
Investigating the Robustness of
Sequential Recommender Systems

Against Training Data Perturbations ⋆

Filippo Betello1 , Federico Siciliano1 ,
Pushkar Mishra2 , and Fabrizio Silvestri1

1 Sapienza University of Rome, Rome, Italy
{betello, siciliano, fsilvestri}@diag.uniroma1.it

2 AI at Meta, London, UK pushkarmishra@meta.com

Abstract. Sequential Recommender Systems (SRSs) are widely em-
ployed to model user behavior over time. However, their robustness in
the face of perturbations in training data remains a largely understudied
yet critical issue. A fundamental challenge emerges in previous studies
aimed at assessing the robustness of SRSs: the Rank-Biased Overlap
(RBO) similarity is not particularly suited for this task as it is designed
for infinite rankings of items and thus shows limitations in real-world
scenarios. For instance, it fails to achieve a perfect score of 1 for two
identical finite-length rankings. To address this challenge, we introduce
a novel contribution: Finite Rank-Biased Overlap (FRBO), an enhanced
similarity tailored explicitly for finite rankings. This innovation facili-
tates a more intuitive evaluation in practical settings. In pursuit of our
goal, we empirically investigate the impact of removing items at different
positions within a temporally ordered sequence. We evaluate two distinct
SRS models across multiple datasets, measuring their performance using
metrics such as Normalized Discounted Cumulative Gain (NDCG) and
Rank List Sensitivity. Our results demonstrate that removing items at
the end of the sequence has a statistically significant impact on perfor-
mance, with NDCG decreasing up to 60%. Conversely, removing items
from the beginning or middle has no significant effect. These findings un-
derscore the criticality of the position of perturbed items in the training
data. As we spotlight the vulnerabilities inherent in current SRSs, we fer-
vently advocate for intensified research efforts to fortify their robustness
against adversarial perturbations.

Keywords: Recommender Systems · Evaluation of Recommender Sys-
tems · Model Stability · Input Data Perturbation

⋆ This work was partially supported by projects FAIR (PE0000013) and SERICS
(PE00000014) under the MUR National Recovery and Resilience Plan funded by the
European Union - NextGenerationEU. Supported also by the ERC Advanced Grant
788893 AMDROMA, EC H2020RIA project “SoBigData++” (871042), PNRRMUR
project IR0000013-SoBigData.it. This work has been supported by the project
NEREO (Neural Reasoning over Open Data) project funded by the Italian Min-
istry of Education and Research (PRIN) Grant no. 2022AEFHAZ.

ar
X

iv
:2

30
7.

13
16

5v
2

 [
cs

.I
R

]
 2

7
D

ec
 2

02
3

https://orcid.org/0009-0006-0945-9688
https://orcid.org/0000-0003-1339-6983
https://orcid.org/0000-0002-1653-6198
https://orcid.org/0000-0001-7669-9055

2 F. Betello et al.

1 Introduction

Recommender systems have become ubiquitous in our daily lives [1], playing
a key role in helping users navigate the vast amounts of information available
online. Thanks to the global spread of e-commerce services, social media and
streaming platforms, recommender systems have become increasingly important
for personalized content delivery and user engagement [45]. In recent years, Se-
quential Recommender Systems (SRSs) have emerged as a popular approach to
modeling user behavior over time [29], leveraging the temporal dependencies in
users’ interaction sequences to make more accurate predictions.

However, despite their success, the robustness of SRSs against perturbations
in the training data remains an open research question [22]. In real-world scenar-
ios, disruptions may occur when users employ different services for the same pur-
pose. Data becomes fragmented and divided between a service provider and its
competitors in such cases. Nevertheless, the provider must train a recommender
system with such incomplete data while ensuring robustness to perturbations.
This challenge is accentuated when we scrutinize previous attempts [24] to assess
the robustness of SRSs: Rank-Biased Overlap (RBO) [41], designed explicitly for
infinite lists, reveals limitations when applied to real-world scenarios.

Our experiments revolve around the following research questions:

– RQ1: Do changes in the training seed heavily impact rankings?
– RQ2: How does the type of removal influence the model’s performance?
– RQ3: Does more item removed significantly decrease in performance?

The contribution of this study is two-fold. Firstly, we propose the novel Finite
Rank-Biased Overlap (FRBO) measure. Unlike RBO, which is only suited for
infinite rankings, FRBO is specifically designed to assess the robustness of SRSs
within finite ranking scenarios, aligning seamlessly with real-world settings. Sec-
ondly, we empirically assess the impact of item removal from user interaction
sequences on SRS performance. Our investigation shows that the most recent
user interaction sequence items are critical for accurate recommendation perfor-
mance. When these items are removed, there is a significant drop in all metrics.

2 Related works

2.1 Sequential Recommender Systems

SRSs are algorithms that leverage a user’s past interactions with items to make
personalized recommendations over time and they have been widely used in
various applications, including e-commerce [31,18], social media [14,3], and music
streaming platforms [32,33,2]. Compared to traditional recommender systems,
SRSs consider the order and timing of these interactions, allowing for more
accurate predictions of a user’s preferences and behaviors [39].

Various techniques have been proposed to implement SRSs. Initially, Markov
Chain models were employed in Sequential Recommendation [13,12], but they

Robustness of SRSs Against Training Perturbations 3

struggle to capture complex dependencies in long-term sequences. In recent
years, Recurrent Neural Networks (RNNs) have emerged as one of the most
promising approaches in this field [9,16,30]. These methods encode the users’
historical preferences into a vector that gets updated at each time step and
is used to predict the next item in the sequence. Despite their success, RNNs
may face challenges dealing with long-term dependencies and generating diverse
recommendations. Another approach comes from the use of the attention mech-
anism [38]: two different examples are SASRec [20] and BERT4Rec [36] archi-
tectures. This method dynamically weighs the importance of different sequence
parts to better capture the important features and improve the prediction ac-
curacy. Recently, Graph Neural Networks have become popular in the field of
recommendations system [43,28], especially in the sequential domain [7,11].

