
PURED: A unified framework for resource-hard
functions

Alex Biryukov1,2 and Marius Lombard-Platet1

1 DCS, University of Luxembourg, Esch-sur-Alzette, Luxembourg
2 SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg

first.last@uni.lu

Abstract. Algorithm hardness can be described by 5 categories: hard-
ness in computation, in sequential computation, in memory, in energy
consumption (or bandwidth), in code size. Similarly, hardness can be a
concern for solving or for verifying, depending on the context, and can
depend on a secret trapdoor or be universally hard. Two main lines of
research investigated such problems: cryptographic puzzles, that gained
popularity thanks to blockchain consensus systems (where solving must
be moderately hard, and verification either public or private), and white
box cryptography (where solving must be hard without knowledge of the
secret key). In this work, we improve upon the classification framework
proposed by Biryukov and Perrin in Asiacypt 2017 and offer a united
hardness framework, PURED, that can be used for measuring all these
kinds of hardness, both in solving and verifying. We also propose three
new constructions that fill gaps previously uncovered by the literature
(namely, trapdoor proof of CMC, trapdoor proof of code, and a hard
challenge in sequential time trapdoored in verification), and analyse their
hardness in the PURED framework.

Keywords: puzzle cryptography · white-box cryptography · memory
hardness · VDF · trapdoor problems

1 Introduction

In some specific situations, it might be preferable that algorithms are inefficient:
for instance, RSA assumes that factoring is hard in computation. Hard problems
can be used to slow down attackers or honest parties (the problems are then
usually called puzzles). Such examples include code protection [30], resistance
against password cracking [43], or blockchain consensus [11, 33]. A brief summary
of hardnesses in the literature can be found in Table 1. A more exhaustive survey
has been carried in [3], but did not tackle how to measure the puzzle hardness.

Because of the variety of such applications and the resources considered, re-
search on the general topic is quite scattered and not always consistent with
each other. Our goal is twofold: expand existing literature on a generic hardness
framework, and give a unified measure of hardness. We also along the way illus-
trate our framework with new constructions that fill gaps in the literature, and
can be of individual interest.

2 Alex Biryukov and Marius Lombard-Platet

Hardness type Resource

Solving
Verifica-
tion

SeqTime CPU Mem BW Code

M
o
d
er
a
te
/
H
a
rd

Moder-
ate/Hard

See Section 3.2

Iterated modular
squaring in group
of unknown order

Any non-NP
problem

Argon [14],
BalloonHash

[23], scrypt [40]

Argon [14],
scrypt [40]

Lookup table of
random
numbers

Trap-
doored

SeqTime challenge
(see Section 6)

Encryption of
NP-complete
witness, of

proof of work

[unknown] [unknown] [unknown]

Easy

Proof of sequential
work [39, 28],

trapdoorless VDF
or in trustless

group of unknown
order [22, 31] or in
MPC-generated

RSA groups [26, 49]

NP-complete
problems;

Proof-of-Work
[32]; witness or

PoW
encryption[35,

38]

Proof-of-Space
[33]; Equihash,
ethash [16, 34];
MTP/Itsuku

[15, 27]

[unknown] Proof of storage
[37]

T
ra
p
d
o
o
re
d

Moder-
ate/Hard See Section 3.1

Trap-
doored

RSA time-lock [45]

Encrypted PoK
of a secret key
or of factoring,
Skipper [17]

Diodon [17] [unknown]

SPACE,
ASASA, lookup

on a large
trapdoored
S-box [21, 20,

13]

Easy
Trapdoor VDF [51,

41, 29]

EUF-CMA
signatures,
Schnorr

protocol [47],
proof of

factoring [42],
signatures of
knowledge [25]

Trapdoor proof
of CMC (See
Section 5),
memory lock

(see
Section 3.3)

Bandwidth
lock (see

Section 3.3)
HSig-BigLUT
(see Section 4)

E
a
sy

Moder-
ate/Hard See Section 3.1

Trap-
doored

[unknown]
Encrypt 0 (with

IND-CPA
scheme)

[unknown] [unknown] [unknown]

Easy Return 0 Return 0 Return 0 Return 0 Return 0

Table 1. Panorama of existing resource-hard problems. Our constructions and reduc-
tions are in grey cells. We also discuss about easy verification in Section 3.4

The PURED framework 3

Our contributions We present the following results:

– A formal hardness framework, PURED, uniting hardness over different kinds
of resources, such as CPU, memory, code, sequential time, as well as over
different issues: solving and verification, and with or without trapdoors.

– Generic reductions between different hardness classes.
– We propose three constructions, with hardness proved in our PURED model:
• a trapdoored (in solving) proof of code, that cannot be implemented by
an algorithm much smaller than the honest one, unless a secret trapdoor
is known. On the other hand, verification only requires a few lines of
code;

• a trapdoor (in solving) proof of CMC that requires a significant amount
of memory, unless a secret trapdoor is known, while verification is always
easy;

• a trapdoored (in verification) challenge of sequential time. This problem
necessarily takes time to solve, but can be fast to verify if one knows the
secret trapdoor.

Outline In Section 2, we introduce the problem and define our PURED frame-
work. Then, in Section 3 we offer reductions between different hardness classes.
Sections 4 to 6 propose three new constructions, respectively a trapdoor proof
of CMC, a trapdoor solving proof of code, and a SeqTime challenge, along with
their proofs of hardness in the PURED framework. We conclude in Section 7.

2 General Resource-Hardness Framework

2.1 Resources

We here give a quick panorama of the resources we consider in this paper.

CPU Computation complexity is defined by the number of operations (which
can be counted as clock cycles, multiplications, exponentiations...) required to
evaluate a program. CPU does not account for parallelization.

SeqTime is defined by the minimal sequential time (measured in cycles, mul-
tiplications...) for solving a problem. While CPU can be linked to circuit size,
SeqTime can be linked to circuit depth and measures the minimal number of
consecutive steps to compute a function problems are non-parallelisable and do
not depend on the number of processors, and have been introduced notably for
time lock puzzles [45], then for verifiable delay functions [22, 41, 51]. Typical
examples include iterated hashing and iterated squaring.

Mem In many cases, a memory intensive algorithm can be rewritten to use very
little memory, at the expense of an increased computation time. Time-memory
product [40], then cumulative memory complexity (CMC, [8]) addressed this
issue. CMC (further refined in [5]) counts the sum of memory requirements at
each step of the execution, and does not depend on parallelization. In this paper,
we use the CMC memory-hardness framework, which is notably the framework
in which scrypt hardness has been proven [6].

4 Alex Biryukov and Marius Lombard-Platet

Code Code complexity is the minimum size of a binary implementing a given
algorithm. Code hardness has been used notably for whitebox cryptography [30,
20, 21, 13], and applies to programs that cannot be efficiently compressed. Code
complexity usually relies on lookup tables given to the user at generation time. If
the solver/verifier can generate these tables on the fly, then the problem becomes
Mem hard rather than code hard.

BW Bandwidth complexity has been introduced to count the number of off-chip
memory accesses, which is invariant between CPUs and ASICs, thus offering a
hardware-agnostic complexity. Energy complexity [7, 4], then bandwidth com-
plexity [44, 18], lower-bound the energy cost. Bandwidth complexity increases
with the square root of the CMC [18], and does not vary with parallelization.

Other complexities On top of the aforementionned complexities, other complex-
ities have been proposed [48, 1, 9, 50, 2]. However, either they have been super-
seded by one of the previous complexities, or either their usage remains minimal.

2.2 Resource-Hardness Game

Problem class The high level idea is that a problem class is specifically crafted
so that it requires hardness in resource R, i.e. it requires at least u units of R to
solve (resp. verify) an instance (resp. a solution), for any u.

This gives us the following definition of a problem class.

