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Abstract

In this paper, we construct a winning condition W over a finite
set of colors such that, first, every finite arena has a strategy with 2
states of general memory which is optimal w.r.t. W , and second, there
exists no k such that every finite arena has a strategy with k states of
chromatic memory which is optimal w.r.t. W .

1 Introduction

Memory requirements for games on graphs have been studied for decades.
Initially, these studies were motivated by applications to automata theory
and the decidability of logical theories. For example, the memoryless deter-
minacy of parity games is a key ingredient for the complementation of tree
automata and leads to the decidability of the monadic second-order theory
of trees [15]. Recently, games on graphs have become an important tool in
reactive synthesis [1]. They serve there as a model of the interaction between
a reactive system and the environment. One question studied in games on
graphs is which winning conditions admit “simple” winning strategies. The
prevailing measure of the complexity of strategies in the literature is mem-
ory. In this note, we study two kinds of memory – general (a.k.a. chaotic)
memory and chromatic memory. The relationship between them was first
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ANID.

1

http://arxiv.org/abs/2208.02691v2


addressed in the Ph.D. thesis of Kopczyński [12], followed by several recent
works [3, 6, 7].

We focus on deterministic games, infinite-duration and turn-based. We
call our players Protagonist and Antagonist. They play over a finite1 di-
rected graph called an arena. Its set of nodes has to be partitioned into ones
controlled by Protagonist and ones controlled by Antagonist. Players move
a token over the nodes of the graph along its edges. In each turn, the token
is moved by the player controlling the current node.

After infinitely many turns, this process produces an infinite path in our
graph. A winning condition is a set of infinite paths that are winning for
Protagonist. In the literature, a standard way of defining winning conditions
assumes that arenas are edge-colored by elements of some set of colors C.
Then any subset W ⊆ Cω is associated with a winning condition, consisting
of all infinite paths whose sequence of colors belongs to W .

In this paper, we seek simple winning strategies of Protagonist, while the
complexity of Antagonist’s strategies is mostly irrelevant to us. Such asym-
metry is motivated by reactive synthesis, where Protagonist represents a
system and Antagonist represents the environment. Now, the main measure
of the complexity of Protagonist’s strategies for us is memory. Qualitatively,
we distinguish between finite-memory strategies and infinite-memory strate-
gies. In turn, among finite-memory strategies, we prefer those that have
fewer states of memory.

Finite-memory strategies are defined through so-called memory struc-
tures. Intuitively, a memory structure plays the role of a “hard disk” of a
strategy. Formally, a general memory structure M is a deterministic finite
automaton whose input alphabet is the set of edges of an arena. During the
game, edges over which the token moves are fed to M one by one. Corre-
spondingly, the state of M is updated after each move. Now, a strategy built
on top of a memory structure M (or simply an M-strategy) is a strategy
whose moves at any moment depend solely on two things: first, the current
arena node, and second, the current state of M. A strategy is finite-memory
if it can be built on top of some memory structure. More precisely, if this
memory structure has k states, then strategies built on top of it are strate-
gies with k states of general memory. Of course, some strategies cannot be
built on top of any memory structure. Such strategies are infinite-memory
strategies.

We also consider a special class of general memory structures called chro-
matic memory structures. A memory structure is chromatic if its transition

1There are papers that study these games over infinite graphs, but in this note we only
work with finite graphs.
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function does not distinguish edges of the same color. In other words, chro-
matic memory structures only reads colors of edges that are fed into them.
Alternatively, a chromatic memory structure can be viewed as a finite au-
tomaton whose input alphabet is not the set of edges, but the set of colors.
Correspondingly, strategies that are built on top of a chromatic memory
structure with k states are called strategies with k states of chromatic mem-
ory.

Around a Kopczyński’s question

Complexity of strategies brings us to complexity of winning conditions.
For a given winning condition, we want to determine the minimal amount
of memory which is sufficient to win whenever it is possible to win. More
specifically, the general memory complexity of a winning condition W ,
denoted by GenMem(W ), is the minimal k ∈ N such that in every arena there
exists a Protagonist’s strategy S with k states of general memory which is
optimal w.r.t. W . If no such k exists, we set GenMem(W ) = +∞. Now,
“S is optimal w.r.t. W” means that there exists no node v such that some
Protagonist’s strategy is winning from v w.r.t. W and S is not. Substituting
“general memory” by “chromatic memory”, we obtain a definition of the
chromatic memory complexity of W , which is denoted by ChrMem(W ).

For any W , we have GenMem(W ) ≤ ChrMem(W ). Our paper revolves
around a question from the Ph.D. thesis of Kopczyński [12].

Question 1. Is this true that GenMem(W ) = ChrMem(W ) for every winning
condition W?

To understand Kopczyński’s motivation, we first have to go back to 1969,
when Büchi and Landweber [4] established that ChrMem(W ) is finite for
all ω-regular W . An obvious corollary of this is that GenMem(W ) is also
finite for all ω-regular W . Since then, there is an unfinished quest of exactly
characterizing ChrMem(W ) and GenMem(W ) for ω-regular W . In particular,
it is open whether ChrMem(W ) and GenMem(W ) are computable given an
ω-regular W as an input (assuming W is given, say, in a form of a non-
deterministic Büchi automaton recognizing W ).

In his Ph.D. thesis, Kopczyński contributed to this question by giving
an algorithm computing ChrMem(W ) for prefix-independent ω-regular W (a
winning condition is called prefix-independent if it is invariant under adding
and removing finite prefixes). Prior to that, he published a weaker version
of this result in [11]. He asked Question 1 to find out, whether his algorithm
also computes GenMem(W ) for prefix-independent ω-regular W . His other
motivation was that the same chromatic memory structure can be used in
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different arenas. Indeed, transition functions of chromatic memory structures
can be defined over colors so that we do not have to specify them individually
for each arena.