2.2 Robustness in Sequential Recommender Systems

Robustness is an important aspect of SRSs as they are vulnerable to noisy and
incomplete data. Surveys on the robustness of recommender systems [17,6] dis-
cussed the challenges in developing robust recommender systems and presented
various techniques for improving the robustness of recommender systems.

Many tools have been developed to test the robustness of different algorithms:
[25], provided both a formalisation of the topic and a framework; the same was
done more recently by [26], who developed a toolkit called RGRecSys which
provides a unified framework for evaluating the robustness of SRSs.

Few recent work has focused on studying the problem and trying to increase
robustness: [37] focuses on robustness in the sense of training stability while [24]
investigated the robustness of SRSs to interaction perturbations. They showed
that even small perturbations in user-item interactions can lead to significant
changes in the recommendations. They proposed Rank List Sensitivity (RLS), a
measure of the stability of rankings produced by recommender systems.

Our work expands these, making a more accurate investigation of the effect
different types of perturbation can have on the models’ performance. While [24]
perturbs a single interaction in the whole dataset, we perturb the sequences of all
users and analyze the performance as the number of perturbations changes. We
also provide a theoretical contribution in a new sensitivity evaluation measure
for finite rankings, presented in Sec. 3.2.

3 Methodology

3.1 Setting

In Sequential Recommendation, each user u is represented by a temporally or-
dered sequence of items Su = (I1, I2, ..., Ij , ..., ILu−1, ILu

) with which it has
interacted, where Lu is the length of the sequence for user u.

User-object interactions in real-world scenarios are often fragmented across
services, resulting in a lack of comprehensive data. For example, in the domains

4 F. Betello et al.

of movies and TV shows, a single user may interact with content on TV, in a
movie theater, or across multiple streaming platforms. To mimic this real-world
scenario in our training data perturbations, we considered three different cases,
each removing n items at a specific position in the sequence:

– Beginning: Su = (In+1, . . . , ILu−1). This represents a user who signs up for
a new service, so all his past interactions, i.e., those at the beginning of the
complete sequence, were performed on other services.

– Middle: Su = (I1, . . . , I⌊Lu−1−n
2 ⌋, I⌊Lu−1+n

2 ⌋..., ILu−1). This represents a

user who takes a break from using the service for a certain period and re-
sumes using it. Still, any interactions they had during the considered period
are not available to the service provider.

– End: Su = (I1, . . . , ILu−1−N). This represents a user who has stopped using
the service, so the service provider loses all the subsequent user interactions.
The service provider still has an interest in winning the user back through
their platform or other means, such as advertising. Thus, it is essential to
have a robust model to continue providing relevant items to the user.

with n ∈ {1, 2, ..., 10}. In practice, the data is first separated into training,
validation and test set (always composed by ILu). Subsequently, only the training
data are perturbed, with a methodology dependent on the scenario considered
and the model is then trained on these. The models, trained on data perturbed
in a different manner, are therefore always tested on the same data.

3.2 Metrics

To evaluate the performance of the models, we employ traditional evaluation
metrics used for Sequential Recommendation: Precision, Recall, MRR and NDCG.

Moreover, to investigate the stability of the recommendation models, we em-
ploy the Rank List Sensitivity (RLS) [24]: it compares two lists of rankings X
and Y, one derived from the model trained under standard conditions and the
other derived from the model trained with perturbed data.

Therefore, having these two rankings, and a similarity function sim between
them, we can formalize the RLS measure as:

RLS =
1

|X |

|X |∑
k=1

sim(RXk , RYk) (1)

where Xk and Yk represent the k-th ranking inside X and Y respectively.
RLS’s similarity measure can be chosen from two possible options:

– Jaccard Similarity (JAC) [19] is a normalized measure of the similarity
of the contents of two sets. A model is stable if its Jaccard score is close to 1.

JAC(X,Y) =
|X ∩ Y |
|X ∪ Y |

(2)

Robustness of SRSs Against Training Perturbations 5

– Rank-Biased Overlap (RBO) [41] measures the similarity of orderings
between two rank lists. Higher values indicate that the items in the two lists
are arranged similarly:

RBO(X,Y) = (1− p)

+∞∑
d=1

pd−1 |X[1 : d] ∩ Y [1 : d]|
d

(3)

In the domain of recommendation systems, it is customary to compute met-
rics using finite-length rankings, typically denoted by appending “@k” to the
metric’s name, such as NDCG@k. While traditional metrics (e.g. NDCG, MRR,
etc.) readily adapt to finite-length rankings, maintaining their core meaning, the
same behaviour does not extend to RLS when employing RBO. The reason lies in
Equation 3, which exhibits a notable limitation: it fails to converge to one, even
when applied to identical finite-length lists. To overcome this limitation, we intro-
duce the Finite Rank-Biased Overlap (FRBO) similarity, denoted as FRBO@k,
which represents a novel formulation engineered to ensure convergence to a value
of 1 for identical lists and a value of 0 for entirely dissimilar lists.