Definition 1. A problem class instance is a tuple (Pλ
u ,Solve,Verify), with Solve :

Pλ
u × {0, 1}∗ → {0, 1}∗, Verify : {0, 1}∗ → {0, 1} the reference algorithm imple-

mentations for solving and verifying the problem, and λ is a security parameter.
Solve is a (potentially) nondeterministic algorithm that takes as input a problem
instance P ∈ Pλ

u , and a random tape3 z: Solve(P, z).
Furthermore, Solve and Verify implementations must be sound, i.e. any output

of Solve is valid for Verify: ∀P ∈ Pλ
u ,∀z ∈ {0, 1}

∗
,Verify(P,Solve(P, z)) = 1.

A problem class C∗ is an algorithm Generate(u, λ) that is easy to evaluate and
generates a problem class instance C where C = (Pλ

u ,Solve,Verify). Furthermore,
in case of a solving (resp. verification) trapdoor, it also privately discloses the
trapdoor tS (resp. tV) to privileged parties.

Note that generation is trustless if and only if no secret trapdoor are created.
We also assume that solving (or verifying) a problem from a problem class in-
stance does not yield any advantage for solving (or verifying) another problem
from another instance of the same problem class4.

Finally, while we model the probabilistic nature of solving algorithm, prob-
abilistic verification algorithms are left out of scope of this work.

3 In this paper, we often omit the random tape and write s
$←− Solve(P) when infor-

mation on z is irrelevant, and s← Solve(P, z) otherwise.
4 For instance, consider the problem of inverting a hash for the hash function H(·, r)
where r is a random string for each problem class instance. For a given r, inverting
two hashes is cheaper than double the cost of inverting one hash. However, in the
case of inverting one hash of H(·, r) and one hash of H(·, r′), this is not true.

The PURED framework 5

Hardness game The hardness (either in solving or verifying) of a problem class
is evaluated through the following protocol. For Verify, since using the probabil-
ity of being correct on a random input yields the 0 function as an overwhelmingly
perfect verification algorithm for hard to solve problems, we rather use a vari-
ant of Youden’s J statistic [52], where 0 indicates no better performance than
random, and ±1 a perfectly good (or bad) performance.

Definition 2 (Algorithm advantage). The advantage Advs of an algorithm
A on solving a problem class C∗ is Advs(A) = PrP,z,C (Verify(P,A(P, z)) = 1),
where the randomness is taken over P ∈ Pλ

u , the random tape z of A and the

generation of C = (Pλ
u ,Solve,Verify)

$←− C∗.Generate(u, λ).
The advantage AdvvD of an algorithm A on verifying a problem class C∗ over

a domain D is

AdvvD(A) = PrP,s,C(A(P, s) = 1|Verify(P, s) = 1) + PrP,s,C(A(P, s) = 0|Verify(P, s) = 0)− 1

where the randomness is taken over P ∈ Pλ
u , s ∈ D, and the generation of

C = (Pλ
u ,Solve,Verify)

$←− C∗.Generate(u, λ).

Remark 1. For the verifying game, the advantage is domain dependent as there
might be strings that are obvious non solutions. Depending on the problem class,
determining if the challenge belongs to the set of possible solutions might be a
difficult problem in itself, thus the requirement to specify the domain of the
verification advantage.

Hard problem class While Solve and Verify are already defined in the previous
section, they might not be the algorithms chosen by an attacker, who might want
to compromise accuracy in exchange of a more efficient resource usage.

We note the consumption of resource R with the function Res(·): an algorithm
A using u units of resource R on entry P is noted ResR(A(P)) = u. The resource
R will be omitted if the context allows.

Our definition relies on the hardness game defined earlier, however we use
probabilities rather than an interactive game. Our definition extends the hard-
ness framework used in [6, 28], and generalizes other similar approaches [17, 12].
A high-level understanding of our definition is: If a problem class is hard, then
for any algorithm solving (or verifying) a problem instance, the probability this
algorithm uses less than some amount of resource is minimal.

Definition 3 (PURED resource hardness). Let u be a nonnegative number,
λ be a security parameter, and C = (Pλ

u ,Solve,Verify) a problem class.

– We say that the problem class C∗ is a (p, u,R, δ, ϵ)-solving hard problem (with
ε a function of p, u and δ), if

∀A,Advs(A) ≥ p⇒ PrP,z,C [Res(A(P, z)) < δu] < ϵ+ negl(λ)

where the probability is taken over the sampling of P ∈ Pλ
u , the random tape

z, and the generation of C = (Pλ
u ,Solve,Verify)

$←− C∗.Generate(u, λ), and
negl denotes a function negligible in λ.

6 Alex Biryukov and Marius Lombard-Platet

– Similarly, C∗ is (p, u,R, δ, ϵ) verifying hard problem over D if:

∀A,AdvvD(A) ≥ p⇒ PrP,s,C [Res(A(P, s)) < δu] < ϵ+ negl(λ)

Where the probability is taken over the sampling of P ∈ Pλ
u , s ∈ D and the

generation of C = (Pλ
u ,Solve,Verify)

$←− C∗.Generate(u, λ).

Definition 4 (PURED for trapdoor hardness). Similarly, a problem class
is trapdoored if it is at most (p, log u,R, δ, ϵ) solving hard for people knowing the
trapdoor, but (p, u,R, δ, ϵ) hard otherwise. More precisely,

– The (p, u,R, δ, ϵ) solving hard problem class C∗ is said to be trapdoored if
there exists A such that

Advs(A(tC, ·)) ≥ p ∧ PrP,z,C [Res(A(tC, P, z)) < δ log u] ≥ ϵ+ negl(λ)

With tC the solving trapdoor generated by C∗.Generate, see Definition 1.
– The (p, u,R, δ, ϵ) verifying hard over a domain D problem class C∗ is said to

be trapdoored if there exists A such that

AdvvD(A(tC, ·)) ≥ p ∧ PrP,s,C [Res(A(tC, P, s)) < δ log u] ≥ ϵ+ negl(λ)

A moderately hard problem is one that is hard, for some parameters deemed
acceptable. An easy problem can be solved within a small amount of resource
usage.

Remark 2. Following [28], u and δ are two different parameters instead of just
one, as u indicates the estimated hardness of the problem, with a typical ε − δ
approach.

One can show that proof of work of difficulty d (i.e. given s find x so that
H(x||s) starts with d zeroes) is (p, p2d,CPU, δ, δ) solving hard in the ROM.

Similarly, according to [6] the function scrypt [40] is (p, M2n
25 ,Mem, 1− 100 logM

n , 1−
p+0.08M62−n+2−M/30) solving hard in the parallel random oracle model, where
M and n are (integer) parameters.

Finally, in the literature, for CPU related problems, the notion of hardness
is sometimes defined by (t, p) security, which means that any attacker running
in time t cannot succeed with probability more than p. Thus, in our framework
a (t, p) secure problem class is (p, t,CPU, δ,1δ≥1) hard, where 1 is the indicator
function.

We assume that ϵ is increasing in δ, and decreasing in p.
As noted previously, this definition is only hard on average. We only define

systematic hardness on problems relying on a function that can be approached
as a random oracle.

Definition 5 (systematic hardness). Let u be a nonnegative number, λ be a
security parameter, and C∗

h a problem class that relies on a function h, modeled
as a random variable.

The PURED framework 7

We say that the problem class C∗
h is a systematic (p, u,R, δ, ϵ) solving hard

problem, if

∀A,∀P ∈ Pλ
u ,Prh [Verify(P, s) = 1] ≥ p⇒ Prh [Res(A(P)) < δu] < ϵ+ negl(λ)

Where randomness is taken over the choice of h in the random oracle model.
The notion of systematic verifying hardness is similarly defined.

2.3 Bounded adversaries

An important remark is that the current definition of our PURED framework
leaves the possibility of an unbounded adversary in Code and SeqTime problems,
which obviously cause issues if the problem relies on an underlying problem, as-
sumed computationally intractable (e.g. factoring a RSA modulus for Wesolowki
VDF [51]). Hence, we additionally request, for Code and SeqTime, to specify the
adversary computational bound. Note that for CPU and Mem, this bound is
already natively included in our framework.

