ∥t2∥
2. If ∥t∥ = k ≥ 0, then, for each i ∈ {0, 1, ..., k} there exists t′ ⪯ t such that

∥t′∥ = i.
3. If ∥t∥ = k > 0, then there exists t1, t2 such that t = t1 · a · t2 with ∥t2∥ = 0

and for each t′2 ⪯ t2, we have ∥t′2∥ ≥ 0

Item 1 is trivial from the definition of ∥.∥, Item 2 stems from the classic "In-
termediate Value Theorem" in mathematics – that is applicable since extending
a trace t with a letter only increments or decrements ∥t∥ by 1. Item 3 is obtained
by an application of Item 2.

We now start the proof of Proposition 2.

Proposition 2. For each k > 0, Wk ∈ ADT k+1 \ADT k−2.

Proof. RecallWk /∈ ADT k−2 (page 11). We here focus on provingWk /∈ ADT k+1.
We introduce companion languages of Wk, that were introduced in [23]

namely Wk
+ and Wk

−:

– Wk
+ := {w ∈ Σ∗ s.t. ∥w∥ = k and for each w′ ⪯ w, 0 ≤ ∥w′∥ ≤ k},

– Wk
− := {w ∈ Σ∗ s.t. ∥w∥ = −k and for each w′ ⪯ w, −k ≤ ∥w′∥ ≤ 0},

In [23], alternative definitions of Wk, Wk
+ and Wk

− are provided:

– W0 =W0
+ =W0

− := {ε};
– Wk+1 := (Wk

+aΣ∗ ∩Σ∗bWk
−) \ (Σ∗aWk

+aΣ∗ ∪Σ∗bWk
−bΣ∗);

– Wk+1
+ := (Wk

+aΣ∗ ∩Σ∗aWk
+) \ (Σ∗aWk

+aΣ∗ ∪Σ∗bWk
−bΣ∗);

– Wk+1
− := (Wk

−bΣ∗ ∩Σ∗bWk
−) \ (Σ∗aWk

+aΣ∗ ∪Σ∗bWk
−bΣ∗).

In the following, we may use the most convenient characterisation of Wk,
Wk

+ and Wk
−. Our proof relies on a third characterisation. We build languages

Uk, Uk
+ and Uk

− where we eliminate the ∩ operator occurring in the recursive
definitions of Wk, Wk

+ and Wk
−. For w ∈ {a, b}∗ we let its swap be the word

swap(w) obtained by swapping a and b in w. We lift this operator to languages
like usual: swap(L) = {swap(w) : w ∈ L}. Note that Wk

− = swap(Wk
+).

We set:

– U0 = U0
+ = U0

− := {ε};
– Uk+1 := (Uk

+aΣ∗bUk
−) \ (Σ∗aUk

+aΣ∗ ∪Σ∗bUk
−bΣ∗);

– Uk+1
+ := ((Uk

+aΣ∗aUk
+) ∪ (

⋃
i≤k

UiaUk
+)) \ (Σ∗aUk

+aΣ∗ ∪Σ∗bUk
−bΣ∗);

– Uk+1
− := swap(Uk+1

+).

Lemma 7. For every k ≥ 0, we have Wk = Uk, Wk
+ = Uk

+ and Wk
− = Uk

−.

Proof. The proof is conducted by induction over k. By definition, W0 = U0,
W0

+ = U0
+ and W0

− = U0
−. For the rest of the proof, we fix k > 0.