Question 1 was recently answered by Casares in [6]. Namely, for every
n ∈ N he gave a Muller condition W over n colors with GenMem(W ) = 2
and ChrMem(W ) = n.

Definition 1. A winning condition W ⊆ Cω is Muller if C is finite and
α ∈ W ⇐⇒ β ∈ W for any two α, β ∈ Cω that have the same sets of colors
occurring infinitely often in them.

Every Muller condition is prefix-independent and ω-regular. Hence, we
now know that Kopczyński’s algorithm does not always compute GenMem(W )
for prefix-independent ω-regular W . It is still open whether some other al-
gorithm does this job.

In a follow-up work, Casares, Colcombet and Lehtinen [7] achieve a larger
gap between GenMem(W ) and ChrMem(W ). Namely, they construct a Muller
W over n colors such that GenMem(W ) is linear in n and ChrMem(W ) is
exponential in n.

It is worth mentioning that Casares, Colcombet and Lehtinen derive these
examples from their new automata-theoretic characterizations of ChrMem(W )
and GenMem(W ) for Muller W . First, Casares [6] showed that ChrMem(W )
equals the minimal size of a deterministic Rabin automaton, recognizing W ,
for every Muller W . Second, Casares, Colcombet and Lehtinen [7] showed
that GenMem(W ) equals the minimal size of a good-for-games Rabin au-
tomaton, recognizing W , for every Muller W . The latter result complements
an earlier work by Dziembowski, Jurdziński and Walukiewicz [10], who char-
acterized GenMem(W ) for Muller W in terms of their Zielonka’s trees [15].

These examples, however, do not answer a natural follow-up question –
can the gap between GenMem(W ) and ChrMem(W ) be infinite? To answer
it, we have to go beyond Muller and even ω-regular conditions (because
ChrMem(W ) is finite for them).

Question 2. Is it true that for every finite set of colors C and for every win-
ning condition W ⊆ Cω we have GenMem(W ) < +∞ =⇒ ChrMem(W ) <
+∞?

Remark 1. If we do not insist on finiteness of C, a negative answer to Ques-
tion 2 follows from the example of Casares. Namely, for every n he defines a
winning condition Wn ⊆ {1, 2, . . . n}ω, consisting of all α ∈ {1, 2, . . . n}ω such
that there are exactly two numbers from 1 to n that occur infinitely often in
α. He then shows that GenMem(Wn) = 2 and ChrMem(Wn) = n for every n.
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We can now consider the union of these winning conditions ∪n≥2Wn, which
is a winning condition over C = N. On one hand, GenMem(∪n≥2Wn) = 2
because every arena has only finitely many natural numbers as colors, and
hence ∪n≥2Wn coincides with Wn for some n there. On the other hand, we
have ChrMem(∪n≥2Wn) ≥ ChrMem(Wn) = n for every n, which means that
ChrMem(∪n≥2Wn) = +∞.

In this paper, we answer negatively to Question 2.

Theorem 1. There exists a finite set of colors C and a winning condition
W ⊆ Cω such that GenMem(W ) = 2 and ChrMem(W ) = +∞.

Topologically, our W belongs to the Σ0
2-level of the Borel hierarchy. Next,

the size of C in our example is 5, and there is a chance that it can be
reduced. In turn, GenMem(W ) is optimal because GenMem(W ) = 1 implies
ChrMem(W ) = 1 (one state of general memory is equally useless as one state
of chromatic memory).

We call our W the “Rope Ladder” condition. We define it in Section
3. The upper bound on GenMem(W ) and the lower bound on ChrMem(W )
are given in Section 4 and in Section 5, respectively. Before that, we give
Preliminaries in Section 2.

Further open questions

Still, some intriguing variations of Question 2 remain open. For example,
it is interesting to obtain Theorem 1 for a closed condition, i.e. a condition
in the Π0

1-level of the Borel hierarchy, or equivalently, a condition given by a
set of prohibited finite prefixes. In the game-theoretic literature, such con-
ditions are usually called safety conditions. Our W is an infinite union of
safety conditions. In [9], Colcombet, Fijalkow and Horn give a characteri-
zation GenMem(W ) for safety W . Recently, Bouyer, Fijalkow, Randour,and
Vandenhove [5] obtained a characterization of ChrMem(W ) for safety W .

Problem 1. Construct a finite set of colors C and a safety winning condition
W ⊆ Cω such that GenMem(W ) < ∞ and ChrMem(W ) = +∞.

It is equally interesting to obtain Theorem 1 for a prefix-independent W ,
as our W is not prefix-independent.

Problem 2. Construct a finite set of colors C and a prefix-independent win-
ning condition W ⊆ Cω such that GenMem(W ) < ∞ and ChrMem(W ) =
+∞.
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There is also a variation of Question 2 related to a paper of Bouyer, Le
Roux, Oualhadj, Randour, and Vandenhove [3]. In this paper, they introduce
and study the class of arena-independent finite-memory determined winning
conditions. When the set of colors C is finite, this class can be defined as
the class of W such that both ChrMem(W ) and ChrMem(Cω \W ) are finite2

(meaning that both Protagonist and Antagonist can play optimally w.r.t. W
using some constant number of states of chromatic memory).

