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Abstract. The perceived Origin of full-body human Movement (OoM), i.e., the
part of the body that is perceived by an external observer as the joint from which
movement originates, represents a relevant topic for movement analysis. Indeed,
its automated detection is important to contribute to the automated analysis of full-
body emotions and of non-verbal social signals, and has potential applications,
among others, in dance and music teaching, cognitive and motor rehabilitation,
sport, and entertainment. In this work, we further develop a recently proposed
algorithm for the automated detection of the perceived OoM, by improving the
visualization of its output. Specifically, the core of that algorithm relies on cluster-
ing a skeletal representation of the human body based on the values assumed by
a movement-related feature on all its vertices, then finding those vertices that are
at the boundary between any two resulting clusters. In the work, we improve the
visualization of the clusters generated by that algorithm in successive frames, by
“colouring” them bymeans of the resolution of a sequence ofminimum cost bipar-
tite matching subproblems. Finally, based on a real-world dataset, we show that
the proposed modification of the algorithm provides, indeed, a better visualization
of the clusters than its original version.

Keywords: Non-Verbal Full-Body Expressive Interactive Systems · Automated
Detection of the Perceived Origin of Human Movement · Clustering ·
Colouring · Minimum Cost Bipartite Matching Problem

1 Introduction

The automated measurement of movement qualities revealing expressive intentions,
emotions, and non-verbal social signals (e.g., leadership and entrainment) is of
paramount importance in many applications (Argyle [1], Bieńkiewicz et al. [7], Camurri
et al. [9], Karg et al. [18], Meeren et al. [23]). An important role in understanding human
movement is played by the so-called perceived Origin of Movement (OoM), i.e., the
part of the body perceived by an external observer as the joint from which movement
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originates (Kolykhalova et al. [19], Matthiopoulou et al. [21, 22]). In cognitive/motor
rehabilitation, the detection and tracking of the (perceived) OoM can help support a
patient in learning how to correctly perform a specific movement (e.g., how to get up
safely from a chair), reducing the risk of incurring injuries. Moreover, the diagnosis
of the origin of a reaching movement is very useful for an individualized rehabilita-
tion of a person with a stroke (Bakhti et al. [4, 5]). In dance and music teaching, the
awareness and discovery of the OoM can contribute to increased effectiveness of expres-
sivity and repeatability of a technical gesture. In sport and entertainment, it can enhance
performance.

Research on the OoM is grounded in movement science and biomechanics, partic-
ularly in the literature related to the so-called Leading Joint Hypothesis (LJH) on limb
motion, according to which “there is one leading joint that creates a dynamic foundation
for the motion of the entire limb” (Dounskaia [11])1. The basis of the LJH is found in the
way according to which the central nervous system exploits the biomechanical proper-
ties of the limbs for movement organization. The automated detection of the OoM was
recently investigated by Kolykhalova et al. [19], who proposed an algorithm, inspired
by the LJH, based on a suitably defined skeletal representation of the human body as a
graph. The central idea of that algorithm consists of clustering the graph according to
the similarity in the values assumed by a suitable movement-related feature (e.g., speed)
on its vertices (which are suitably selected joints of the human body). As the specific
clustering technique, spectral clustering (Shi and Malik [24]) is used. The clusters so
found are then exploited to construct a cooperative game model on an auxiliary graph,
having the same vertex set as the original graph, and edges connecting vertices at the
boundary between any two different clusters in the original graph. Then, the Shapley
value (a measure of the importance of players in a suitable class of cooperative games,
see Maschler et al. [20]) is used to find the most relevant vertex, deemed to be the OoM.
In the specific case, the Shapley value coincides with weighted degree centrality (Deng
and Papadimitriou [10]) on the auxiliary graph. It is worth noting that both the LJH and
the algorithm developed by Kolykhalova et al. [19], based on unsupervised machine
learning, appear to be closely connected to the following concept already expressed by
Aristotle [2]: “the origin of movement […] remains at rest when the lower part of a limb
is moved; for example, the elbow joint, when the forearm is moved, and the shoulder,
when the whole arm; the knee when the tibia is moved, and the hip when the whole leg.”
In other words, it looks quite natural to search for the OoM within a subset of joints that
connect clusters with different motor behaviour, i.e., joints belonging to the boundary
between any two such clusters.