Theorem 1. Given a set of items I = {I1, ..., INI
}, two rankings X = (x1, ..., xk)

and Y = (y1, ..., yk), such that xi, yi ∈ I, and k ∈ N+

FRBO(X,Y)@k =
RBO(X,Y)@k−minX,Y RBO@k

maxX,Y RBO@k−minX,Y RBO@k
(4)

min
X,Y

FRBO(X,Y)@k = 0, max
X,Y

FRBO(X,Y)@k = 1

Proof. This follows from the fact that given a function f : A → [a, b] and another
function g = f−a

b−a , then g : A → [0, 1], where A is any set. ⊓⊔

To normalize RBO, we need to identify its minimum and maximum values
when the summation is carried out up to the top-k elements of the ranking, simul-
taneously proving that these values are not naturally constrained to be 0 and 1.

Lemma 1. Given a set of items I = {I1, ..., INI
}, two rankings X = (x1, ..., xk)

and Y = (y1, ..., yk), such that xi, yi ∈ I, and k ∈ N+, the following holds:

min
X,Y

RBO@k =

0, if k ≤ ⌊NI

2 ⌋

(1− p)

(
2p⌊NI

2
⌋−pNI

1−p −NIℓ

)
otherwise

(5)

where RBO(X,Y)@k = (1− p)

k∑
d=1

pd−1 |X[1 : d] ∩ Y [1 : d]|
d

and ℓ = p

⌊
NI
2

⌋
Φ(p, 1, ⌊NI

2
⌋+ 1)− pNIΦ(p, 1, NI + 1)

Proof. For the first part, it suffices to consider two rankings X, Y that share no
common elements, so that |X[1 : d] ∩ Y [1 : d]| = 0. This leads to:

min
X,Y

RBO@k = (1− p)

k∑
d=1

pd−1 0

d
= 0

6 F. Betello et al.

However, since the number of items I is not infinite, if k > ⌊NI

2 ⌋, at least one
element must necessarily be in common between the two rankings:

|X[1 : k] ∩ Y [1 : k]| = 0 ⇐⇒ |X[1 : k] ∪ Y [1 : k]| = 2k ≤ NI ⇐⇒ k ≤ ⌊NI

2
⌋

Consequently, the similarity can’t assume a value of 0 if k > ⌊NI

2 ⌋.
Given that RBO(X,Y)@k + 1 ≥ RBO(X,Y)@k∀k ∈ N+, similarity it’s min-

imized when intersections between the two rankings occur as far down the list
as possible. When d > ⌊NI

2 ⌋, there are at least 2d − NI intersections, because
items in d-th position in one ranking are necessarily contained in the other.

min
X,Y

RBO@k = (1− p)

0 +

NI∑
d=⌊NI

2 ⌋+1

pd−1 2d−NI

d

= (1− p)

2

NI∑
d=⌊NI

2 ⌋+1

pd−1 −NI

NI∑
d=⌊NI

2 ⌋+1

pd−1

d

The first series can be regarded as a finite geometric series, for which we can

apply the formula for the sum of a geometric series:
∑k

n=1 ar
n−1 = a(1−rk)

1−r :

NI∑
d=⌊NI

2 ⌋+1

pd−1 = p⌊
NI
2 ⌋

NI−⌊NI
2 ⌋∑

d=1

pd−1 =
p⌊

NI
2 ⌋ − pNI

1− p

Using Lerch transcendent function Φ(z, s, α)=
∑+∞

n=0
zn

(n+α)s in second series:

NI∑
d=⌊NI

2 ⌋+1

pd−1

d
=

NI−⌊NI
2 ⌋−1∑

d=0

pd+⌊NI
2 ⌋

d+ ⌊NI

2 ⌋+ 1

=

+∞∑
d=0

pd+⌊NI
2 ⌋

d+ ⌊NI

2 ⌋+ 1
−

+∞∑
d=NI−⌊NI

2 ⌋

pd+⌊NI
2 ⌋

d+ ⌊NI

2 ⌋+ 1

= p⌊
NI
2 ⌋Φ(p, 1, ⌊NI

2
⌋+ 1)− pNIΦ(p, 1, NI + 1)

⊓⊔

Lemma 2. Given a set of items I = {I1, ..., INI
}, two rankings X = (x1, ..., xk)

and Y = (y1, ..., yk), such that xi, yi ∈ I, and k ∈ N+, the following holds:

max
X,Y

RBO@k = 1− pk (6)

Robustness of SRSs Against Training Perturbations 7

Proof. RBO@k reaches its maximum value when the two rankings are identical:

|X[1 : d] ∩ Y [1 : d]| = d ∀d ∈ {1, . . . , k}

Referring to the result for the geometric series, we can compute:

maxX,Y RBO@k = (1− p)

k∑
d=1

pd−1 d

d
= (1− p)

k∑
d=1

pd−1 = 1− pk

⊓⊔

Corollary 1. Given a set of items I = {I1, ..., INI
} and k ∈ N+:

min
X,Y

RBO(X,Y)@k ̸= 0, max
X,Y

RBO(X,Y)@k ̸= 1

∃X,Y ∈ {(x1, . . . , xk)|xi ∈ I ∧ xi ̸= xj∀i ̸= j}

s.t. RBO(X,Y)@k ̸= FRBO(X,Y)@k

Proof. This follows from Theorems 1 and 2. ⊓⊔

It’s worth considering that in real-world scenarios, the number of possible
items NI is significantly larger compared to the length k of the rankings used
to compute the metrics, i.e., NI >> k. In this context, we can safely omit the
minimum value from Eq. 4, resulting in:

FRBO(X,Y)@k =
RBO(X,Y)@k

maxX,Y RBO@k
=

1− p

1− pk

k∑
d=1

pd−1 |X[1 : d] ∩ Y [1 : d]|
d

In this section, we have shown that RBO is not an adequate similarity score
when dealing with finite-length rankings. So, we have derived expressions that
quantify the minimum and maximum values of RBO, allowing us to compute a
normalized version of RBO.