First, Bouyer et al. obtain an automata-theoretic characterization of
arena-independent finite-memory determinacy. Second, they deduce a one-
to-two-player lifting theorem from it. Namely, they show that as long as both
ChrMem(W ) and ChrMem(¬W ) are finite in arenas without the Antagonist’s
nodes, the same is true for all arenas.

A natural step forward would be to study conditions W for which both
GenMem(W ) and GenMem(¬W ) are finite. Unfortunately, it is even unknown
whether this is a larger class of conditions. This raises the following problem.

Problem 3. Construct a finite set of colors C and a winning condition W ⊆
Cω such that GenMem(W ) and GenMem(¬W ) are finite, but ChrMem(W ) is
infinite.

In fact, it is not clear if our W from Theorem 1 solves this problem. We
do not know whether GenMem(¬W ) is finite for this W .

Question 2 is also open over infinite arenas. There is a relevant result due
to Bouyer, Randour and Vandenhove [2], who showed that the class of W
for which ChrMem(W ) and ChrMem(¬W ) are both finite in infinite arenas
coincides with the class of ω-regular W . Thus, it would be sufficient to give
a non-ω-regular W for which both GenMem(W ) and GenMem(¬W ) are finite
in infinite arenas.

Finally, let us mention a line of work which studied the relationship be-
tween chromatic and general memory in the non-uniform setting. Namely,
fix a single arena A and some winning condition W , and then consider two
quantities: first, the minimal kgen such that A has an optimal strategy with
kgen states of general memory, and second, the minimal kchr such that A has
an optimal strategy with kchr states of chromatic memory. In [14], Le Roux
showed that if kgen is finite, then kchr is also finite. There is no contradic-
tion with Theorem 1 because kchr depends not only on kgen, but also on A.
A tight bound on kchr in terms of kgen and the number of nodes of A was
obtained in [13].

2In their original definition, the “memory structure” (see Preliminaries) must be the
same in all arenas. When C is finite, this definition is equivalent, because there are just
finitely many chromatic memory structures up to a certain size. If none of them works for
all arenas, one can construct a finite arena where none of them works.
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2 Preliminaries

Notation. For a set A, we let A∗ and Aω stand for the set of all finite and
the set of all infinite sequences of elements of A, respectively. For x ∈ A∗,
we let |x| denote the length of x. We also set |x| = +∞ for x ∈ Aω. We let
◦ denote the function composition. The set of positive integral numbers is
denoted by Z

+.

2.1 Arenas

Definition 2. Let C be a non-empty set. A tuple A = 〈VP , VA, E〉 is called
an arena over the set of colors C if the following conditions hold:

• VP , VA, E are finite sets such that VP ∩ VA = ∅, VP ∪ VA 6= ∅ and
E ⊆ (VP ∪ VA)× C × (VP ∪ VA);

• for every s ∈ VP ∪ VA there exist c ∈ C and t ∈ VP ∪ VA such that
(s, c, t) ∈ E.

Elements of the set V = VP ∪ VA will be called nodes of A. Elements of
VP will be called nodes controlled by Protagonist (or simply Protagonist’s
nodes). Similarly, elements of VA will be called nodes controlled by Antag-
onist (or simply Antagonist’s nodes). Elements of E will be called edges of
A. For an edge e = (s, c, t) ∈ E we define source(e) = s, col(e) = c and
target(e) = t. We imagine e ∈ E as an arrow which is drawn from the node
source(e) to the node target(e) and which is colored into col(e). Note that
the second condition in the definition of an arena means that every node has
at least one out-going edge.

We extend the domain of col to the set E∗ ∪ Eω by

col(e1e2e3 . . .) = col(e1)col(e2)col(e3) . . . , e1, e2, e3, . . . ∈ E.

A non-empty sequence p = e1e2e3 . . . ∈ E∗∪Eω is called a path if for any
1 ≤ i < |p| we have target(ei) = source(ei+1). We set source(p) = source(e1)
and, if p is finite, target(p) = target(e|p|). For technical convenience, every
node v ∈ V is assigned a 0-length path λv, for which we set source(λv) =
target(λv) = v and col(λv) = empty string.

Paths are sequences of edges, so we will say that some paths are prefixes
of the others. However, we have to define this for 0-length paths. Namely,
we say that λv is a prefix of a path p if and only if source(p) = v.

7



2.2 Strategies

Let A = 〈VP , VA, E〉 be an arena over the set of colors C. A Protagonist’s
strategy in A is any function

S : {p | p is a finite path in A with target(p) ∈ VP} → E,

such that for every p from the domain of S we have source(S(p)) = target(p).
In this paper, we do not mention Antagonist’s strategies, but, of course, they
can be defined similarly.

The set of finite paths in A is the set of positions of the game. Possible
starting positions are 0-length paths λs, s ∈ V . When the starting position3

is λs, we say that the game starts at s. Now, consider any finite path p. Pro-
tagonist is the one to move after p if and only if t = target(p) is a Protagonist’s
node. In this situation, Protagonist must choose some edge starting at t. A
Protagonist’s strategy fixes this choice for every p with target(p) ∈ VP . We
then append this edge to p and get the next position in the game. Antagonist
acts the same for those p such that target(p) is an Antagonist’s node.

Let us define paths that are consistent with a Protagonist’s strategy S.
First, any 0-length path λv is consistent with S. Now, a non-empty path
p = e1e2e3 . . . (which may be finite or infinite) is consistent with S if the
following holds:

• if source(p) ∈ VP , then e1 = S(λsource(p));

• for every 1 ≤ i < |p|, if target(ei) ∈ VP , then ei+1 = S(e1e2 . . . ei).