1 This actually refers to the physical OoM, which is often close to the perceived OoM.
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In the algorithmdevelopedbyKolykhalova et al. [19], the clustering step is performed
frame-by-frame, imposing no relationships on the clusters found in successive frames2.
So, in case one wanted to label (or “colour”) the clusters in order to visualize their
evolution with respect to time, any permutation of the labels in each frame would be
admissible (i.e., it would not change the Shapley value). This would make the resulting
visualization difficult. In thiswork,we improve the visualization of the clusters generated
by the algorithm in successive frames, by colouring them by means of the resolution of
a sequence of minimum cost bipartite matching subproblems. In each subproblem, the
labels of the clusters found in one frame are connected in a suitably “smooth” way to
the ones of the clusters found in the successive frame, by maximizing the summation of
the overlaps of the sets of vertices in common with any two clusters that are coloured
in the same way (or equivalently, in order to reformulate this optimization subproblem
as a cost minimization subproblem, by minimizing the opposite of such a summation
plus a constant). The method is inspired by the curve colouring problem investigated,
for a different application to metamaterial analysis, by Bacigalupo et al. [3]. In that
problem, a finite set of curves is observed at each time instant, and one has to attribute
each observed point to a specific curve, using a different “colour” for each curve, in such
a way as to reconstruct the curves in the smoothest possible way. Finally, based on a
real-world dataset, we show that the proposed modification of the output visualization
of the algorithm developed by Kolykhalova et al. [19] provides, as expected, a better
visualization of the clusters than its original version.

The article is structured as follows. Section 2 summarizes the algorithm developed
by Kolykhalova et al. [19] for the automated detection of the perceived origin of full-
body human movement. Section 3 describes the proposed cluster colouring method,
aimed at improving the visualization of the output of that algorithm. Section 4 compares
the cluster visualizations obtained, respectively, by the original algorithm and by its
proposed modification. Section 5 concludes the work with a discussion, delineating its
possible developments.

2 An Algorithm for the Automated Detection of the Perceived
Origin of Movement

In this section, we briefly describe the algorithm for the automated detection of
the (perceived) OoM, which was developed by Kolykhalova et al. [19]. Its main
steps are reported in Fig. 1 and are summarized in the following paragraphs.
The reader is referred to that reference and to Matthiopoulou et al. [22] for a
more detailed presentation of the algorithm and for a discussion on its imple-
mentation details. In the following section, focus is given to the output of Step

2 In the algorithmdeveloped byKolykhalova et al. [19] to detect theOoM, the clusters are labelled
using natural numbers as a by-product of the specific spectral clustering algorithm embedded
(Shi and Malik [24]), but their order is not optimized and may depend on implementation
details of that spectral clustering algorithm (e.g., rescaling of an eigenvector when computing
the spectrum of the graph Laplacian). Indeed, the goal of spectral clustering is just to find
suitable clusters (according to a given optimality criterion), but not to label them according to
a specific order.
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ii) of the algorithm, for which an improved visualization is proposed in the present
work.

Fig. 1. Main steps of the algorithm developed by Kolykhalova et al. [19] for the automated
detection of the perceived OoM.

i) A weighted undirected graph G = (V ,E,w) is built, with the aim of modelling
the human body through its suitable skeletal representation. Here, V denotes the
vertex set of G, E denotes its edge set, whereas w represents a weight function
defined on E, constructed based on data acquired through Motion Capture (MoCap)
techniques. The vertices of G form a subset of the set of all body joints. Its edges
are further classified into physical/non-physical edges. For each frame, every edge
is labelled with a non-negative weight. This is proportional to the current similarity
of the values assumed by a given movement-related feature (e.g., speed) at each of
the two vertices associated with such an edge. In the case of a non-physical edge,
the constant of proportionality is chosen to be much smaller than the one used to
define the weight of a physical edge, since the former edge models a more temporary
movement-related similarity, originating from the specific movement performed.

ii) For each frame, the weighted undirected graph G is clustered by applying spectral
clustering to the set of weights assigned to its edges. The number of clusters is
optimized automatically. Labels are assigned automatically to the clusters (but not
optimized), as a by-product of the specific spectral clustering algorithm used (Shi
and Malik [24]).