Kendall’s Tau [21] assumes that two rankings contain precisely the same
items. However, this assumption may not hold for finite top-k ranked lists. In ad-
dition, average overlap [42,10] has a peculiar property of monotonicity in depth,
where greater agreement with a deeper ranking does not necessarily lead to a
higher score, and less agreement does not necessarily lead to a lower score [41].

4 Experiments

4.1 Datasets

We use four different datasets:

8 F. Betello et al.

Table 1: Dataset statistics after preprocessing

Dataset Users Items Interactions Average Actions
User

Median Actions
User

MovieLens 1M 6040 3952 1M 165 96

MovieLens 100K 943 1682 100K 106 65

Foursquare Tokyo 2293 61858 537703 250 153

Foursquare New York 1083 38333 227428 210 173

MovieLens [15] → This benchmark dataset is often used to test recom-
mender systems. In this work, we use the 100K version and 1M version.

Foursquare [44] → This dataset contains check-ins from New York City and
Tokyo collected over a period of approximately ten months.

The statistics for all the datasets are shown in Table 1.
We select datasets widely used in the literature and with a high number of

interactions per user. The limitation in dataset selection arises from our intention
to assess the robustness against the removal of up to 10 elements. Therefore, the
dataset must satisfy the following constraint: Lu > 10 ∀u ∈ U , where Lu is the
number of interactions of user u, i.e. the length of the sequence Su of interactions,
and U is the set of all users in the dataset. If the condition is not met, we delete all
the items for a user with less than ten interactions. In this case, we cannot train
the model on this particular user. We have, thus, decided to exclude datasets
such as Amazon [23] for they cannot meet the previous criteria.

4.2 Architectures

In our study, we use two different architectures to validate the results:

– SASRec [20] uses self-attention processes to determine the importance of
each interaction between the user and the item.

– GRU4Rec [16] is a recurrent neural network architecture that uses gated
recurrent units (GRUs) [8] to improve the accuracy of the prediction.

We choose to use these two models because both have demonstrated excellent
performance in several benchmarks and have been widely cited in the literature.
Furthermore, as one model employs attention while the other utilizes RNN, their
network functioning differs, which makes evaluating their behavior under train-
ing perturbations particularly interesting. We use the models’ implementation
provided by the RecBole Python library [46], with their default hyperparameters.

4.3 Experimental Setup

All the experiments are performed on a single NVIDIA RTX 3090. The batch
size is fixed to 4096. Adam optimizer is used with a fixed learning rate of 5∗10−4.

Robustness of SRSs Against Training Perturbations 9

Table 2: Variation of metrics between two seeds. Metrics for the 4 datasets
considered for GRU4Rec and SASRec. For Precision (Prec.), Recall, MRR and
NDCG, it is shown the percentage variation between the obtained performance
using two different initialization seeds for the models. For each metric, the value
corresponding to the dataset where a model is less robust is highlighted in bold.
For each dataset, the value corresponding to the model that is the least robust
of the two given a metric is underlined.

SASRec GRU4Rec

Prec. Recall MRR NDCG FRBO JAC Prec. Recall MRR NDCG FRBO JAC

ML 100k 0.5% 0.5% 0.5% 0.3% .466 .489 1.7% 1.7% 1.2% 0.1% .337 .413

ML 1M 0.3% 0.4% 0.5% 0.5% .549 .569 0.2% 0.2% 3.5% 2.5% .311 .347

FS NYC 0.9% 0.9% 0.0% 0.3% .398 .273 0.1% 0.1% 0.6% 0.1% .110 .083

FS TKY 1.4% 1.4% 0.4% 0.02% .418 .267 0.8% 0.8% 4.7% 3.4% .210 .165

The number of epochs is set to 300, but in order to avoid overfitting, we stop
the training when the NDCG@20 does not improve for 50 epochs. The average
duration of each run is 1.5 hours. The RecBole library was utilized for conduct-
ing all the experiments, encompassing data preprocessing, model configuration,
training, and testing. This comprehensive library ensures the reproducibility of
the entire process. All the evaluation metrics are calculated with a cut-off K
of 20. To validate the effective degradation in performance and rankings simi-
larity, we employed the paired Student’s t-test [35], after testing normality of
distributions with Shapiro–Wilk test [34], and a significance level of 10−3.

5 Results

5.1 Intrinsic Models Instability (RQ1)

To measure the inherent robustness of the models, i.e. in the baseline case (with-
out removal of items), we train the model twice using different initialization seeds
and compute the percentage discrepancy between the Precision, Recall, MRR
and NDCG obtained by the two rankings. The results are shown in Table 2:
it can be seen that in general the discrepancy is negligible, almost always less
than 1%. On the other hand, the two RLS, calculated using FRBO and Jaccard
respectively, show us the similarity between the two rankings produced with dif-
ferent initialization seeds. The results deviate significantly from the ideal value
of 1, indicating considerably different rankings. These combined results indicate
to us that the models converge to an adequate performance beyond the initial-
ization seed, but that the actual rankings produced are heavily influenced by
it. The bold represent the dataset with the least robust result for each metric.
No datasets stands out significantly, yet Foursquare Tokyo seems to give more
problems regarding standard evaluation metrics, while for Foursquare New York

10 F. Betello et al.

City it seems more difficult to produce stable rankings. The underlined values in-
stead compare, for each metric and dataset, which of the two models is the least
robust. If we consider metrics that do not consider the position of the positive
item in the ranking, i.e. Precision and Recall, GRU4Rec seems more robust than
SASRec. If, on the other hand, we look at metrics that penalize relevant items in
positions too low in the ranking, we see that the opposite happens. This suggests
to us that GRU4Rec can return a better set of results, but in a less relevant or-
der than SASRec does. As proof of this, if we check the RLS values, we see that
GRU4Rec is always the least robust model as the initialization seed changes.