For brevity, paths that are consistent with S will also be called plays with
S. For a node v, we let FinitePlays(S, v) and InfinitePlays(S, v) denote the
set of finite plays with S that start at v and the set of infinite plays with
S that start at v, respectively. For U ⊆ V , we define FinitePlays(S, U) =
⋃

v∈U FinitePlays(S, v) and InfinitePlays(S, U) =
⋃

v∈U InfinitePlays(S, v).

2.3 Memory structures

Let A = 〈VP , VA, E〉 be an arena over the set of colors C. A memory
structure inA is a tupleM = 〈M,minit, δ〉, whereM is a finite set, minit ∈ M
and δ : M×E → M . Elements of M are called states ofM, minit is called the
initial state ofM and δ is called the transition function ofM. Givenm ∈ M ,

3We do not have to redefine S for every starting position. The same S can be played
from any of them.
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we inductively define the function δ(m, ·) over arbitrary finite sequences of
edges:

δ(m, empty sequence) = m,

δ(m, se) = δ(δ(m, s), e), s ∈ E∗, e ∈ E.

In other words, δ(m, s) is the state of M it transits to from the state m if
we fed s to it.

A memory structure M = 〈M,minit, δ〉 is called chromatic if δ(m, e1) =
δ(m, e2) for every m ∈ M and for every e1, e2 ∈ E with col(e1) = col(e2).
In this case, there exists σ : M × C → M such that δ(m, e) = σ(m, col(e)).
In other words, we can view M as a deterministic finite automaton over C,
with σ being its transition function.

A strategy S is built on top of a memory structure M if we have S(p1) =
S(p2) for any two paths p1, p2 with target(p1) = target(p2) and δ(minit, p1) =
δ(minit, p2). In this case, we sometimes simply say that S is an M-strategy.
To define an M-strategy S, it is sufficient to give its next-move function
nS : VP ×M → E. For v ∈ VP and m ∈ M , the value of nS(v,m) determines
what S does for paths that end at v and bring M to m from minit.

A strategy S built on top of a memory structure M with k states is called
a strategy with k states of general memory. If M is chromatic, then S is a
strategy with k states of chromatic memory.

For brevity, if S is an M-strategy and p is a finite path, we say that
δ(minit, p) is the state of S after p.

2.4 Winning conditions and their memory complexity

A winning condition is any set W ⊆ Cω. We say that a Protagonist’s
strategy S is winning from a node u w.r.t. W if the image of InfinitePlays(S, u)
under col is a subset of W . In other words, any infinite play from u against
S must give a sequence of colors belonging to W . Now, a Protagonist’s
strategy S is called optimal w.r.t. W if there exists no node u such that some
Protagonist’s strategy is winning from u w.r.t. W and S is not.

We let GenMem(W ) be the minimal k ∈ Z
+ such that in every arena A

over C there exists a Protagonist’s strategy with k states of general memory
which is optimal w.r.t. W . If no such k exists, we set GenMem(W ) = +∞.
Likewise, we let ChrMem(W ) be the minimal k ∈ Z

+ such that in every arena
A over C there exists a Protagonist’s strategy with k states of general memory
which is optimal w.r.t. W . Again, if no such k exists, we set ChrMem(W ) =
+∞.
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3 The “Rope Ladder” Condition

Consider the partially ordered set Ω = (N×{0, 1},�), where � is defined
by

∀(n, a), (m, b) ∈ N×{0, 1} (n, a) � (m, b) ⇐⇒ (n, a) = (m, b) or n < m.

(0, 0) (0, 1)

(1, 0) (1, 1)

(2, 0) (2, 1)

...
...

Above is its Hasse diagram, with arrows representing � (they are directed
from bigger elements to smaller elements):

We will use an abbreviation 0 = (0, 0). Next, we let M be the set of all
functions f : Ω → Ω that are monotone w.r.t. �. Being monotone w.r.t. �
means that x � y =⇒ f(x) � f(y) for all x, y ∈ Ω.

Definition 3. The Rope Ladder condition is a set RL ⊆ M
ω, consisting

of all infinite sequences (f1, f2, f3, . . .) ∈ M
ω for which there exists (N, b) ∈ Ω

such that fn ◦ . . . ◦ f2 ◦ f1(0) � (N, b) for all n ≥ 1.

We will use the following informal terminology with regard to RL. Imagine
that there is an ant which can move over the elements of Ω. Initially, it sits
at 0. Next, take any sequence (f1, f2, f3, . . .) ∈ M

ω. We start moving the ant
by applying functions from the sequence to the position of the ant. Namely,
we first move the ant from 0 to f1(0), then from f1(0) to f2 ◦ f1(0), and so
on. Now, (f1, f2, f3, . . .) ∈ RL if and only if there exists a “layer” in Ω which
is never exceeded by the ant.

Remark 2. RL is defined over infinitely many colors, but for our lower bound
on its chromatic memory complexity we will consider its restriction to some
finite subset of M.
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To illustrate these definitions, we establish the following fact. It can also
be considered as a warm-up for our lower bound.

Fact 1. ChrMem(RL) > 1.

Proof. First, consider u, v : Ω → Ω, depicted below:

(0, 0) (0, 1)

(1, 0) (1, 1)

(2, 0) (2, 1)

...
...u

(0, 0) (0, 1)

(1, 0) (1, 1)

(2, 0) (2, 1)

...
...v

These functions are defined by arrows that direct each element of Ω to the
value of the function on this element. Formally, u((n, a)) = (n + 1, a) and
v((n, a)) = (n+1, 1− a) for every (n, a) ∈ Ω. It holds that u, v ∈ M because
they both always increase the first coordinate by 1.