– We start to show Wk+1 = Uk+1. Namely, by replacing Uk (respectively Uk
+,

Uk
−) by Wk (respectively Wk

+, Wk
−) that:

(Wk
+aΣ∗ ∩Σ∗bWk

−) \ (Σ∗aWk
+aΣ∗ ∪Σ∗bWk

−bΣ∗)

= (Wk
+aΣ∗bWk

−) \ (Σ∗aWk
+aΣ∗ ∪Σ∗bWk

−bΣ∗)

It is enough to show that (Wk
+aΣ∗ ∩Σ∗bWk

−) = (Wk
+aΣ∗bWk

−) for the
equality to hold. Because (Wk

+aΣ∗ ∩Σ∗bWk
−) ⊇ (Wk

+aΣ∗bWk
−) is clear,

we focus on showing (Wk
+aΣ∗ ∩Σ∗bWk

−) ⊆ (Wk
+aΣ∗bWk

−). Let w be in
Wk

+aΣ∗ ∩ Σ∗bWk
−. As w ∈ Wk

+aΣ∗, we can write w = u1 · a · u2 with
u1 ∈ Wk

+ and let n be the position of the distinguished a occurrence in w.
As we also have w ∈ Σ∗bWk

−, we can write w = v2 · b · v1 with v1 ∈ Wk
−

and let m be the position of the distinguished b occurrence in w. Clearly
n ̸= m. Moreover, we cannot have m < n. Indeed, if m < n we can write
w = v2 ·b·w′ ·a·u2 with v2 ·b·w′ = u1 ∈Wk

+ and w′ ·a·u2 = v1 ∈Wk
−. Since

v2 is a prefix of u1 ∈Wk
+, we have ∥v2∥ ≤ k, and therefore ∥v2 · b∥ ≤ k − 1

(by Item 1 of Lemma 6). Moreover, since w′ is a prefix of v1 ∈Wk
−, we have

∥w′∥ ≤ 0. We conclude that ∥v2 ·b·w′∥ ≤ k−1 (by Item 1 of Lemma 6), which
contradicts v2 · b · w′ ∈ Wk

+. Therefore n < m, and w ∈ (Wk
+aΣ∗bWk

−),
which concludes.

– We now prove that Wk+1
+ = Uk+1

+. Because the inclusion Wk+1
+ ⊇ Uk+1

+

is clear, we focus on Wk+1
+ ⊆ Uk+1

+. Namely, by replacing Uk (respectively
Uk

+, Uk
−) by Wk (respectively Wk

+, Wk
−) that:

(Wk
+aΣ∗ ∩Σ∗aWk

+) \ (Σ∗aWk
+aΣ∗ ∪Σ∗bWk

−bΣ∗) ⊆

(Wk
+aΣ∗aWk

+) ∪ (
⋃
i≤k

WiaWk
+)) \ (Σ∗aWk

+aΣ∗ ∪Σ∗bWk
−bΣ∗)

Let w ∈ Wk+1
+. As, on the one hand, w ∈ Wk

+aΣ∗, we can write w =
u1 · a · u2 with u1 ∈ Wk

+ and let n be the position of the distinguished
a occurrence in w. As, on the other hand, we also have w ∈ Σ∗aWk

+, we
can write w = v2 · a · v1 with v1 ∈ Wk

+ and let m be the position of the
distinguished a occurrence in w.
First of all, n ̸= m: indeed, if n = m, we can write w = u1 · a · v1 with
u1, v1 ∈ Wk

+. Since ∥u1 · a∥ = k + 1, we can write u1 · a = q1 · a · q2
with q2 ∈ Wk

+. Since v1 ∈ Wk
+, we can write v1 = a · v′1. So that w =

q1 · a · q2 · a · v′1 ∈ (Σ∗aWk
+aΣ∗) which entails w /∈ Wk+1, leading to a

contradiction.
We distinguish the two remaining cases.

• If n < m, then we have w ∈ (Wk
+aΣ∗aWk

+), which entails w ∈ Uk+1
+.