For instance, we can say that a problem class is (p, u,R, δ, ε, s) solving hard if
it is (p, u,R, δ, ε) solving hard, for any PPT adversary bounded by 2s operations
(which include oracle calls or table lookups).

Our constructions in the PURED framework We give the hardness of the
constructions we present below in Sections 4 to 6. The different parameters are
described in the associated sections.

– HSig-BigLUTλ,γ
u (Section 4)

• Systematically (p, u,Code, δ,1p=01δ<1) trapdoor solving hard against a
2λ bounded adversary, with u = γL− λ ≈ λ(L− 1)

• Verification complexity of O(λ) in Code
– Trapdoor proof of CMC TdPoCMCλ

M,L,k (Section 5)

• ((pq)k, qMLλ
25 ,Mem, 1− 100 logM

λ , 1−p+negl(M)+negl(λ)) trapdoor solv-
ing hard

• Verification complexity at most O
(
k2λ log L

k (λ+ logL)
)
in Mem

– SeqTime ChallengeλT,w,t (Section 6), against an adversary that is 2λ bounded,
and makes at most 2q calls to the oracle:
• Systematically (p, 2T − 1,SeqTime, δ,1δ≥1) solving hard
• Systematically (p, 2T −1,SeqTime, δ,1

δ≥
(
1−p− log2(T)w

2w−2q−1

)1/n) solving hard

if the solver knows the trapdoor
• (p, 2T − 1,SeqTime, δ,1δ≥1) trapdoored verifying hard over {0, 1}w

3 Problem class reductions

In this section, we show generic reductions from one difficulty class to another. In
all these theorems, we do not specify the computational bound of the adversary
(when needed), since it always transfers from the old class to the new one (even
though better bounds might exist in the new class), thus can be omitted for
simplicity.

8 Alex Biryukov and Marius Lombard-Platet

3.1 Leveraging trapdoored solving hard into verifying hard

We show how to obtain a problem class hard in verification from a problem class
that is trapdoored in solving. For our proof, we need what we call a deterministic
problem class, which means that for any problem instance P , there is only one
solution s, which implies that Solve is deterministic.

Theorem 1. Let C∗,D∗ be problem classes, let H be a hash function of codomain
{0, 1}n. If C∗ is (p, u,R, δ, ϵ) trapdoored solving hard and deterministic, then there
exists a problem class E∗ that is (p− 1−p

2n , u,R, δ, ϵ) verifying hard in the random

oracle model on the domain {C, P, c : C = (Pλ
u , ,)

$←− C∗.Generate(u, λ);P
$←−

Pλ
u ; c ∈ {0, 1}

n}.

The case when D∗ is not deterministic is left for future work.

Proof. The idea of this proof is that the solver will generate on the fly their own
trapdoor problem class, then encode the solution inside that class. For instance,
for a CPU hard problem, instead of encrypting the result with the verifier’s public
key, the solver XORs the solution with a random message encrypted using a
public key generated on the spot. We now give a formal proof of this idea for
any kind of resource hardness.

LetD∗ be a problem class of unspecified hardness, andD = (Qλ
u,SolveD,VerifyD)

be an instance of D∗. Let C∗ be a (p, u,R, δ, ϵ) trapdoor solving problem class.
Our goal is to create a problem class that is (p, u,R, δ, ϵ) verifying hard.
Let E∗ be a problem class such that Generate(u, λ) returns a tuple E =

(Qλ
u,SolveE,VerifyE), with the following properties.

– Upon a problem entry Q ∈ Qλ
u, SolveE(Q) will run s ← SolveD(Q), then

generate an instance C = (Pλ
u ,SolveC,VerifyC) of C∗ with solving trapdoor

tC (note that SolveE(Q) knows tC). Then, they sample a random P from
Pλ
u and run the trapdoored function s′ ← SolveC(tC, P). Finally, SolveE(Q)

returns (C, P, s ⊕ H(s′)), where H is a preimage resistant hash function of
codomain size higher than the size of s.

– Upon a possible solution (C, P, c), VerifyE is defined by VerifyE(Q, (C, P, c)) =
VerifyD(Q, c⊕H(SolveC(P))).

We now prove that C∗ is verifying hard over the set {C, P, c : C = (Pλ
u , ,)

$←−
C∗.Generate(u, λ);P

$←− Pλ
u ; c ∈ {0, 1}

n}.
Let V be a PPT algorithm, with a non-null verifying advantage p.
In order to run V on input (C, P, c), the adversary can either find a preimage

of c in the random oracle model), or treat it as a random variable (assuming the
random oracle model).

– If the V treats c as a random variable, the distributions V(Q, (C, P, c)))
and V(Q, (C, P, r)) are indistinguishable, so no matter the input, V will an-
swer randomly, with a given probability q. Thus, V verification advantage is
Advs(V) = q + (1− q)− 1 = 0, which contradicts the hypothesis that V has
advantage p > 0.

The PURED framework 9

– If V computes a preimage of c, given that we operate in the random ora-
cle model, this means that V actually computes the value SolveC(P), so the
probability for V to use less than δu resources is less than ϵ. We still must
assess V advantage. Let (C, P, c) be a valid answer. If SolveC(P) answers
correctly with probability p, then V validates the input correctly with prob-
ability p in the best case5. Now, if (C, P, c) is not a valid answer, there is the
possibility that SolveC does not answer correctly (with probability 1−p) and
that the wrong answer of Solve actually gives a valid on c (with probability
1
2n). Hence, on an invalid answer, V will answer correctly with probability

1− 1−p
2n , hence V has advantage p− 1−p

2n , hence the result.

Furthermore, we observe that E∗ is not much harder to solve than D∗.
Note that the same result does not immediately transfer for creating easy

verification problems: adding the solving trapdoor in the public information at
generation might be problematic if it is equal to the solving trapdoor, as is the
case for the RSA time-lock [45].

3.2 Leveraging solving hard to verification hard

We process similarly here. As noted in our table, there exist problems which
are assumed to be hard both in solving and verification, mostly because the
verification algorithm consists of the solving algorithm. However, these problems
might lack a formal proof on the verification hardness, given that verification
was not considered during their design.

Let C∗ be a deterministic problem class (p, u,R, δ, ϵ) hard in solving. We show
how to create a new problem class that is close to C∗, safe for the fact that it is
now also hard in verification.

Theorem 2. Let C∗ be a problem class. If C∗ is (p, u,R, δ, ϵ) solving hard, then
there exists a problem class E∗ that is (p − 1−p

2n , u,R, δ, ϵ) verifying hard on a
specific domain. Furthermore,

– If R = CPU, then E∗ is (p, u,R, δ, ϵ′) solving hard, with ϵ′(p, δ) = ϵ(
√
p, δ).

– If R = SeqTime, R = Mem, R = Code or R = BW, then E∗ is (p, 2u,R, δ, ϵ′′)
solving hard, with ϵ′′(p, δ) = max

0≤p1≤p
0≤δ1≤2δ

ϵ(p1, δ1)ϵ(p/p1, 2δ − δ).

Proof. We use essentially the same construction as in Theorem 1, and thus will
reuse the same notations, but this time there is no trapdoor involvedhence we
can take D∗ = C∗ (we name C1 the instance from C∗, and C2 the instance from
D∗), and thus verifying a problem in E∗ requires solving one problem in C∗

(which is (p, u,R, δ, ϵ) solving hard), and verifying one problem in C∗. Thus E∗

is at least (p, u,R, δ, ϵ) verification hard.
For solving hardness, in order to solve a problem in E∗, an algorithm A must

solve two instances P1, P2 of C1,C2, respectively.