We also consider the following two functions f0, f1 : Ω → Ω:

fb((n, a)) =

{

(n, a) (n, a) = (0, 0), (0, 1) or (1, b),

(n + 1, a) otherwise,
b ∈ {0, 1} (1)

For the reader’s convenience, we depict them as well.

(0, 0) (0, 1)

(1, 0) (1, 1)

(2, 0) (2, 1)

...
...f0

(0, 0) (0, 1)

(1, 0) (1, 1)

(2, 0) (2, 1)

...
...f1

11



To see that f0, f1 ∈ M, observe that both functions have 3 fixed points, and
at remaining points, they act by increasing the first coordinate by 1. There
could be a problem with monotonicity if below some fixed point there were a
point which is not a fixed point. However, the sets of fixed points of f0 and
f1 are downwards-closed w.r.t. �.

Consider the following arena.

u

v

f0

f1

The circle is controlled by Antagonist and the square is controlled by Pro-
tagonist. Assume that the game starts in the circle. We first show that
Protagonist has a winning strategy w.r.t. RL. Then we show that Protag-
onist does not have a positional strategy which is winning w.r.t. RL. This
implies that ChrMem(RL) > 1.

Let us start with the first claim. After the first move of Antagonist,
the ant moves either to u(0) = (1, 0) or to v(0) = (1, 1). In the first case,
Protagonist wins by forever using the f0-edge (the ant will always stay at
(1, 0)). In the second case, Protagonist wins by always using the f1-edge (the
ant will always stay at (1, 1)).

Now we show that every positional strategy of Protagonist is not winning
w.r.t. RL. In fact, there are just 2 Protagonist’s positional strategies – one
which always uses the f0-edge and the other which always uses the f1-edge.
The first one loses if Antagonist goes by the v-edge. Then the ant moves to
v(0) = (1, 1). If we start applying f0 to the ant’s position, the first coordi-
nate of the ant will get arbitrarily large. Similarly, the second Protagonist’s
positional strategy loses if Antagonist goes by the u-edge.

4 Upper Bound on the General Memory

In this section, we establish

Proposition 1. GenMem(RL) = 2.

By Fact 1, we only have to show an upper bound GenMem(RL) ≤ 2. For
that, for every arena A over M and for every Protagonist’s strategy S1 in A
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we construct a Protagonist’s strategy S2 with 2 states of general memory for
which the following holds: for every node v of A, if S1 is winning w.r.t. RL
from v, then so is S2.

We will use the following notation. Take any finite path p = e1 . . . em in
A. Define ant(p) = col(em) ◦ . . . ◦ col(e2) ◦ col(e1)(0). In other words, ant(p)
is the position of the ant after the path p. In case when p is a 0-length path,
we set ant(p) = 0. We also write layer(p) for the first coordinate of ant(p).

Let U be the set of nodes of A from which S1 is winning w.r.t. RL.
By definition of RL, for every P ∈ InfinitePlays(S1, U) there exists N ∈ N

such that layer(p) ≤ N for every finite prefix p of P . The first step of our
argument is to change the quantifiers here. That is, we obtain a strategy
S ′
1 for which there exists some N ∈ N such that layer(p) ≤ N for every

p ∈ FinitePlays(S ′
1, U).

We use an argument, similar to one which was used in [8] to show finite-
memory determinacy of multi-dimensional energy games. We call a play
p ∈ FinitePlays(S1, U) regular if there exist two prefixes q1 and q2 of p such
that, first, q1 is shorter than q2, second, target(q1) = target(q2), and third,
ant(q1) = ant(q2). In other words, q1 and q2 must lead to the same node in
A and to the same position of the ant in Ω. We stress that q2 might coincide
with p, but q1 must be a proper prefix of p. If p ∈ FinitePlays(S1, U) is not
regular, then we call it irregular.

First, we show that there are only finitely many irregular plays in the
set FinitePlays(S1, U). Note that any prefix of an irregular play is irregular.
Thus, irregular plays form a collection of trees with finite branching (for
each u ∈ U there is a tree of irregular plays that start at u). Assume
for contradiction that there are infinitely many irregular plays. Then, by
Kőnig’s lemma, there exists an infinite branch in one of our trees. It gives
some P ∈ InfinitePlays(S1, U) whose finite prefixes are all irregular. However,
P must be winning for Protagonist w.r.t. RL. In other words, there exists
N ∈ N such that layer(p) ≤ N for every finite prefix p of P . So, if p ranges
over finite prefixes of P , then ant(p) takes only finitely many values. Hence,
there exist a node v of A and some (n, b) ∈ Ω such that v = target(p) and
(n, b) = ant(p) for infinitely many prefixes p of P . Consider any two such
prefixes. A longer one is regular because the shorter one is its prefix and
leads to the same node in A and to the same position of the ant. This is a
contradiction.

We now define S ′
1. It will maintain the following invariant for plays that

start at U : if pcur is the current play, then there exists an irregular p ∈
FinitePlays(S1, U) such that target(pcur) = target(p) and ant(pcur) = ant(p).
Since there are only finitely many irregular plays, this invariant implies that
ant(pcur) takes only finitely many values over pcur ∈ FinitePlays(S ′

1, U), as
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required from S ′
1.