• If m < n, we can write u1 = p1 · a · p2 ∈Wk
+ and v1 = p2 · a · p3 ∈Wk

+,
where w = p1 · a · p2 · a · p3. Notice that ∥p1∥ ≥ 0, as u1 ∈ Wk

+, but
we show that ∥p1∥ = 0: if ∥p1∥ > 0, we can rewrite p1 = q1 · a · q2 with
∥q2∥ = 0 and for each q′2 prefix of q2, we have ∥q′2∥ ≥ 0 (by Item 3 of
Lemma 6). Moreover, ∥a · p2 · a · p3∥ = k + 1 (by Item 1 of Lemma 6
since ∥p2 · a · p3∥ = k), thus we can write a · p2 · a · p3 = r1 · a · r2 with
r1 ∈ Wk

+ (by Item 2 of Lemma 6). Therefore, w = q1 · a · q2 · r1 · a · r2
with q2 · r1 ∈Wk

+(by Item 1 of Lemma 6), so that w ∈ (Σ∗aWk
+aΣ∗),

which contradicts w ∈Wk+1.
Since ∥p1∥ = 0, we have p1 ∈

⋃
i≤k

Wi, and we conclude w = p1 · a ·

v1 ∈
⋃
i≤k

WiaWk
+. Also because w ∈ Wk+1

+, w /∈ (Σ∗aWk
+aΣ∗ ∪

Σ∗bWk
−bΣ∗) and we obtain w ∈ Uk+1

+, which concludes.

– Finally, Wk+1
− = Uk+1

− because Wk+1
− = swap(Wk+1

+) and Uk+1
− =

swap(Uk+1
+) and we have already shown Wk+1

+ = Uk+1
+.

This conclude the proof of Lemma 7.

We use Lemma 7 to construct three adts µk, µ
+
k and µ−

k such that Traces(µk) =
Wk, Traces(µ+

k) = Wk
+ and Traces(µ−

k) = Wk
−, δ(µk) = δ(µ+

k) = δ(µ−
k) =

k + 1 which achieves the proof of Proposition 2. The proof is conducted by
induction over k ≥ 1.

To capture W1, we propose the following adt depicted in fig. 2a:

µ1 := co(b,or(b⌈, ⌉co(|≥2|,and(a⌈, b⌈))⌈)),

We prove Traces(µ1) = (ab)+ = W1: we point to Example 2 for the se-
mantics for all,not(τ) and ⌉τ⌈. First of all, and(a⌈, b⌈) defines the set of
all traces with at least one occurrence of a and one occurrence of b. Thus
Traces(co(|≥2|,and(a⌈, b⌈))) = aa+ ∪ bb+. Write τ := co(|≥2|,and(a⌈, b⌈)).
So, Traces(⌉τ⌈) = Σ∗.(aa+ ∪ bb+).Σ∗ = Σ∗.aa.Σ∗ ∪Σ∗.bb.Σ∗. On this basis,
Traces(µ1) = Traces(co(b,or(b⌈, ⌉τ⌈))) = Σ∗b\(bΣ∗∪Σ∗.aa.Σ∗∪Σ∗.bb.Σ∗) =
(ab)+ =W1.

We now compute δ(µ1) since δ(τ) = 1, we have δ(µ1) = δ(co(b,or(b⌈, ⌉τ⌈))) =
max{0,max{1, 1}+ 1} = 2.

Similarly, we define:

– µ+
1 := co(a,or(b⌈, ⌉co(|≥2|,and(a⌈, b⌈))⌈));

– µ−
1 := co(b,or(a⌈, ⌉co(|≥2|,and(a⌈, b⌈))⌈)).

As done for µ1, one can verify that Traces(µ+
1) = (ab)∗a =W1

+ and Traces(µ−
1) =

b(ab)∗ =W1
− and that δ(µ+

1) = δ(µ−
1) = 2.

We make use of Uk, Uk
+ and Uk

− to inductively define µk, µ+
k and µ−

k . For
readability, we introduce for k ≥ 2 the subtrees ξk and ζk and we extend the
definition of swap(.) to adts by applying the swap to leaves.