5 This is the best case since the only bits of information V disposes of are from
SolveC(P). As we saw previously answering randomly gives a null advantage

10 Alex Biryukov and Marius Lombard-Platet

– If R = SeqTime, the two instances can be solved in parallel.
– If R = CPU or R = Code, because the two problem class instances are

different, solving one does not offer any advantage in solving the other (see
the remarks below Definition 1) so there is no other possibility than dedicate
twice the amount of computation (or code).

– Similarly, if R = Mem (resp. R = BW), the two problems can be solved one
after the other, or in parallel, and both methods lead to a doubled cost.

Let us now consider an algorithm A that solves instances P ∈ P for the
problem class instance E with probability q. In order to solve P , A must solve
two problems from C∗ (but of different instances), namely P1 and P2. On average,
let us assume that A solves P1 (resp. P2) with probability p1 (resp. p2), with
p1p2 = q.

Case where R = CPU. Both problems P1 and P2 can be solved in parallel. Thus,
because C∗ is (p, u,R, δ, ϵ) solving hard, we get that Pr [Res(A1(P1)) < δu] <
ϵ(p1, δ) where A1 is the part of A dedicated to solving P1. Similar formula
applies to P2.

Because solving P uses less than δu resources of R if and only if both solving
P1 and solving P2 require less than δu of resources each, we get Pr [Res(A(P)) < δu] =
Pr [Res(A1(P1)) < δu] Pr [Res(A2(P2)) < δu] < ϵ(p1, δ)ϵ(q/p1, δ).

Because ϵ is decreasing in p, the right hand side is lower than 1ϵ(
√
q, δ), no

matter the values of p1 and p2. Hence, E∗ is (p, u,R, δ, ϵ′) solving hard, with
ϵ′(p, δ) = ϵ(

√
p, δ).

Case where R = SeqTime or R = Mem or R = Code. In this case, the algorithm
A must not allot more than 2δu units of R cumulated to A1 and A2.

LetA be an algorithm solving E, with probability q. Using the same notations
as before, let us assume that A1 solves P1 with probability p1, and A2 solves
P2 with probability p2 = q/p1. If δ1u units are devoted to solving P1, then A
can devote up to (2δ − δ1)u units to P2, so that the total amount of resources
devoted does not exceed δ.

Hence,A succeeds solving P with probability p1p2 = q, and Pr [Res(A(P)) < 2δu] <
ϵ(p1, δ1)ϵ(q/p1, 2δ − δ1), from which we derive our upper bound.

3.3 Leveraging trapdoored solving hard and trapdoored verification
to easy verification

From a deterministic problem class that is trapdoored solving, it is trivial to
create a problem class that is easy in verifying: it suffices, at generation, to
publish the solving trapdoor. However, this also breaks the solving complexity,
thus reducing the interest of doing so.

However, we can design one-time problems with problems that are determin-
istic (i.e. only one possible solution) and trapdoored in solving. As a matter of
fact, this approach had been used by Rivest for his time capsule challenge [46].

The PURED framework 11

Algorithm 1 Resource-lock Solve and Verify algorithm
Inputs: C is a trapdoored solving hard class problem of trapdoor t,H is a second preim-
age resistant hash function whose outputs are more than |t| bits, c = H(C.Solve(m))⊕t,
m ∈ C.P

function Solve(m, c, C, H)
s← C.Solve(m)
return H(s)⊕ c

end function

function Verify((m, c,C, H), v)
▷ (m, c,C, H) is a problem instance,

v is a response

return H(C.Solve(m, v))⊕ c
?
= v

end function

In this section, we simply generalize the concept with Algorithm 1, and give its
security in our framework.

With this construction, we get the following result.

Theorem 3. Let C be a problem class that is (p, u,R, δ, ϵ) solving trapdoored
hard, of solving trapdoor t. Then the resource-lock problem class of Algorithm 1
defined on top of C is publicly verifiable and (p, u,R, δ, ϵ) solving hard for at most
one instance.

Proof. We simply show that the problem class D defined with Algorithm 1 on
top of C offers the claimed security, since the soundness is immediate. It is also
immediate that verification is easy, and that once one instance has been solved
and published (hence once the solving trapdoor has been published), the solving
hardness disappears.

Let us explore the solving strategies for a solver of the resource-lock problem
class that does not dispose of the solving trapdoor. For Verify to accept a solution,
either the solver finds the trapdoor, either a preimage on H, or the solution
to the instance of C. Finding the trapdoor is, by hypothesis, assumed to be
infeasible with probability higher than negl(λ). Similarly, finding a preimage
of H(C.Solve(m, v)) is equally as hard as finding the trapdoor (since the hash
codomain has the same size as the trapdoor), and hence negligible in λ. Finally,
solving C without the trapdoor is (p, u,R, δ, ϵ) hard, which concludes the proof.

3.4 Leveraging any problem class to easy verification

In this section, we briefly describe how proofs of computation allow to transform
problem classes into similar problem classes, but with easy verification.

Proofs of computation have been pioneered in [10], and much refined since
then.Proofs of computation are often derived from zero-knowledge proofs [36].

Because of the generality of the construction, one can build succinct zero-
knowledge proofs for any language in NP. Because of usual requirements on
zk-proofs, checking a proof cannot take much CPU (or SeqTime), and because
of the succinctness, Mem usage is low as well. Furthermore, the code of these
constructions is also relatively small.

12 Alex Biryukov and Marius Lombard-Platet

4 HSig-BigLUT: Code, systematic trapdoored-hard
solving, easy verification problem class

4.1 Primer on homomorphic signature and the BFKW scheme

It is obvious that a homomorphic signature scheme cannot be forgery resistant,
but the definition can be adapted as follows

Definition 6 (Homomorphic EUF-KMA security). Let Sig = (Gen, Sign,
Verify) be a signature scheme over a vector space F. Sig is Homomorphic EUF-
KMA secure if the advantage of any PPT adversary A, who knows the signatures
of some messages {m}, in forging a valid signature (outside of the span of {m})
is negligible:

Pr

[
m∗ /∈ Span({m})∧

Verify(pk,m∗, σ∗) = 1

∣∣∣∣∣ (pk, sk)
$←− Gen(1λ); {m} $←− F; Span({m}) ⊊ F

(m∗, σ∗)
$←− A

(
pk, (m, Sign(sk,m))m∈{m}

)
]
< negl(λ)

Where Sign(sk, {m}) is the set of signatures of the messages of {m}, and
Span({m}) the vector space generated by the vectors of {m}.

In this paper, we rely on the BFKW scheme [24], which allows for signing
m vectors of Fn

p , with m known in advance. The BFWK scheme is proven to be
homomorphically EUF-KMA resistant under co-CDH in the ROM [24, Theorem
6], assuming that 1

p = negl(λ).

For a keypair (pk, sk), two scalars β1, β2, two vectors v1,v2 and their respec-

tive signatures σ1, σ2, we have BFKWm.Verify(pk, β1v1+β2v2, σ
β1

1 σβ2

2) = 1. The
scheme relies on m + 1 public parameters (generators of a finite group), which
can be stored compactly by storing the seed that generated them. For more
details, please refer to Appendix A.2 or [24].

4.2 HSig-BigLUT construction

We now show how to leverage the BFKW signature scheme in a code-hard solving
problem with public verification.

Let us consider a lookup table LUT consisting with L entries. Each entry
LUT [i] is of the form LUT [i] = BFKWL.Sign(ei), where ei is the i-th element
of the canonical base of FL

p .

Our problem instances are of the form x ∈ {0, 1}∗, which is hashed via a hash
function H of codomain (F∗

p)
L. The solver has to return a linear combination of

all the signatures from the LUT, where the coefficients are taken from H(x). In
other words the solver must return BFKWL.Sign (

∑
i H(x)[i] · ei). Verification of

the challenge is a simple signature verification.

We thus formalize the algorithms in Algorithm 2.