5.2 Comparison of the position of removal (RQ2)

Table 3 compares performance and stability when ten items are removed from
the sequence versus retaining all items (reference value) in the training set with a
consistent initialization seed. It’s observed that discarding items from the begin-
ning or middle of the sequence does not significantly impair the model’s perfor-
mance; only a minor decline is noted, potentially attributable to the marginally
reduced volume of total training data. Instead, it can be observed how remov-
ing items from the end of the sequence leads to a drastic reduction in metrics:
in the case of SASRec applied to the MovieLens 1M dataset, the NDCG more
than halves. Finally, we can see how the difference between the three settings,
although maintaining the same trend, is less marked for GRU4Rec applied to the
Foursquare NYC dataset. This may be due to the generally higher performance
of GRU4Rec [20]. A more in-depth analysis is presented in Section 5.4.

Table 3 also shows the RLS values, computed using FRBO and Jaccard
similarity, on the same model-dataset pairs: removing items at the end of the
sequence leads to considerable variation in the rankings produced by the mod-
els. The values approach 0, meaning that the produced rankings share almost no
items. Our results are in contrast to those of [24], which instead claim that an
initial perturbation of a user sequence leads to a higher impact on the RLS. How-
ever, their experimental setting is different than ours, as explained in Section 2.

5.3 Effect of the number of elements removed (RQ3)

As we discussed in the previous section, removing elements that are at the begin-
ning or in the middle of the temporally ordered sequence has no effect on perfor-
mance. This is also confirmed by Figure 1, where we can also see, however, that
for the above-mentioned cases there is no variation as the number of removed ele-
ments increases. The deviation of the RLS displayed in Figure 1d will be analyzed
in more detail in Section 5.4. For the remaining setting, the one where we remove
items at the end of the sequence, the effect of the number of items removed is
evident: the metrics drop drastically as the number of items removed increases.
This result holds true for both models considered and for all four datasets tested.

Robustness of SRSs Against Training Perturbations 11

Table 3: Variations in metrics for ten-item removal. Metrics for the 3
scenarios considered for SASRec on ML-1M and GRU4Rec on FS-NYC. For
Precision, Recall, MRR, and NDCG, it is shown the percentage variation
between removing ten items and the reference value. For each metric, in bold
it is highlighted the value representing the less robust model. † indicates a
statistically significant result.

Model Removal Prec. Recall MRR NDCG FRBO JAC

SASRec
ML-1M

Beginning -0.23% -0.23% -0.15% -0.07% .399† .368†

Middle -0.35% -0.29% -1.09% -0.73% .385† .356†

End -15.5%† -15.3%† -45.9%† -56.0%† .080† .106†

GRU4Rec
FS-NYC

Beginning -0.23% -0.23% -1.47% -0.94% .105† .075†

Middle -0.93% -0.93% -0.18% -0.44% .110† .074†

End -4.92%† -4.86%† -8.42%† -7.39%† .089† .062†

246810
Elements removed

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

Re
ca

ll@
20 remove beginning

remove middle
remove end
reference

(a) HR@20 SASRec ML-100k

246810
Elements removed

0.30

0.35

0.40

0.45

0.50

M
RR

@
20

remove first
remove middle
remove last
reference

(b) MRR GRU4Rec ML-1M

246810
Elements removed

0.20

0.25

0.30

0.35

0.40

0.45

0.50

RL
S-

JA
C@

20 remove beginning
remove middle
remove end
reference

(c) RLS-JAC@20 SASRec ML-100k

246810
Elements removed

0.10

0.15

0.20

0.25

0.30

0.35

RL
S-

FR
BO

@
20

remove beginning
remove middle
remove end
reference

(d) RLS-FRBO@20 GRU4Rec ML-1M

Fig. 1: Plots of various metrics for the ML-100k and ML-1M datasets as the
number of removed elements increases. The baseline is shown as a horizontal
solid line, while dashed lines show the metrics as the number of items removed
changes for the three scenarios considered.

5.4 Differences between the datasets

Figures 2 and 3 show the performance for the three different settings for the SAS-
Rec model applied to all datasets. From Figures 2a, 2b, 2c, 2d we see that the

12 F. Betello et al.

246810
Elements removed

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

ND
CG

@
20 remove beginning

remove middle
remove end
reference

(a) NDCG@20 SASRec ML-100k

246810
Elements removed

0.40

0.45

0.50

0.55

ND
CG

@
20 remove beginning

remove middle
remove end
reference

(b) NDCG@20 SASRec ML-1M

246810
Elements removed

0.2

0.3

0.4

0.5

RL
S-

FR
BO

@
20

remove beginning
remove middle
remove end
reference

(c) FRBO@20 SASRec ML-100k

246810
Elements removed

0.1

0.2

0.3

0.4

0.5

0.6

RL
S-

FR
BO

@
20

remove beginning
remove middle
remove end
reference

(d) FRBO@20 SASRec ML-1M

Fig. 2: Plots of NDCG and FRBO for SASRec on the ML-100K and ML-1M
datasets. The baseline is shown as a horizontal solid line, while dashed lines
show the metrics as the number of items removed changes for the three scenarios
considered.