To maintain the invariant, S ′
1 plays as follows. In the beginning, pcur =

λw for some w ∈ U . Hence, we can set p = λw also. Indeed, λw ∈
FinitePlays(S1, U) and it is irregular as it has no proper prefixes. Let us
now show how to maintain the invariant. Consider any play pcur with S ′

1 for
which there exists an irregular p ∈ FinitePlays(S1, U) such that target(pcur) =
target(p) and ant(pcur) = ant(p). In this position, if its Protagonist’s turn
to move, S ′

1 makes the same move as S1 from p. As a result, some edge e
is played. Observe that pe ∈ FinitePlays(S1, U). In turn, our new current
play with S ′

1 is pcure. We have that target(pcure) = target(pe) = target(e)
and ant(pcure) = col(e)

(
ant(pcur)

)
= col(e)

(
ant(p)

)
= ant(pe). So, if pe is

irregular, then the invariant is maintained. Now, assume that pe is regular.
Then there are two prefixes q1 and q2 of pe such that, first, q1 is shorter
than q2, second, target(q1) = target(q2), and third, ant(q1) = ant(q2). Since
p is irregular, q2 cannot be a prefix of p. Hence, q2 = pe. By the same
reason, q1 is irregular. Thus, invariant is maintained if we set the new value
of p be q1. Indeed, target(pcure) = target(pe) = target(q2) = target(q1) and
ant(pcure) = ant(pe) = ant(q2) = ant(q1).

We now turn S ′
1 into a strategy S2 with 2 states of general memory which

is winning w.r.t. RL from every node of U .
Preliminary definitions. Let X be the set of nodes reachable from U

by plays with S ′
1. Next, for v ∈ X , define Ωv ⊆ Ω as the set of all (n, b) ∈ Ω

such that (n, b) = ant(p) for some p ∈ FinitePlays(S ′
1,W ) with v = target(p).

In other words, Ωv is the set of all possible positions of the ant that can arise
at v if we play according to S ′

1 from a node of U .
Now, take any v ∈ X . The set Ωv is non-empty and, by our requirements

on S ′
1, finite. Hence, it has 1 or 2 maximal elements w.r.t. �. We will

denote them by Mv
0 and Mv

1 . If Ωv has just a single maximal element, then
Mv

0 = Mv
1 . If Ωv has two different maxima, then let Mv

0 be the one having 0
as the second coordinate. Finally, for every v ∈ X and for every b ∈ {0, 1}
fix some pvb ∈ FinitePlays(S ′

1, U) such that target(pvb) = v and ant(pvb) = Mv
b .

Description of S2. Two states of S2 will be denoted by 0 and 1. The
initial state of S2 is 0. The next-move function of S2 is defined as follows.
Assume that the state of S2 is I ∈ {0, 1} and it has to make a move from
a node v. If v /∈ X , it makes an arbitrary move (this case does not matter
for the argument below). Now, assume that v ∈ X . Then S2 make the same
move as S ′

1 after pvI .
We now describe the memory structure of S2. Assume that it receives an

edge e when its state is I ∈ {0, 1}. The new state J ∈ {0, 1} is computed as
follows. Denote u = source(e) and v = target(e). If u /∈ X or v /∈ X , then
J = 0 (again, this case is irrelevant for the rest of the argument). Assume
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now that u, v ∈ X . If col(e)
(
Mu

I

)
∈ Ωv, then we find some b ∈ {0, 1} such

that col(e)
(
Mu

I

)
� Mv

b and set J = b. Otherwise, we set J = 0.
Showing that S2 is winning fromW . First, we observe that target(p) ∈

X for every p ∈ FinitePlays(S2, U) (in other words, S2 cannot leave X if we
start somewhere in U). Indeed, assume for contradiction that some play
with S2 leaves X from some node v ∈ X . Let I be the state of S2 at the
moment just before leaving X . If it is a Protagonist’s turn to move, then it
moves as S ′

1 after pvI . Recall that pvI ∈ FinitePlays(S ′
1, U). Thus, we obtain

a continuation of pvI which is consistent with S ′
1 and leads outside X . This

contradicts the definition of X . Now, if it is an Antagonist’s turn to move
from v, then any continuation of pvI by one edge is consistent with S ′

1, so we
obtain the same contradiction.

Next, we show that for any play p ∈ FinitePlays(S2, U) we have ant(p) �

M
target(p)
I , where I is the state of S2 after p. This statement implies that S2 is

winning w.r.t. RL from every node of U . Note that M
target(p)
I is well-defined

thanks to the previous paragraph.
We prove this statement by induction on the length of p. Let us start

with the induction base. Assume that |p| = 0 (then p = λw for some w ∈
U). The state of S2 after p is the initial state, that is, 0. Thus, we have

to show that ant(p) � M
target(p)
0 . Note that p has length 0 and hence is

consistent with any strategy. In particular, p ∈ FinitePlays(S ′
1, U). Hence,

ant(p) ∈ Ωtarget(p). If Ωtarget(p) has just a single maximum, then ant(p) does

not exceed this maximum, as required. Now, if M
target(p)
0 6= M

target(p)
1 , then

the second coordinate of M
target(p)
0 is 0, so we have ant(p) � M

target(p)
0 just

because ant(p) = 0.
Next, we establish the induction step. Consider any p ∈ FinitePlays(S2, U)

of positive length and assume that for all paths from FinitePlays(S2, U) of
smaller length the statement is already proved. We prove our statement
for p. Let e be the last edge of p. Correspondingly, let q be the part of p
preceding e. Denote u = target(q) = source(e) and v = target(p) = target(e)

Any prefix of p is also in FinitePlays(S2, U), so q ∈ FinitePlays(S2, U).
Therefore, our statement holds for q. Namely, if I is the state of S2 after q,
then ant(q) � Mu

I .
Let J be the state of S2 after p. Our goal is to show that ant(p) � Mv

J .
Note that ant(p) = col(e)

(
ant(q)

)
by definition of ant. Since col(e) ∈ M

is monotone and ant(q) � Mu
I , we have that ant(p) = col(e)

(
ant(q)

)
�

col(e)
(
Mu

I

)
. It remains to show that col(e)

(
Mu

I

)
� Mv

J . Note that J is the
state into which S2 transits from the state I after receiving e. By definition
of the memory structure of S2, it is sufficient to show that col(e)

(
Mu

I

)
∈ Ωv.