The PURED framework 13

Algorithm 2 HSig-BigLUTλ
u Generate, Solve and Verify algorithms

Parameter: h is a hash function such that h(x) returns L values of F∗
p

function Generate(u, λ)
p← prime of λ bits
L← ⌊u

λ
⌋

pk, sk ← instance of BFKW with a
random id id, and for signing over the
canonical basis (ei)1≤i≤L of FL

p

LUT ← empty table of L entries
for i ∈ {1, . . . , L} do

LUT [i]← BFKWL.Sign(sk, ei)
end for
C← ({0, 1}∗ , SolveLUT ,Verify)

return (C, sk,⊥)
▷ solving trapdoor is sk

end function

function SolveLUT (x)

s←
L∏

i=1

LUT [i]h(x)[i]

return s
end function

function Verify(x, s)

v←
L∑

i=1

h(x)[i] · ei

return BFKWL.Verify(pk,v, s)
end function

Theorem 4. Under the co-CDH in the ROM and assuming 1/p = negl(λ),
HSig-BigLUT consisting of L entries of size γ is systematically (p, γL−λ,Code, δ,1p=01δ<1)-
trapdoor solving hard against an 2λ bounded adversary, and verification can be
done with probability 1 using O(λ) resources in Code, where γ is the compressed
size of the BFKW scheme (i.e., the size of signatures once compressed)6.

Proof. Verification hardness. This part is trivial: for verification, one only needs
the simple code written in Algorithm 2, which does not make any call to any
lookup table. The solver only needs to store the public parameters, which essen-
tially consist of L+1 generators of a finite group (and one bilinear map), which
can be compactly stored by storing the random seed that generated them.

Solving hardness First, a solver with trapdoor solves in O(λ) by signing the
message with the private key. Let us now focus on the case where the solver does
not have the trapdoor.

We first see that an attacker can safely remove λ/L bits to each entry and
yet compute the solution to any input in 2λ steps. Thus, we consider the base u
to be u = γL−λ. Let us now consider an attacker that removes even more bits.
Since, for any input, the adversary must reconstruct all signatures of the LUT,
then bruteforcing the solution to a problem instance will cost them more than
2λ operations, which is impossible. Thus a success probability of p > 0 indicates
that the adversary has at least u bits of Code complexity, thus the result.

6 Since BFKW relies on elliptic curves, γ is expected to be close from λ

14 Alex Biryukov and Marius Lombard-Platet

5 Trapdoor proof of CMC: Mem, trapdoored solving,
easy verification problem class

5.1 A primer on Diodon [17]

Diodon (see Algorithm 3) is a memory trapdoored hard solving problem. [17]
shows that without trapdoor, one must operate η ×M squarings while storing
M × log2(N) bits, while a user in possession of the trapdoor can instead use
L × log2(N) squaring operations and 2 log2(N) bits of memory. Its complexity
is estimated around Ω(LM log2(N)) in the CMC model [17, Appendix A].

There is no known efficient trapdoorless verification of Diodon.

Algorithm 3 Diodon Solve algorithm [17]
Parameters: public key N = pq of λ bits, η ∈ N∗, memory requirement M , length
requirement L, problem instance x ∈ Z/NZ, H a hash function of λ bits

V0 ← x ▷ Expansion phase
for i ∈ {1, . . . ,M} do

Vi ← V 2η

i−1 mod N
end for
S0 ← H(VM) ▷ Hash chaining phase
for i ∈ {1, . . . , L} do

ki ← Si−1 mod M
Si ← H(Si−1, Vki)

end for
return SL

5.2 A primer on VDFs

Wesoloski VDF (Verifiable Delay Function, [51], also described in Appendix A.1)
relies on iterated squaring in RSA groups, and is (p, T,SeqTime, δ,1δ≥1) trapdoor
solving hard (assuming that factorization of the RSA modulus is computation-
nally intractable), with easy verification. More details are given in [51]. In this
paper, for (y, π) a solution to a Wesolowski VDF problem instance, we often
refer to π as the Wesolowski proof of y.

5.3 Trapdoor proof of CMC: the general idea

The main idea of our proof of CMC is to adapt Diodon so that the verifier can
validate a proposed solution without spending a significant amount of memory.
This is done by, at each step of the hash chaining phase, adding a VDF proving
the validity of the value. These VDFs are then aggregated in a Merkle tree.

A high-level view of the protocol is described in Figure 1, and the full algo-
rithm is described in Algorithm 4.

The PURED framework 15

V0 V1
π1

... VM
πM

x
v2

v2 v2 v2 v2

H(·)

VM S0 S1 SL

H(·) H(·) H(·) H(·)

Store in leaves of a Merkle tree

Fig. 1. A high-level view of the first steps (expansion and hash chaining phases) of the
trapdoor proof of CMC. πi is the Wesolowsky proof of the VDF computation of Vi.
Then, we form a Merkle tree from the hash chain.

5.4 Trapdoored proof of CMC protocol

Summing it up, we get the Solve and Verify algorithms of our trapdoored proof
of CMC in Algorithm 4.

Algorithm 4 Trapdoor proof of CMC TdPoCMCλ
M,L,k Solve and Verify algorithms

Parameters: N a RSA module of λ bits, M a memory requirement, L a hashing chain
length, k a number of openings

function Solve(x) ▷ x ∈ Pλ
u = Z/NZ

V0 = x
for ∈ {1, . . . ,M} do

Vi ← V 2
i−1 mod N

end for
s← VL

S0 ← H(VL) mod L
for i ∈ {1, . . . , L} do

ki ← Si−1 mod L
πi ← the Wesolowski proof of

computation of Vki

Si ← H(i, Si−1, Vki)
end for
r ← the root of a Merkle tree

where the leaves are the tuples ℓi =
(Vki , Si−1, πi)

p ← Open k paths using the Fiat
Shamir heuristic. For each opening
that leads to leaf ℓi, also include ℓi+1

return r, p
end function

function Verify(x, (r, p))
for each opening o in p do

ℓ := (V, S, π) ← the opening of
the leaf, contained in o

i← the index of ℓ in the tree
ℓ′ := (V ′, S′, π′) ← the follow-

ing leaf in the tree, contained in o
Check that (V, π) corresponds

to a valid Wesolowski proof of the com-

putation of x2S mod L

mod N
Check that the path from ℓ is

valid and leads to the root r
S′′ ← H(i, S, V)
Check that S′′ is equal to S′

end for
If at least one of the check fails, re-

turn 0, otherwise return 1
end function

Theorem 5. In a group where iterated squaring is (p, T, SeqTime, δ,1δ≥1) solv-

ing hard, the trapdoor proof of CMC problem class TdPoCMCλ
M,L,k is ((pq)k, qMLλ

25 ,Mem, 1−
100 logM

λ , 1− p+ negl(M) + negl(λ)) solving hard in the parallel ROM.

16 Alex Biryukov and Marius Lombard-Platet

Proof. Let us consider a solver that wishes to minimize their CMC, while having
a good probability of passing verification. Looking at the security proof of scrypt,
we see that the CMC of creating a (continuous) hash chain of size L/E, following
an expansion phase of size M , with words of size λ, is around Ω(LMλ

E). Because
the hashes are index dependent, a chain cannot be reused at another place
without immediately introducing a discontinuity.

Hence, computing the hash chain (with E discontinuities) will cost Ω(LMλ)
to an attacker no matter what.

Furthermore, as discussed previously, the verifier, when asking for opening of
leaf i, not only asks for Si, Vi but also Si+1, Vi+1 so they can verify the chain has
no discontinuity at step i. Let q be the proportion of steps correctly computed
by the solver (without loss of generality, we can assume that other steps are com-
puted at cost 0, and are always incorrect). Given results on scrypt, and notably

the fact that scrypt is (p, M2λ
25 ,Mem, 1− 100 logM

λ , 1− p+0.08M62−λ +2−M/20)
solving hard (scrypt uses L = M), we can assume that the generation of a 2-chain
is (p, 2Mλ

25 ,Mem, 1 − 100 logM
λ , 1 − p + negl(M) + negl(λ)) hard. The probability

that k openings do not reveal a cheater is then of (pq)k. Thus, our protocol with
k openings is at least ((pq)k, MLλ

25 ,Mem, 1− 100 logM
λ , 1− p+ negl(M)+ negl(λ))

hard, hence the claim.