downward trend of the metric when removing items at the end of the sequence is
a characteristic of the MovieLens dataset: both NDCG@20 and RLS-FRBO@20
show a decrease when increasing the number of removed items. We hypothesize
that this is happening because the average number of actions per user and the
number of items (see Table 1) are not that large compared to the number of
items removed. On the other hand, the Foursquare datasets (3a, 3b, 3c, 3d) do
not suffer major performance degradation, probably due to the higher average
number of actions per user and the number of items (see Table 1) than Movie-
Lens. In addition to this, and probably for the same motivation, the degradation
of the RLS is lower with respect to that displayed in the MovieLens datasets.
Finally, it is interesting to note that on MovieLens 1M, there is a consistent
performance degradation even when elements at the beginning and in the mid-
dle of the temporally ordered sequence are removed. This can be observed as a
small decrease in the NDCG@20 (Figure 2b), but a sharp decrease in the value
of the RLS-FRBO (Figures 1d, 2d). This means that even if the model performs
approximately the same, the rankings produced vary greatly. The cause may be
the fact that the MovieLens 1M dataset, among those considered, has the largest
number of users and interactions.

Robustness of SRSs Against Training Perturbations 13

246810
Elements removed

0.70

0.71

0.72

0.73

0.74

0.75

0.76

ND
CG

@
20 remove beginning

remove middle
remove end
reference

(a) NDCG@20 SASRec FS-TKY

246810
Elements removed

0.62

0.63

0.64

0.65

0.66

0.67

0.68

ND
CG

@
20 remove beginning

remove middle
remove end
reference

(b) NDCG@20 SASRec FS-NYC

246810
Elements removed

0.25

0.30

0.35

0.40

0.45

0.50

RL
S-

FR
BO

@
20

remove beginning
remove middle
remove end
reference

(c) FRBO@20 SASRec FS-TKY

246810
Elements removed

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

RL
S-

FR
BO

@
20

remove beginning
remove middle
remove end
reference

(d) FRBO@20 SASRec FS-NYC

Fig. 3: Plots of NDCG and FRBO for SASRec on FS-TKY and FS-NYC datasets.
The baseline is shown as a horizontal solid line, while dashed lines show the met-
rics as the number of items removed changes for the three scenarios considered.

6 Conclusion

In this work, we have analyzed the importance of the position of items in a
temporally ordered sequence for training SRSs. For this purpose, we introduced
Finite RBO, a version of RBO for finite-length ranking lists and proved its nor-
malization in [0,1]. Our results demonstrate the importance of the most recent
elements in users’ interaction sequence: when these items are removed from the
training data, there is a significant drop in all evaluation metrics for all case
studies investigated and this reduction is proportional to the number of ele-
ments removed. Conversely, this reduction is not as pronounced when elements
at the beginning and middle of the sequence are removed. We validated our hy-
pothesis using four different datasets and two different models, using traditional
evaluation metrics such as NDCG, Recall, but also RLS, a measure specifically
designed to measure Sensitivity. Future work in this direction could first extend
our results to more models and more datasets, and then investigate a way to
make the models robust to the removal of training data. We hypothesize that the
solution may lie in using different training strategies [27], robust loss functions
[5,40], or different optimization objectives [4].

14 F. Betello et al.

References

1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: a survey of the state-of-the-art and possible extensions. IEEE Transactions
on Knowledge and Data Engineering 17(6), 734–749 (2005). https://doi.org/
10.1109/TKDE.2005.99

2. Afchar, D., Melchiorre, A., Schedl, M., Hennequin, R., Epure, E., Moussallam, M.:
Explainability in music recommender systems. AI Magazine 43(2), 190–208 (2022)

3. Amato, F., Moscato, V., Picariello, A., Sperĺı, G.: Recommendation in social media
networks. In: 2017 IEEE Third International Conference on Multimedia Big Data
(BigMM). pp. 213–216. IEEE (2017)

4. Bacciu, A., Siciliano, F., Tonellotto, N., Silvestri, F.: Integrating item relevance in
training loss for sequential recommender systems. arXiv preprint arXiv:2305.10824
(2023)

5. Bucarelli, M.S., Cassano, L., Siciliano, F., Mantrach, A., Silvestri, F.: Leveraging
inter-rater agreement for classification in the presence of noisy labels. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 3439–3448 (2023)

6. Burke, R., O’Mahony, M.P., Hurley, N.J.: Robust collaborative recommendation.
Recommender systems handbook pp. 961–995 (2015)

7. Chang, J., Gao, C., Zheng, Y., Hui, Y., Niu, Y., Song, Y., Jin, D., Li, Y.: Se-
quential recommendation with graph neural networks. In: Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval. p. 378–387. SIGIR ’21, Association for Computing Machin-
ery, New York, NY, USA (2021). https://doi.org/10.1145/3404835.3462968,
https://doi.org/10.1145/3404835.3462968

8. Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using rnn encoder-decoder for
statistical machine translation (2014)

9. Donkers, T., Loepp, B., Ziegler, J.: Sequential user-based recurrent neural net-
work recommendations. In: Proceedings of the Eleventh ACM Conference on Rec-
ommender Systems. p. 152–160. RecSys ’17, Association for Computing Machin-
ery, New York, NY, USA (2017). https://doi.org/10.1145/3109859.3109877,
https://doi.org/10.1145/3109859.3109877

10. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. SIAM Journal on
discrete mathematics 17(1), 134–160 (2003)