iii) For each frame, a suitable weighted auxiliary graphGaux = (V ,Eaux,waux) is built.
Its vertices are the same as the ones of the original graph G. In contrast, its edge
set Eaux is a subset of the set of physical edges of G, that also connect vertices
belonging to different clusters ofG. Each edge inGaux is labelled with a weight that
is proportional to the dissimilarity (rather than the similarity) of the values assumed
by the given movement-related feature on its two associated vertices.

iv) For each frame, a cooperative Transferable Utility (TU) game is constructed, based
on the weighted auxiliary graph Gaux. The players of this game are the vertices of
G (or, which is the same, of Gaux). The value c

(
V ′) of any coalition V ′ ⊆ V is

defined as the summation of all the weights (in the weighted auxiliary graph Gaux)
associated with the physical edges belonging to the subgraph ofGaux that is induced
by V ′.

v) For each frame, the Shapley value for the cooperative TU game built in Step 4 is
evaluated. For each player, it represents the average marginal contribution of that
playerwhen joining a randomly formed coalition.Hence, the Shapley value is used to
rank joints according to their “importance” or “centrality” in the weighted auxiliary
graphGaux, where the “most important/most central” joint in a frame is one that has
the largest Shapley value.
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vi) Finally, a filtering step is performed, keeping only the vertices automatically detected
as being the “most important/most central” ones for a given number of successive
frames.

3 Proposed Cluster Colouring Method

The output of Step ii) of the algorithm summarized in Sect. 2 is a set of clusters (subsets
of vertices of the graph G). Visualizing such clusters (by attributing a “colour” to each
of them) can be useful to better understand the output of that algorithm, since the joint
deemed to be the OoM (the one with the largest Shapley value) belongs to the boundary
between two such clusters. However, in the original algorithm, no colour is assigned
explicitly to each such cluster. If colours were assigned based, e.g., on the order of the
clusters produced by the specific spectral clustering algorithm used, it may happen that,
when moving from one frame to the successive one, the clusters did not change, but their
colours were permuted, making the visualization difficult. For instance, in this case a
visual inspection would likely fail to detect a possible relationship between a change of
the OoM and a simultaneous change in the composition of the clusters.

In this section, we propose amethod to colour the clusters generated by the algorithm
of Sect. 2 in a “smooth” way, avoiding situations such as the one described above.
For simplicity, we assume that the number of clusters does not change between two
consecutive frames, say, respectively, at times t and t + 1. Taking the hint from the
curve colouring problem considered by Bacigalupo et al. [3], starting from the colours
assigned to the clusters at time t, we attribute colours to the clusters at time t + 1
by solving a minimum cost bipartite matching subproblem, or assignment subproblem
(Burkard et al. [8]). In other words, first we construct a complete weighted bipartite
graph Gbipartite = (R ∪ B,Ebipartite,wbipartite), where R is a set of “red” vertices, B is
a set of “blue” vertices, the two cardinalities |R| and |B| are the same, Ebipartite is the
Cartesian product R × B, and wbipartite : R × B → R is a cost function. We recall that

a bipartite matching Mbipartite ⊆ E
bipartite

is a subset of edges such that every vertex in
R ∪ B is incident to at most one edge in Mbipartite. Moreover, the matching is perfect
if every vertex in R ∪ B is incident to exactly one edge in Mbipartite. The cost of the
matching has the expression C = ∑

(r,b)∈Mbipartitewbipartite(r, b). The objective of the
minimum cost bipartite matching problem is to find a perfect matching in the complete
weighted bipartite graphGbipartite = (R ∪ B,Ebipartite,wbipartite), having minimum cost
C. Various efficient algorithms exist to solve such an optimization problem, e.g., the
Hungarian method (Burkard et al. [5]). For a small cardinality m := |R| = |B| (e.g.,
m = 4 orm = 5) the problem can be easily solved even by the brute-force method, since
its number of admissible solutions is m!.

In our specific case, we choose R as the set of m clusters obtained for the graph
G at time t by means of Step ii) of the algorithm described in Sect. 23, B as the set
of clusters obtained for the graph G at time t + 1 by means of the same step, whereas

3 As discussed in Kolykhalova et al. [19], the (maximal) number of clusters to be detected in Step
ii) of the algorithm could be chosen as a function of the number of nodes of the adopted skeletal
structure. With 20 nodes, one possible choice is m = 4, which makes even the application of
the brute-force approach computationally negligible, since m! = 24.
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wbipartite(r, b) := |V |−|r ∩ b|. In otherwords, the larger the overlap between two clusters
r and b at times t and t + 1, respectively (in terms of the number of common vertices),
the smaller the cost of the weighted edge (r, b) in Gbipartite. In the particular case in
which the two sets of clusters are the same, the optimal bipartite matching preserves
the colours of the clusters when moving from time t to time t + 1, thus preventing the
occurrence of the undesired situation illustrated at the beginning of this section.