By definition of puI , we have that Mu
I = ant(puI ). Hence, col(e)

(
Mu

I

)
=

15



ant(puI e). The path puI e starts at some node of U and ends in target(e) = v.
Thus, to establish ant(puI e) ∈ Ωv, it remains to show consistency of puI e
with S ′

1. We have puI ∈ FinitePlays(S ′
1, U) by definition of puI . In turn, if

Protagonist is the one to move from u = target(puI ), then e = S ′
1(p

u
I ). Indeed,

e is the edge played by S2 from u when its state is I. Hence, e = S ′
1(p

u
I ), by

the definition of the next-move function of S2.

5 Lower Bound on the Chromatic Memory

In this section, we establish the following proposition.

Proposition 2. There exists a finite set C ⊆ M such that ChrMem(RL ∩
Cω) = +∞.

We start by describing C. First, we put there f0, f1 that are defined in
(1). Next, put there a function h : Ω → Ω, defined by

h((n, a)) =

{

(n− 1, a) n > 1

(0, 0) n = 0, 1.

For the reader’s convenience, it is depicted below:

(0, 0) (0, 1)

(1, 0) (1, 1)

(2, 0) (2, 1)

...
...h

Let us establish that h ∈ M. Take any (n, a), (m, b) ∈ Ω such that
(n, a) � (m, b). We show that h((n, a)) � h((m, b)). If (n, a) = (m, b),
then h((n, a)) = h((m, b)). Now, if (n, a) 6= (m, b), then n < m. The first
coordinates of h((n, a)) and h((m, b)) are max{0, n− 1} and max{0, m− 1},
respectively. If m > 1, then max{0, m− 1} = m− 1 > max{0, n− 1}, which
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implies that h((n, a)) � h((m, b)). Now, if m ≤ 1, then n ≤ 1 also, which
means that h((n, a)) = h((m, b)) = (0, 0).

We will also put into C two more functions p0, p1 : Ω → Ω, but to define
them, we need some auxiliary work.

Definition 4. A function f : Ω → Ω is called incremental if for every
(n, b) ∈ Ω there exists c ∈ {0, 1} such that f((n, b)) = (n+ 1, c).

Let us first observe that every incremental f : Ω → Ω belongs to M.
Indeed, take any (n, a), (m, b) ∈ Ω such that (n, a) � (m, b). We have to
show that f((n, a)) � f((m, b)). for every incremental f . If (n, a) = (m, b),
we have f((n, a)) = f((m, b)) . Otherwise, n < m. Then f((n, a)) = (n+1, c)
and f((m, b)) = (m + 1, d) for some c, d ∈ {0, 1}. Since n + 1 < m + 1, we
have f((n, a)) � f((m, b)).

We say that two binary words x, y ∈ {0, 1}∗ are Q-indistinguishable if
there exists no deterministic finite automaton over {0, 1} with at most Q
states which comes to different states on x and on y.

Lemma 1. There exist two infinite sequences of bits {I0n}
∞
n=0 ∈ {0, 1}ω and

{I1n}
∞
n=0 ∈ {0, 1}ω such that for every Q ∈ N there exist t ∈ N and two Q-

indistinguishable binary words x = x0 . . . xt−1 and y = y0 . . . yt−1 of length t
such that:

Ix0

0 ⊕ . . .⊕ I
xt−1

t−1 6= Iy00 ⊕ . . .⊕ I
yt−1

t−1

(⊕ denotes XOR).

Proof. Let AQ be the number of deterministic finite automata over {0, 1}
with at most Q states. ForQ ∈ N, let lQ be any number such that 2lQ > QAQ.

We split natural numbers in consecutive blocks B1, B2, B3, . . ., where

BQ = {l1 + . . .+ lQ−1, . . . , l1 + . . .+ lQ−1 + lQ − 1}

(so that |BQ| = lQ). We first define I0n, I
1
n for n ∈ B1, then for n ∈ B2, and so

on. The requirement of the lemma for Q will be guaranteed after we define
our sequences in the first Q blocks.

More specifically, assume that our sequences are already defined in the
first Q−1 blocks. We have to define them in BQ in some way that satisfies the
requirement of the lemma for Q. Since 2lQ > QAQ, there exist two different
Q-indistinguishable binary words a, b ∈ {0, 1}lQ. Indeed, to every binary
word w we can assign a tuple, where for all deterministic finite automaton
A with at most Q states we have a coordinate, indicating the state of A
after reading w. The number of such tuples is bounded by QAQ . Hence, in
{0, 1}lQ there are two different binary words a, b with the same tuple assigned
to them. This means that a and b are Q-indistinguishable.
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Let t = l1 + . . .+ lQ and

x = 00 . . . 0
︸ ︷︷ ︸

l1+...+lQ−1

a ∈ {0, 1}t, y = 00 . . . 0
︸ ︷︷ ︸

l1+...+lQ−1

b ∈ {0, 1}t.