11. Fan, Z., Liu, Z., Zhang, J., Xiong, Y., Zheng, L., Yu, P.S.: Continuous-time se-
quential recommendation with temporal graph collaborative transformer. In: Pro-
ceedings of the 30th ACM International Conference on Information & Knowl-
edge Management. p. 433–442. CIKM ’21, Association for Computing Machin-
ery, New York, NY, USA (2021). https://doi.org/10.1145/3459637.3482242,
https://doi.org/10.1145/3459637.3482242

12. Fouss, F., Faulkner, S., Kolp, M., Pirotte, A., Saerens, M., et al.: Web recommen-
dation system based on a markov-chainmodel. In: ICEIS (4). pp. 56–63 (2005)

13. Fouss, F., Pirotte, A., Saerens, M.: A novel way of computing similarities between
nodes of a graph, with application to collaborative recommendation. In: The 2005
IEEE/WIC/ACM International Conference on Web Intelligence (WI’05). pp. 550–
556. IEEE (2005)

14. Guy, I., Zwerdling, N., Ronen, I., Carmel, D., Uziel, E.: Social media recom-
mendation based on people and tags. In: Proceedings of the 33rd International

https://doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1145/3404835.3462968
https://doi.org/10.1145/3404835.3462968
https://doi.org/10.1145/3404835.3462968
https://doi.org/10.1145/3109859.3109877
https://doi.org/10.1145/3109859.3109877
https://doi.org/10.1145/3109859.3109877
https://doi.org/10.1145/3459637.3482242
https://doi.org/10.1145/3459637.3482242
https://doi.org/10.1145/3459637.3482242

Robustness of SRSs Against Training Perturbations 15

ACM SIGIR Conference on Research and Development in Information Retrieval.
p. 194–201. SIGIR ’10, Association for Computing Machinery, New York, NY,
USA (2010). https://doi.org/10.1145/1835449.1835484, https://doi.org/10.
1145/1835449.1835484

15. Harper, F.M., Konstan, J.A.: The movielens datasets: History and context. ACM
Trans. Interact. Intell. Syst. 5(4) (dec 2015). https://doi.org/10.1145/2827872,
https://doi.org/10.1145/2827872

16. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommenda-
tions with recurrent neural networks (2016)

17. Hurley, N.J.: Robustness of recommender systems. In: Proceedings of the Fifth
ACM Conference on Recommender Systems. p. 9–10. RecSys ’11, Association for
Computing Machinery, New York, NY, USA (2011). https://doi.org/10.1145/
2043932.2043937, https://doi.org/10.1145/2043932.2043937

18. Hwangbo, H., Kim, Y.S., Cha, K.J.: Recommendation system development for
fashion retail e-commerce. Electronic Commerce Research and Applications 28,
94–101 (2018)

19. Jaccard, P.: The distribution of the flora in the alpine zone. 1. New Phytologist
11(2), 37–50 (1912)

20. Kang, W.C., McAuley, J.: Self-attentive sequential recommendation. In: 2018 IEEE
International Conference on Data Mining (ICDM). pp. 197–206. IEEE (2018)

21. Kendall, M.G.: Rank correlation methods. (1948)

22. Li, Y., Chen, H., Fu, Z., Ge, Y., Zhang, Y.: User-oriented fairness in recommenda-
tion. In: Proceedings of the Web Conference 2021. p. 624–632. WWW ’21, Associ-
ation for Computing Machinery, New York, NY, USA (2021). https://doi.org/
10.1145/3442381.3449866, https://doi.org/10.1145/3442381.3449866

23. Ni, J., Li, J., McAuley, J.: Justifying recommendations using distantly-labeled re-
views and fine-grained aspects. In: Proceedings of the 2019 conference on empirical
methods in natural language processing and the 9th international joint conference
on natural language processing (EMNLP-IJCNLP). pp. 188–197 (2019)

24. Oh, S., Ustun, B., McAuley, J., Kumar, S.: Rank list sensitivity of rec-
ommender systems to interaction perturbations. In: Proceedings of the 31st
ACM International Conference on Information & Knowledge Management. p.
1584–1594. CIKM ’22, Association for Computing Machinery, New York, NY,
USA (2022). https://doi.org/10.1145/3511808.3557425, https://doi.org/10.
1145/3511808.3557425

25. O’Mahony, M., Hurley, N., Kushmerick, N., Silvestre, G.: Collaborative recommen-
dation: A robustness analysis. ACM Transactions on Internet Technology (TOIT)
4(4), 344–377 (2004)

26. Ovaisi, Z., Heinecke, S., Li, J., Zhang, Y., Zheleva, E., Xiong, C.: Rgrecsys: A
toolkit for robustness evaluation of recommender systems. In: Proceedings of the
Fifteenth ACM International Conference on Web Search and Data Mining. pp.
1597–1600 (2022)

27. Petrov, A., Macdonald, C.: Effective and efficient training for sequential recom-
mendation using recency sampling. In: Proceedings of the 16th ACM Conference
on Recommender Systems. pp. 81–91 (2022)

28. Purificato, A., Cassarà, G., Liò, P., Silvestri, F.: Sheaf neural networks for graph-
based recommender systems (2023)

29. Quadrana, M., Cremonesi, P., Jannach, D.: Sequence-aware recommender systems.
ACM Computing Surveys (CSUR) 51(4), 1–36 (2018)

https://doi.org/10.1145/1835449.1835484
https://doi.org/10.1145/1835449.1835484
https://doi.org/10.1145/1835449.1835484
https://doi.org/10.1145/1835449.1835484
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2043932.2043937
https://doi.org/10.1145/2043932.2043937
https://doi.org/10.1145/2043932.2043937
https://doi.org/10.1145/2043932.2043937
https://doi.org/10.1145/2043932.2043937
https://doi.org/10.1145/3442381.3449866
https://doi.org/10.1145/3442381.3449866
https://doi.org/10.1145/3442381.3449866
https://doi.org/10.1145/3442381.3449866
https://doi.org/10.1145/3442381.3449866
https://doi.org/10.1145/3511808.3557425
https://doi.org/10.1145/3511808.3557425
https://doi.org/10.1145/3511808.3557425
https://doi.org/10.1145/3511808.3557425