4 Results

In this section, we compare the output visualization of the algorithm developed by
Kolykhalova et al. [19] and the one obtained by its proposedmodification, by considering
an illustrative example. The dataset we used was recorded with 13 infrared cameras in
March 2016 in the framework of the H2020-ICT-2015 EU Project WhoLoDance. The
subjects were two professional dancers, equipped with 64 infrared reflective markers, 5
accelerometers, and 1microphone, performing contemporary dance movements without
music accompaniment, as the latter couldhave affected theway thedancers performed the
movements. The 64 markers’ trajectories were tracked by the Qualisys Track Manager
(QTM) software and manually interpolated with the same software when markers went
missing due to visual occlusion of the minimal set of cameras needed for their tracking.
In addition to the video recordings, there were also manual expert annotations regarding
which joint was evaluated to be the perceived OoM. Starting from the full marker set, we
constructed a smaller set made of 20 joints by means of the reduction of sets of multiple
markers into individual joints. The position of each joint was determined by averaging

        (a)                                                     (b)   

Fig. 2. Mapping from the original full-body skeletal structure (a) to the reduced one (b). Each
marker (joint) in the second subfigure corresponds to a group of markers in the first subfigure.
Note: “left” and “right” in the second subfigure refer to the subject’s viewpoint.
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the positions of the markers belonging to a suitable subset associated with such joint,
according to the map reported in Fig. 2. For instance, the positions of the 5 markers on
the head in the original full-body skeletal structure were used to determine the position
of the joint numbered as 20 (head) in the reduced skeletal structure. Then, in order to
find the clusters, the algorithm of Sect. 2 was applied based on this reduced skeletal
structure. Specifically, the angular momentum of each joint with respect to the center of
mass of the body was selected as the movement-related feature used by that algorithm
(seeMatthiopoulou et al. [22] for a description of this feature and of the specific measure
of similarity adopted).

We considered an example in which the dancer started from a standing position with
the right leg raised off the ground and shifted slightly to the left. From this position, the
dancer began to rotate the right leg counterclockwise, almost as if attempting a pirouette,
which also compelled the torso to rotate.As seen in Fig. 3,we investigated how the cluster
colouring changed between two successive frames, first using the algorithmdeveloped by
Kolykhalova et al. [19], then using the proposed modification of its output visualization.
In order to enhance the visualization, the two frames shown were not consecutive, i.e.,
there were other frames interposed between them. Moreover, for a fair comparison,
the two cluster colourings were initialized in the same way. In the first case, we can
clearly observe that some joints initially included in a cluster later belonged to different

Fig. 3. Cluster colourings obtained for two successive frames, respectively, by: the algorithm
developedbyKolykhalova et al. [19] (first row); its proposedmodification (second row). Subfigures
(a) and (c) represent the (same) cluster colouring obtained in the first frame, as an initialization
step; subfigure (b) represents the cluster colouring obtained in the second frame by the first
algorithm; subfigure (d) represents the cluster colouring obtained in the second frame by the
proposed modification.
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clusters. Indeed, most cluster colours were swapped when moving from the first frame
to the second frame. In the second frame, only the head and the shoulders maintained the
same colour likewise in the first frame, while the set of joints composing the red, blue and
green clusters changed completely with respect to the first frame. However, when using
the proposed modification, the green and blue clusters remained unchanged compared to
the previous frame, and both the head and the shoulders retained their previous colours.
Hence, from this simple example, it becomes clear how the proposed modification has
the ability to enhance the visualization of the clusters over time, by avoiding continuous
occurrence of seemingly random switching.