ξk := or(sand(a, µ+
k , a⌈), sand(b, µ−

k , b⌈))

ζk := or(sand(µ1, a, µ
+
k), sand(µ2, a, µ

+
k), ..., sand(µk, a, µ

+
k))

And µk, µ+
k and µ−

k are defined by:

– µk := co(sand(µ+
k−1, a,all, b, µ−

k−1), ξk−1)

– µ+
k := co(or(sand(µ+

k−1, a,all, a, µ+
k−1), ζk−1), ξk−1)

– µ−
k := swap(µ+

k)

The adts µk, µ+
k and µ−

k are built in such a way that a direct application
of adt semantics yields Wk = Traces(µk), Wk

+ = Traces(µ+
k) and Wk

− =
Traces(µ−

k).
It remains to show that δ(µk) = δ(µ+

k) = δ(µ−
k) = k+1 assuming δ(µk−1) =

δ(µ+
k−1) = δ(µ−

k−1) = k. By definition, δ(µk) = max{δ(τ1), δ(ξk−1)+1} with τ1 =

sand(µ+
k−1, a,all, b, µ−

k−1). By using Example 5, we have δ(τ1) = max{δ(µ+
k−1),

1, 0, 1, δ(µ−
k−1)} and δ(ξk−1) = max{0, δ(µ+

k−1), 1, 0, δ(µ
−
k−1), 1}. Applying the in-

duction hypothesis over δ(µ+
k−1) = δ(µ−

k−1) = k, we obtain: δ(τ1) = max{k, 1, 0, 1, k} =
k and δ(τ2) = max{0, k, 1, 0, k, 1} = k, thus δ(µk) = max{k, k+1} = k+1, which
concludes. Similarly, we can establish δ(µ+

k) = δ(µ−
k) = k + 1.

We have shown Wk = Traces(µk) with δ(µk) = k + 1 which concludes the
proof of Proposition 2.

Lemma 8. If ADT k0
= ADT k0+1 for some k0 > 0, then all ADT k collapse

from k0.

Proof. Let k > 0 be such that for all τ ∈ ADT k+1, we have that τ is ADT k-
definable. Given τk+2 ∈ ADT k+2, we know that for each subtree of the form
co(τ1, τ2) in τk+2, we have that τ2 ∈ ADT k+1. Therefore τ2 is ADT k-definable.
Hence there exists τ ′2 ∈ ADT k such that τ2 ≡ τ ′2. By replacing τ2 by τ ′2 in τk+2,
we do not change its semantics. By applying this procedure over all co operator
of minimal depth (ie. co operator having no co in their ancestors), we obtain
τ ′k+1 ∈ ADT k+1 such that τk+1 ≡ τ ′k+2. By hypothesis, we know that τ ′k+1 is
ADT k-definable. This implies that τk+1 is also ADT k-definable. We can then
extend this result for each l > k by induction.

E Complements of Section 6

Regarding the upper-bound complexity of ADT -memb (Table 1), we present
here an alternating algorithm using the following logarithmic space (hence a
Ptime complexity for ADT -memb) Algorithm 1. Remark that our algorithm
can be extended to allow arbitrary EREs (with the Kleene star) as inputs, but
this is out of the scope of the paper.

Algorithm 1 Memb(τ, t)
Input: τ an adt and t a trace
Output: True if t ∈ Traces(τ), False otherwise.
1: switch (τ)
2: case ϵ:
3: return (t = ε)
4: case τ = γ:
5: return (last(t) |= γ)
6: case τ = OP (τ ′):
7: return Memb(τ ′, t)
8: case τ = or(τ1, ..., τn):
9: (∃) guess τ ′ ∈ {τ1, ..., τn}

10: return Memb(τ ′, t)
11: case τ = sand(τ1, ..., τn):
12: (∃) guess i ∈ {1, ..., |t|}
13: (∀) guess test ∈ {first, others}
14: if test = first then
15: return Memb(τ1, t1...ti)
16: else
17: return
18: Memb(sand(τ2, ..., τn), ti+1...t|t|)
19: end if