16 F. Betello et al.

30. Quadrana, M., Karatzoglou, A., Hidasi, B., Cremonesi, P.: Personalizing session-
based recommendations with hierarchical recurrent neural networks. In: Pro-
ceedings of the Eleventh ACM Conference on Recommender Systems. p.
130–137. RecSys ’17, Association for Computing Machinery, New York, NY,
USA (2017). https://doi.org/10.1145/3109859.3109896, https://doi.org/10.
1145/3109859.3109896

31. Schafer, J.B., Konstan, J.A., Riedl, J.: E-commerce recommendation applications.
Data Mining and Knowledge Discovery 5, 115–153 (2001)

32. Schedl, M., Knees, P., McFee, B., Bogdanov, D., Kaminskas, M.: Music recom-
mender systems. Recommender Systems Handbook pp. 453–492 (2015)

33. Schedl, M., Zamani, H., Chen, C.W., Deldjoo, Y., Elahi, M.: Current challenges
and visions in music recommender systems research. International Journal of Mul-
timedia Information Retrieval 7, 95–116 (2018)

34. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete
samples). Biometrika 52(3/4), 591–611 (1965)

35. Student: The probable error of a mean. Biometrika 6(1), 1–25 (1908)
36. Sun, F., Liu, J., Wu, J., Pei, C., Lin, X., Ou, W., Jiang, P.: Bert4rec: Sequential

recommendation with bidirectional encoder representations from transformer. In:
Proceedings of the 28th ACM International Conference on Information and Knowl-
edge Management. p. 1441–1450. CIKM ’19, Association for Computing Machin-
ery, New York, NY, USA (2019). https://doi.org/10.1145/3357384.3357895,
https://doi.org/10.1145/3357384.3357895

37. Tang, J., Drori, Y., Chang, D., Sathiamoorthy, M., Gilmer, J., Wei, L., Yi, X.,
Hong, L., Chi, E.H.: Improving training stability for multitask ranking models in
recommender systems. arXiv preprint arXiv:2302.09178 (2023)

38. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, L., Polosukhin, I.: Attention is all you need. In: Proceedings of the 31st
International Conference on Neural Information Processing Systems. p. 6000–6010.
NIPS’17, Curran Associates Inc., Red Hook, NY, USA (2017)

39. Wang, S., Hu, L., Wang, Y., Cao, L., Sheng, Q.Z., Orgun, M.: Sequen-
tial recommender systems: challenges, progress and prospects. arXiv preprint
arXiv:2001.04830 (2019)

40. Wani, F.A., Bucarelli, M.S., Silvestri, F.: Combining distance to class centroids
and outlier discounting for improved learning with noisy labels (2023)

41. Webber, W., Moffat, A., Zobel, J.: A similarity measure for indefinite rankings.
ACM Trans. Inf. Syst. 28(4) (nov 2010). https://doi.org/10.1145/1852102.

1852106, https://doi.org/10.1145/1852102.1852106
42. Wu, S., Crestani, F.: Methods for ranking information retrieval systems without

relevance judgments. In: Proceedings of the 2003 ACM symposium on Applied
computing. pp. 811–816 (2003)

43. Wu, S., Sun, F., Zhang, W., Xie, X., Cui, B.: Graph neural networks in recom-
mender systems: a survey. ACM Computing Surveys 55(5), 1–37 (2022)

44. Yang, D., Zhang, D., Zheng, V.W., Yu, Z.: Modeling user activity preference by
leveraging user spatial temporal characteristics in lbsns. IEEE Transactions on
Systems, Man, and Cybernetics: Systems 45(1), 129–142 (2014)

45. Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system:
A survey and new perspectives. ACM Comput. Surv. 52(1) (feb 2019). https:
//doi.org/10.1145/3285029, https://doi.org/10.1145/3285029

46. Zhao, W.X., Mu, S., Hou, Y., Lin, Z., Chen, Y., Pan, X., Li, K., Lu, Y., Wang, H.,
Tian, C., Min, Y., Feng, Z., Fan, X., Chen, X., Wang, P., Ji, W., Li, Y., Wang, X.,

https://doi.org/10.1145/3109859.3109896
https://doi.org/10.1145/3109859.3109896
https://doi.org/10.1145/3109859.3109896
https://doi.org/10.1145/3109859.3109896
https://doi.org/10.1145/3357384.3357895
https://doi.org/10.1145/3357384.3357895
https://doi.org/10.1145/3357384.3357895
https://doi.org/10.1145/1852102.1852106
https://doi.org/10.1145/1852102.1852106
https://doi.org/10.1145/1852102.1852106
https://doi.org/10.1145/1852102.1852106
https://doi.org/10.1145/1852102.1852106
https://doi.org/10.1145/3285029
https://doi.org/10.1145/3285029
https://doi.org/10.1145/3285029
https://doi.org/10.1145/3285029
https://doi.org/10.1145/3285029

Robustness of SRSs Against Training Perturbations 17

Wen, J.R.: Recbole: Towards a unified, comprehensive and efficient framework for
recommendation algorithms (2021)

	Investigating the Robustness ofSequential Recommender SystemsAgainst Training Data Perturbations