We now give the verification complexity of the trapdoor proof of CMC. Most
importantly, the verification cost does not depend on M , which allows verifica-
tion to be much smaller than solving when L≪M .

Theorem 6. The trapdoor proof of CMC problem class TdPoCMCλ
M,L,k can be

verified in a CMC of at most O
(
k2λ log L

k (λ+ logL)
)
.

Proof. A verifier receives k openings of the Merkle tree (plus one root value that
can be neglected). An opening consists of:

– One path down the Merkle tree (logL nodes of size λ each)

– Two leaves, the leaf ℓi and the following leaf ℓi+1. We have ℓi = (Vki
, Si−1, πi)

hence one leaf is λ+ λ+ 2λ = 4λ bits.

Verifying the VDF takes O(λ) operations, verifying the tree opening takes
O(logL) time, hence k verifications take O(k(λ+ logL)) time.

An opening consists of one node each of depth 1, 2, . . . , L− 1, and two nodes
of depth L. Thus, with k openings, there are at most 2j nodes of depth j + 1
for j + 1 ≤ log(k). On the other hand, we cannot assume that there will be
any collision on the nodes of depth higher than log k. In total, we thus have
k nodes of depth lower than log k, and k(logL − log k) nodes of higher depth,
thus a higher bound of k(logL + 1 − log k) nodes. Summing it, the proof uses
k(logL+1− log k) nodes of size λ and 2k leaves of size 4λ each, hence a memory
requirement of at most O

(
kλ log L

k

)
.

Multiplying the time requirements with the memory requirements, we get a
CMC of at most O

(
k2λ log L

k (λ+ logL)
)
.

The PURED framework 17

6 SeqTime challenge: SeqTime systematic hard solving
and trapdoored hard verifying problem class

6.1 A primer on proofs of sequential work

Proofs of sequential work can be seen as VDFs for which there exist cheating
strategies, hence while it can be proved that the cheater must spend at least
some time to solve the problem, the solution is not unique.

While other constructions exist (see for instance [39]) we hereby rely on the
proof of sequential work POSWn,w,t described in [28], which is proven to be
systematically (p, 2n+1 − 1,SeqTime, δ,1

δ≥(1−p− nw

2w−2q−1)
1/t) solving hard in the

parallel ROM against a 2q bounded adversary (in oracle calls), where n,w, t are
various parameters. See [28] for more details, or Appendix A.3.

6.2 Our construction

The construction we propose in this section, SeqTime challenge, consists of solv-
ing two puzzles, one being trapdoored hard and the other one being trapdoorless
in SeqTime. Both puzzles are solved in parallel, then we use a construction sim-
ilar to the lock puzzles (see Section 3.3).

Let x be the solution to the iterated squaring problem, and y, z the solution to
the POSW instance, along with its proof. We require that the hash size is bigger
than y, i.e. |h(x)| ≥ |y|. The algorithms for Solve and Verify are summarized in
Algorithm 5.

Algorithm 5 SeqTime ChallengeλT,w,q,t Solve and Verify algorithm
Parameters: A semiprime N of λ bits, a time parameter T (being a power of 2), a
hash function Hx of codomain size 2x

function Solve(a, b)
s, o← POSWlog2 T,w,t.Solve(a)

y ← b2
2T−1

mod N ▷ s and y
are computed in parallel

h← H|o|(y)
return (s, o⊕ h)

end function

function Verify((a, b), (s, c))

y ← b2
2T−1

mod N
o← H|c|(y)⊕ c
return POSWlog2 T,w,t.Verify(a, (s, o))

end function

Theorem 7. Let T,w ∈ N, H he a hash function of codomain {0, 1}w.
Let us use a group where, against a 2λ bounded adversary, iterated squar-

ing is systematically (p, T, SeqTime, δ,1δ≥1). Against a 2λ bounded adversary
with at most 2q oracle calls, the SeqTime challenge is systematically (p, 2T −
1,SeqTime, δ,1δ≥1) solving hard in the parallel ROM. If the solver knows the
trapdoor, then the problem class is systematically (p, 2T−1,SeqTime, δ,1

δ≥
(
1−p− log2(T)w

2w−2q−1

)1/n)

solving hard in the random oracle model.

18 Alex Biryukov and Marius Lombard-Platet

The SeqTime challenge is also (p, 2T − 1,SeqTime, δ,1δ≥1) trapdoored veri-
fying hard on {0, 1}w.

Proof. Solving hardness.On instance (a, b), a honest solver will run POSWlog2 T,w,t.Solve(a)

and compute b2
2T−1

mod N in parallel. Computing b2
2T−1

mod N requires at
least T consecutive steps to have a nonnegligible chance of success, so there is no
incentive for the solver to find a solution to the POSW in less than T consecutive
steps, which then gives a success probability of 1.

Moreover, in order to get a valid solution from an instance a, b, the solver has

to output (s, c) such that c⊕ (b2
2T−1

mod N) is a valid opening for the POSW
DAG tree of challenge a. Let us assume that the solver does not compute the

value b2
2T−1

mod N . Because at least one bit of y defined as y ← b2
2T−1

mod N
can be seen as random (see [19]), the valueH|c|(y) is random in the random oracle
model, hence c ⊕H|c|(y) is random. Because the string c ⊕H|c|(y) is supposed
to be a valid opening, it must contain at least the two hashes that lead to the
root label, i.e. contain the labels l1, l2 such that H(x, ε, l1, l2) = s. Hence the
random string c ⊕ H|c|(y) must contain a preimage of s, which is negligible in
the random oracle model. Hence, we conclude that the only strategy leading to
a valid solution with nonnegligible probability must include a valid computation

of b2
2T−1

mod N , at which point the adversary has no interest in deviating from
the honest execution of the protocol.

However, we note that the solver in possession of the trapdoor can compute

b2
2T−1

mod N using the trapdoor, and is only limited by the solving complexity
of the POSW.

Verification hardness. Let us assume that there exists an algorithm A
such that there exists p > 0 with Advv(A) > p. If A takes less than 2T −1 steps,

they cannot compute b2
2T−1

mod N , hence, using the same argument as above,
must verify the POSW with nothing but a random string. We conclude that if
p > 0 (i.e. if A has any advantage better than random), then it is impossible to
succeed in less than 2T − 1 consecutive steps, hence the complexity.

7 Conclusion and future work

In this paper, we presented the PURED framework, uniting the hardness models
over different resources, and explored its properties. We also introduced three
new problem classes, with a proven hardness.

Another interesting consideration to add would be to see how one can embed
trustless problem generation in the framework.

Finally, we observe that in the literature, many schemes that are trapdoored
hard to solve and verify use the same trapdoor for solving and verifying. It would
be interesting to investigate on schemes relying on different trapdoors for both
solving and verifying, and explore how this particularity could be embedded into
the PURED framework.

The PURED framework 19

8 Acknowledgements

The authors would like to thank Aleksei Udovenko for his suggestions on how
to improve the HSig-BigLUT performance.

A Related constructions

A.1 Wesolowski’s VDF [51]

The description of Wesolowski algorithm is summarised in Algorithm 6.

Algorithm 6 Wesolowski VDF Solve and Verify algorithm [51]
Parameters : G a group of unknown order, g ∈ G, T ∈ N, Hprime hashes to a
prime of 2λ bits, bin outputs a binary representation

function Solve(g, T)

y ← g2
T

mod N

π ← g⌊2
T /ℓ⌋ mod N

end function

function Verify((g, T), (y, π))
ℓ← Hprime(bin(g)||bin(y))
r ← remainder of 2T divided

by ℓ

return πℓgr
?
= y

end function

A.2 BFKW scheme [24]

Given a security parameter λ, a number m of vectors from Fn
p with p > 2λ, the

BFKW schemes generates the following (public) parameters:
Two groups G,GT of prime order p, a bilinear map e : G× G→ GT , random

generators7 g1, . . . , gn, h of G, a hash function H that maps to G, and id is a
public nonce to prevent signature reuse in a different setup8, as well as vectors
v1, . . . ,vm to be signed.