Note that x and y are obtained from a and b by attaching the same prefix.
Hence, x and y are also Q-indistinguishable. We claim that we can define
I0n, I

1
n for n ∈ BQ in such a way that:

Ix0

0 ⊕ . . .⊕ I
xt−1

t−1 6= Iy00 ⊕ . . .⊕ I
yt−1

t−1 . (2)

Since a and b are different, we have that x and y are also different. But both
x and y start with l1+. . .+lQ−1 zeros. Hence, all the indices where they differ
belong to BQ. Take any m ∈ BQ such that xm 6= ym. Define I0n = I1n = 0
for all n ∈ BQ \ {m}. It remains to define I0m and I1m in such a way that (2)
holds. Note that all the summands except Ixm

m and Iymm are already defined.
Since xm 6= ym, one of these summands is I0m and the other is I1m. One of
them is in the left-hand side, and the other one is in the right-hand side.
Hence, we can define them in such a way that the inequality is true.

We now take sequences {I0n}
∞
n=0 ∈ {0, 1}ω and {I1n}

∞
n=0 ∈ {0, 1}ω, satisfy-

ing Lemma 1, and define p0, p1 : Ω → Ω as follows:

p0((n, b)) =
(

n + 1, b⊕ I0n

)

, p1((n, b)) =
(

n + 1, b⊕ I1n

)

.

Note that p0, p1 are incremental. Hence, p0, p1 ∈ M. We set C = {f0, f1, h, p
0, q1}

and show that ChrMem(RL ∩ Cω) = +∞. For that, for every Q ∈ N, we
show that ChrMem(RL ∩ Cω) > Q. Fix any Q ∈ N and let t ∈ N and
x = x0 . . . xt−1 ∈ {0, 1}t, y = y0 . . . yt−1 ∈ {0, 1}t be such that x and y are
Q-indistinguishable and

Ix0

0 ⊕ . . .⊕ I
xt−1

t−1 6= Iy00 ⊕ . . .⊕ I
yt−1

t−1 (3)

(existence of such t, x and y is guaranteed by Lemma 1). Consider the
following arena:

u

. . .

. . .

v . . . w

px0

py0

px1

py0

pxt−1

pyt−1

h h

f0

f1

t− 1 edges
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All circles are controlled by Antagonist and the square is controlled by Pro-
tagonist. The game starts at the node u. We claim that Protagonist has
a winning strategy w.r.t. RL. Indeed, in the beginning, Antagonist has two
choices – to go through px0, px1, . . . , pxt−1 or to go through py0 , py1, . . . , pyt−1.
In any case, upon reaching v, the first coordinate of the ant will be t (both
p0 and p1 always increase the first coordinate of the ant by 1). Then we go
through t − 1 edges colored by h. As a result, the position of the ant at w
will be either (1, 0) or (1, 1). If it is (1, 0), then Protagonist wins by always
using f0. If it is (1, 1), then Protagonist wins by always using f1.

It remains to show that Protagonist has no winning strategy with at most
Q states of chromatic memory. Indeed, consider any Protagonist’s strategy S
with at most Q states of chromatic memory. Our goal is to show that S is not
winning. It is built on top of some chromatic memory structure with at most
Q states. This memory structure, by definition, only reads colors of edges.
Hence, when we go from u to v, we either feed px0px1 . . . pxt−1 ∈ {p0, p1}t or
py0py1 . . . pyt−1 ∈ {p0, p1}t to it. We claim that S comes into the same state
on these two sequences. Indeed, up to renaming letters of the alphabet, we
may assume that we feed x = x0 . . . xt−1 and y = y0 . . . yt−1 to the memory
structure of S. By definition, x and y are Q-indistinguishable. Since the
memory structure of S has at most Q states, it must come into the same
state on x and y. We conclude the state of S at v, and hence at w, will be
the same in both possible plays. Thus, S acts identically at w in these two
plays.

At the same time, there are two different possible positions of the ant
at w. More specifically, if the Antagonist goes through px0px1 . . . pxt−1, the
position of the ant will be

h ◦ . . . ◦ h
︸ ︷︷ ︸

t−1

◦pxt−1 ◦ . . . ◦ px1 ◦ px0(0) = h ◦ . . . ◦ h
︸ ︷︷ ︸

t−1

◦pxt−1 ◦ . . . ◦ px1((1, Ix0

0 ))

= h ◦ . . . ◦ h
︸ ︷︷ ︸

t−1

((t, Ix0

0 ⊕ . . .⊕ I
xt−1

t−1 )

= (1, Ix0

0 ⊕ . . .⊕ I
xt−1

t−1 ).

Likewise, if the Antagonist goes through py0py1 . . . pyt−1 , the position of the
ant will be

h ◦ . . . ◦ h
︸ ︷︷ ︸

t−1

◦pxt−1 ◦ . . . ◦ px1 ◦ px0(0) = (1, Iy00 ⊕ . . .⊕ I
yt−1

t−1 ).

Since Ix0

0 ⊕ . . .⊕ I
xt−1

t−1 6= Iy00 ⊕ . . .⊕ I
yt−1

t−1 by (3), we conclude that both
(1, 0) and (1, 1) are possible positions of the ant at w. But once again, S acts
in the same way at w in both cases. Assume first that S plays the f0-edge
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when it first reaches w. Then S loses if the ant reached w being in (1, 1).
Indeed, after S plays its first move at w, the position of the ant becomes
f0((1, 1)) = (2, 1). If the first coordinate of the ant is 2 or more, both f0 and
f1 increase it by 1. Hence, no matter what Protagonist does afterwards, the
ant will get infinitely high in Ω. Likewise, if the first move of S at w is the
f1-edge, then it loses if the ant reaches w being in (1, 0).
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