20: case τ = and(τ1, ..., τn):
21: (∃) guess (i, a) ∈ {1, ..., |t|} ×

{1, ..., n} (∀) guess test ∈
{first, others}

22: if test = first then
23: return Memb(τa, t1...ti)
24: else
25: return
26: Memb(and(τ1, ..., τi−1, τi+1, ..., τn), t)
27: end if
28: case τ = co(τ1, τ2):
29: (∀) guess test ∈ {first, second}
30: if test = first then
31: return Memb(τ1, t)
32: else
33: return ¬Memb(τ2, t)
34: end if
35: end switch

.

Proposition 4. Algorithm 1 solves ADT -memb in logarithmic space.

Proof. We start by showing that Algorithm 1 runs in logarithmic space, then we
prove its correctness.

Since at each recursive call we only need to recall over which factor of t we
are computing (in constant space) and over which part of τ (in constant space)
we are pursuing the computation, Algorithm 1 runs in logarithmic space.

Regarding the correctness of Algorithm 1, we conduct a proof by induction
over τ .

The cases where τ is a leaf (lines 1 to 7) are correct by definition. For the case
where τ = OP (τ ′) (line 9), then, Algorithm 1 is correct too since Traces(τ) =
Traces(τ ′).

If τ = or(τ1, ..., τn), then the case lines 13 to 16 are correct too since by
definition, t ∈ Traces(τ) if and only if one can find i ∈ {1, ..., n} such that
t ∈ Traces(atti).

If τ = sand(τ1, ..., τn), then, by associativity, τ ≡ sand(τ1, sand(τ2, ..., τn)).
Moreover, we have that t = a1 . . . am ∈ Traces(τ) if and only if one can find
i ∈ {1, ...,m} such that a1...ai ∈ τ1 and ai+1...am ∈ sand(τ2, ..., τn), which is
what is done in lines 18-26.

If τ = and(τ1, ..., τn), then, by commutativity and associativity for each
1 ≤ j ≤ n we have τ ≡ and(τj ,and(τ1, ..., τj−1, τj+1, ..., τn)). Moreover, if a
trace t ∈ and(τ1, ..., τn), we can always choose j such that there is 1 ≤ k ≤ n,
with k ̸= j and t ∈ Traces(τk). Therefore t is in Traces(τ) if and only if t has a
prefix in Traces(τj) and t is in semantics of and(τ1, ..., τj−1, τj+1, ..., τn). Thus
procedure describes from line 28 to 36 is correct.

Finally, if τ = co(τ1, τ2)n then trace t ∈ Traces(τ) if, and only if, t ∈
Traces(τ1) and t ̸∈ Traces(τ2), which is what is done in lines 38-45.

Proposition 5. ADT k-ne with k ≥ 6 is not solvable in Nspace(g(k−5, c
√

n−1
3)).

Proof. From [21, Theorem 4.29], for an ERE E of size n and of ∼-depth d,
there exists a constant c such that the non-emptiness of ∼E is not solvable
in Nspace(g(d − 3, c

√
n)). Moreover, from the proof of Theorem 2, it can be

shown that the non-emptiness of ∼E reduces to answering ADT -ne for adt
co(⊤, τE) ∈ ADT d+2 of size at most 3n+ 1, which concludes.

Proposition 6. For k ≥ 1, ADT k-ne is in (k + 1)-Expspace.

Proof. For an adt τ ∈ ADT k, we have a formula ψτ ∈ Σk+1 with |ψτ | ∈ O(2|τ |)
(Lemma 1) that is equivalent to τ (see Lemma 1). Now, the non-emptiness of
Traces(τ) is equivalent to the satisfiability of ψτ ∈ Σk+1 which, by [12] take
k-exponential time in the size of ψτ and therefore (k + 1)-exponential time in
|τ |.

	Semantics of Attack-Defense Trees for Dynamic Countermeasures and a New Hierarchy of Star-free Languages