The secret key is sk
$←− Zp. The public key is pk ← hsk. BFKWm.Sign and

BFKWm.Verify algorithms are described in Algorithm 7. It is assumed that the
decomposition in the base (v1, . . . ,vm) is an easy task. Furthermore, for any
coefficients β1, β2, and any two signature pairs (m1, σ1), (m2, σ2), the signature

of the message β1m1+β2m2 is BFKW.Combine(pk, ({β1, σ1}, {β2, σ2}) = σβ1

1 σβ2

2 .

A.3 Proofs of successive work [28]

Let n ∈ N, we create a complete binary tree (V,E) of depth n. GPOSW
n is defined

as follows: GPOSW
n = (V,E ∪ E′), where (u, v) ∈ E′ if and only if v is a leaf

7 For code compactness, a user might prefer to store the random seed leading to these
generators.

8 In our context, the nonce prevents a cheating solver from using twice the same lookup
table for two different code-hard instances.

20 Alex Biryukov and Marius Lombard-Platet

Algorithm 7 BFKWm Sign and Verify algorithms over the m-dimensional vec-
tor space Span(B) ⊂ Fn

p , with B = (v1, . . . ,vm) [24]

function BFKWm.Sign(sk,w)

Decompose w in B: w =

m∑
i=1

αivi

return

(
m∏
i=1

H(id, i)αi

n∏
j=1

g
wj

j

)sk

▷ wj is the j-th coordinate of w
end function

function BFKWm.Verify(pk,w, σ)

Decompose w in B: w =

m∑
i=1

αivi

return e(h, σ)
?
=

e

(
pk,

m∏
i=1

H(id, i)αi

n∏
j=1

g
wj

j

)
end function

and u is a left sibling of a node belonging to the shortest path from v to the
root. We also identify each node of depth n with a string, from 0n to 1n, in
the lexicographic order from left to right (the root is identified with ε). As an
example, we give GPOSW

4 in Figure 2.

ε

0

00

000 001

01

010 011

1

10

100 101

11

110 111

Fig. 2. Representation of the DAG GPOSW
4

The proof, for a challenge x, in computing the label of the root of the DAG,
where the label of a node u having parents9 p1, . . . , pk each of respective label
lp1

, . . . , lpk
is given by lu = H(x, u, lp1

, . . . , lpk
), with H a hash function.

The POSW solving consists in labelling the root of the DAG. A node label
depends on all its childrens nodes labels, thus a intuitively a solver must itera-
tively label each node. The solution to the problem instance consists of the root
of the tree, along with a random opening of the tree à la Merkle: for a challenge
leaf node u, the solver sends the labels of u along with the labels of all the sib-
lings of the nodes on the path from u to the root ε. Then, the verifier checks
that the labels do lead to the proposed solution.

Theorem 8 (from [28]). The problem class POSWn, using the DAG GPOSW
n ,

the hash function H of codomain {0, 1}w, is systematically (p,SeqTime, 2n+1 −
1, δ,1

δ≥
(
1−p− 2nwq2

2w

)1/n) solving hard in the random oracle model, where q is the

total number of (not necessarily sequential) queries to H.
Moreover, there exists a verification algorithm that takes no more than n

steps in SeqTime.

9 For an oriented graph G = (V,E), u is a parent of v if (u, v) ∈ E.

The PURED framework 21

References

1. Abadi, M., Burrows, M., Manasse, M., Wobber, T.: Moderately hard, memory-
bound functions. ACM Trans. Internet Technol. 5(2), 299–327 (may 2005)

2. Abliz, M., Znati, T.: A guided tour puzzle for denial of service prevention. In: 2009
Annual Computer Security Applications Conference. pp. 279–288 (2009)

3. Ali, I.M., Caprolu, M., Pietro, R.D.: Foundations, properties, and security appli-
cations of puzzles: A survey. ACM Comput. Surv. 53(4), 72:1–72:38 (2020)

4. Alwen, J., Blocki, J.: Efficiently computing data-independent memory-hard func-
tions. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology – CRYPTO 2016.
pp. 241–271. Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

5. Alwen, J., Blocki, J., Pietrzak, K.: Sustained space complexity. In: Nielsen,
J.B., Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT 2018 - 37th
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part
II. Lecture Notes in Computer Science, vol. 10821, pp. 99–130. Springer (2018).
https://doi.org/10.1007/978-3-319-78375-8 4, https://doi.org/10.1007/978-3-319-
78375-8 4

6. Alwen, J., Chen, B., Pietrzak, K., Reyzin, L., Tessaro, S.: Scrypt is maximally
memory-hard. In: Coron, J.S., Nielsen, J.B. (eds.) Advances in Cryptology – EU-
ROCRYPT 2017. pp. 33–62. Springer International Publishing, Cham (2017)

7. Alwen, J., Gazi, P., Kamath, C., Klein, K., Osang, G., Pietrzak, K., Reyzin, L.,
Rolinek, M., Rybar, M.: On the memory-hardness of data-independent password-
hashing functions. In: Proceedings of the 2018 on Asia Conference on Computer
and Communications Security. p. 51–65. ASIACCS ’18, Association for Computing
Machinery, New York, NY, USA (2018)

8. Alwen, J., Serbinenko, V.: High parallel complexity graphs and memory-hard
functions. In: Proceedings of the Forty-Seventh Annual ACM Symposium on
Theory of Computing. p. 595–603. STOC ’15, Association for Computing Ma-
chinery, New York, NY, USA (2015). https://doi.org/10.1145/2746539.2746622,
https://doi.org/10.1145/2746539.2746622

9. Ateniese, G., Chen, L., Francati, D., Papadopoulos, D., Tang, Q.: Ver-
ifiable capacity-bound functions: A new primitive from kolmogorov com-
plexity (revisiting space-based security in the adaptive setting). Cryptol-
ogy ePrint Archive, Paper 2021/162 (2021), https://eprint.iacr.org/2021/162,
https://eprint.iacr.org/2021/162

10. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in poly-
logarithmic time. In: Koutsougeras, C., Vitter, J.S. (eds.) Proceedings of the 23rd
Annual ACM Symposium on Theory of Computing, May 5-8, 1991, New Orleans,
Louisiana, USA. pp. 21–31. ACM (1991). https://doi.org/10.1145/103418.103428,
https://doi.org/10.1145/103418.103428

11. Back, A.: Hashcash - a denial of service counter-measure (2002)
12. Baldimtsi, F., Kiayias, A., Zacharias, T., Zhang, B.: Indistinguishable proofs of

work or knowledge. In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology –
ASIACRYPT 2016. pp. 902–933. Springer Berlin Heidelberg, Berlin, Heidelberg
(2016)

13. Biryukov, A., Bouillaguet, C., Khovratovich, D.: Cryptographic schemes based on
the ASASA structure: Black-box, white-box, and public-key (extended abstract).
In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology – ASIACRYPT 2014. pp.
63–84. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

22 Alex Biryukov and Marius Lombard-Platet

14. Biryukov, A., Dinu, D., Khovratovich, D.: Argon2: New generation of memory-
hard functions for password hashing and other applications. In: 2016 IEEE Eu-
ropean Symposium on Security and Privacy (EuroS&P). pp. 292–302 (2016).
https://doi.org/10.1109/EuroSP.2016.31

15. Biryukov, A., Khovratovich, D.: Egalitarian computing (MTP 1.2). CoRR
abs/1606.03588 (2016), http://arxiv.org/abs/1606.03588