5 Discussion

In this work, the algorithm for the automated detection of the perceived Origin of full-
body human Movement (OoM), proposed by Kolykhalova et al. [19], has been further
developed, by improving the visualization of its output through a suitable cluster colour-
ing method. It is worth noting that, differently from the similar curve colouring problem
considered by Bacigalupo et al. [3], no further improvement could be obtained by refor-
mulating the cluster colouring problem as a multi-stage optimization problem, in which
each frame (stage) is associated with the cost of the bipartite matching between the set of
clusters obtained in that frame and the one obtained in the successive frame. This prob-
lem could be solved, in principle, by dynamic programming (Bertsekas [6]). However,
since the optimization subproblems per stage (i.e., the minimum cost bipartite matching
subproblems) are actually decoupled4 (apart from a permutation of the set of labels), the
cluster colouring obtained by solving such a multi-stage optimization problem would
be identical (again, apart from a permutation of the set of labels) to the one obtained by
the method proposed in this work.

4 In more technical terms, the presence of this decoupling can be easily recognized by investigat-
ing the specific form of the optimal cost-to-go function per stage and the associated Bellman’s
equation (Bertsekas [6]). It is recalled here that the optimal cost-to-go function per stage pro-
vides the optimal cost of a multi-stage optimization subproblem (derived from the original
multi-stage optimization problem) which starts at that stage, whereas Bellman’s equation at
that stage allows one to find that optimal cost-to-go function per stage, by solving another
optimization subproblem whose cost function is the sum of the cost per stage (at the current
stage) and of the optimal cost-to-go function at the next stage (evaluated in correspondence with
a suitable choice of its argument). In the specific multi-stage version of the cluster colouring
problem, one can easily check that: (i) The optimal cost-to-go function at the final stage is
zero, hence it is constant. (ii) The optimal cost-to-go function at any other stage is constant.
(iii) To solve Bellman’s equation at each stage, one can neglect the (constant) term associated
with the optimal cost-to-go function at the next stage, keeping only the cost per stage (at the
current stage). In this way, one actually “decouples” Bellman’s equations at different stages.
Property (i) follows directly from the definition of the optimal cost-to-go function at the final
stage, whereas properties (ii) and (iii) are proved by backward induction. In the case of the
curve colouring problem investigated by Bacigalupo et al. [3], instead, properties (ii) and (iii)
do not hold. This depends on the different structure of its cost per stage with respect to the
multi-stage version of the cluster colouring problem.
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The proposed cluster colouring method could be used in conjunction with different
movement-related features (such as the ones considered byMatthiopoulou et al. [21, 22]
in a further alternative extension of the algorithmproposed byKolykhalova et al. [19] and
in its applications) in order to visualize which feature is the best at capturing the OoM.
Moreover, the improved visualization could help to identify in which situations (e.g.,
for which gestures) the algorithm itself performs well or, vice versa, fails to correctly
identify the OoM.

It is worth remarking that a limitation of the proposed cluster colouring method is
that it can be applied only when the number of clusters does not change with time. This
could limit its application to movements characterized by a constant spatial scale. A
possible way to overcome this issue could be to use a hierarchical version of spectral
clustering, matching the numbers of clusters in any two successive frames. Moreover,
instead of performing (spectral) clustering frame-by-frame and solving successively a
sequence of cluster colouring problems, one could apply clustering directly to a single
“large” graph that represents a set of successive frames, then obtain the clusters per
frame simply by “sectioning” the clusters so obtained (Fukumoto et al. [13]). As a
successive step, one could make an arbitrary selection for the colours attributed to the
clusters of the “large” graph, thenmake the clusters per frame inherit the colours from the
corresponding clusters in the “large” graph. As a by-product of this procedure, also the
number of clusters per frame would be chosen automatically (depending on the number
of clusters active in each frame). However, this alternative approach could slow down
significantly the clustering process, preventing the automated detection of the perceived
OoM in real-time.

Finally, it is worth mentioning that other improvements are still possible for the
algorithm proposed by Kolykhalova et al. [19] for the automated detection of the OoM.
For instance, following the framework of learning with constraints/boundary conditions
(Gnecco et al. [14–16]), one could include biomechanical constraints in that algorithm,
which could modify the sets of clusters taken as inputs by the cluster colouring method
proposed in the present work. Moreover, suitable dimensionality reduction techniques
(see, e.g., Fantoni et al. [12] and Gnecco and Sanguineti [17]) could be applied when
moving from a skeletal structure characterized by a large number of markers to a reduced
skeletal structure (see Sect. 4), used as input for the algorithm for the automated detection
of the OoM.
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