16. Biryukov, A., Khovratovich, D.: Equihash: Asymmetric proof-
of-work based on the generalized birthday problem. Ledger
2, 1–30 (Apr 2017). https://doi.org/10.5195/ledger.2017.48,
https://ledger.pitt.edu/ojs/ledger/article/view/48

17. Biryukov, A., Perrin, L.: Symmetrically and asymmetrically hard cryptog-
raphy. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology - ASI-
ACRYPT 2017 - 23rd International Conference on the Theory and Appli-
cations of Cryptology and Information Security, Hong Kong, China, Decem-
ber 3-7, 2017, Proceedings, Part III. Lecture Notes in Computer Science, vol.
10626, pp. 417–445. Springer (2017). https://doi.org/10.1007/978-3-319-70700-
6 15, https://doi.org/10.1007/978-3-319-70700-6 15

18. Blocki, J., Ren, L., Zhou, S.: Bandwidth-hard functions: Reductions and lower
bounds. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. p. 1820–1836. CCS ’18, Association for Computing Ma-
chinery, New York, NY, USA (2018)

19. Blum, L., Blum, M., Shub, M.: Comparison of two pseudo-random number gener-
ators. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology.
pp. 61–78. Springer US, Boston, MA (1983)

20. Bogdanov, A., Isobe, T.: White-box cryptography revisited: Space-hard ciphers.
In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security. p. 1058–1069. CCS ’15, Association for Computing Ma-
chinery, New York, NY, USA (2015). https://doi.org/10.1145/2810103.2813699,
https://doi.org/10.1145/2810103.2813699

21. Bogdanov, A., Isobe, T., Tischhauser, E.: Towards practical whitebox cryptogra-
phy: Optimizing efficiency and space hardness. In: Cheon, J.H., Takagi, T. (eds.)
Advances in Cryptology – ASIACRYPT 2016. pp. 126–158. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2016)

22. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO 2018. pp.
757–788. Springer International Publishing, Cham (2018)

23. Boneh, D., Corrigan-Gibbs, H., Schechter, S.: Balloon hashing: A memory-hard
function providing provable protection against sequential attacks. In: Cheon, J.H.,
Takagi, T. (eds.) Advances in Cryptology – ASIACRYPT 2016. pp. 220–248.
Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

24. Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: Signature
schemes for network coding. In: Public Key Cryptography - PKC 2009, 12th Inter-
national Conference on Practice and Theory in Public Key Cryptography, Irvine,
CA, USA, March 18-20, 2009. Proceedings. Lecture Notes in Computer Science,
vol. 5443, pp. 68–87. Springer (2009)

25. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.) Ad-
vances in Cryptology - CRYPTO 2006. pp. 78–96. Springer Berlin Heidelberg,
Berlin, Heidelberg (2006)

26. Chen, M., Doerner, J., Kondi, Y., Lee, E., Rosefield, S., Shelat, A., Cohen, R.:
Multiparty generation of an rsa modulus. Journal of Cryptology 35(2), 12 (Mar
2022)

The PURED framework 23

27. Coelho, F., Larroche, A., Colin, B.: Itsuku: a memory-hardened
proof-of-work scheme. IACR Cryptol. ePrint Arch. p. 1168 (2017),
http://eprint.iacr.org/2017/1168

28. Cohen, B., Pietrzak, K.: Simple proofs of sequential work. In: Nielsen, J.B., Rijmen,
V. (eds.) Advances in Cryptology – EUROCRYPT 2018. pp. 451–467. Springer
International Publishing, Cham (2018)

29. De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions from super-
singular isogenies and pairings. In: Galbraith, S.D., Moriai, S. (eds.) Advances in
Cryptology – ASIACRYPT 2019. pp. 248–277. Springer International Publishing,
Cham (2019)

30. Delerablée, C., Lepoint, T., Paillier, P., Rivain, M.: White-box security notions
for symmetric encryption schemes. In: Lange, T., Lauter, K., Lisoněk, P. (eds.)
Selected Areas in Cryptography – SAC 2013. pp. 247–264. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2014)

31. Dobson, S., Galbraith, S.D.: Trustless groups of unknown order with hyperelliptic
curves. IACR Cryptol. ePrint Arch. p. 196 (2020), https://eprint.iacr.org/2020/196

32. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brickell,
E.F. (ed.) Advances in Cryptology — CRYPTO’ 92. pp. 139–147. Springer Berlin
Heidelberg, Berlin, Heidelberg (1993)

33. Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. In:
Gennaro, R., Robshaw, M. (eds.) Advances in Cryptology – CRYPTO 2015. pp.
585–605. Springer Berlin Heidelberg, Berlin, Heidelberg (2015)

34. Ethereum Community: ethash — ethereum wiki,
https://eth.wiki/en/concepts/ethash/ethash

35. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its appli-
cations. In: Proceedings of the Forty-Fifth Annual ACM Symposium on The-
ory of Computing. p. 467–476. STOC ’13, Association for Computing Ma-
chinery, New York, NY, USA (2013). https://doi.org/10.1145/2488608.2488667,
https://doi.org/10.1145/2488608.2488667

36. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: Proceedings of the Seventeenth Annual ACM Symposium on
Theory of Computing. p. 291–304. STOC ’85, Association for Computing Machin-
ery, New York, NY, USA (1985)

37. Kamara, S.: Proofs of storage: Theory, constructions and applications. In:
Muntean, T., Poulakis, D., Rolland, R. (eds.) Algebraic Informatics. pp. 7–8.
Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

38. Liu, J., Jager, T., Kakvi, S.A., Warinschi, B.: How to build time-lock en-
cryption. Designs, Codes and Cryptography 86(11), 2549–2586 (Nov 2018).
https://doi.org/10.1007/s10623-018-0461-x, https://doi.org/10.1007/s10623-018-
0461-x

39. Mahmoody, M., Moran, T., Vadhan, S.: Publicly verifiable proofs of sequen-
tial work. In: Proceedings of the 4th Conference on Innovations in Theoreti-
cal Computer Science. p. 373–388. ITCS ’13, Association for Computing Ma-
chinery, New York, NY, USA (2013). https://doi.org/10.1145/2422436.2422479,
https://doi.org/10.1145/2422436.2422479

40. Percival, C.: Stronger key derivation via sequential memory-hard functions (2009)
41. Pietrzak, K.: Simple verifiable delay functions. In: Blum, A. (ed.) 10th Innovations

in Theoretical Computer Science Conference, ITCS 2019, January 10-12, 2019, San
Diego, California, USA. LIPIcs, vol. 124, pp. 60:1–60:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.ITCS.2019.60,
https://doi.org/10.4230/LIPIcs.ITCS.2019.60

24 Alex Biryukov and Marius Lombard-Platet

42. Poupard, G., Stern, J.: Short proofs of knowledge for factoring. In: Imai, H.,
Zheng, Y. (eds.) Public Key Cryptography. pp. 147–166. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2000)

43. Provos, N., Mazières, D.: A future-adaptive password scheme. In: Proceedings of
the Annual Conference on USENIX Annual Technical Conference. p. 32. ATEC
’99, USENIX Association, USA (1999)

44. Ren, L., Devadas, S.: Bandwidth hard functions for asic resistance. In: Kalai, Y.,
Reyzin, L. (eds.) Theory of Cryptography. pp. 466–492. Springer International
Publishing, Cham (2017)

45. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto. Tech. rep., Massachusetts Institute of Technology, USA (1996)

46. Rivest, R.L.: Description of the LCS35 time capsule crypto-puzzle.
https://people.csail.mit.edu/rivest/lcs35-puzzle-description.txt (1999)

47. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Bras-
sard, G. (ed.) Advances in Cryptology — CRYPTO’ 89 Proceedings. pp. 239–252.
Springer New York, New York, NY (1990)

48. Thompson, C.D.: Area-time complexity for vlsi. In: Proceedings of the Eleventh
Annual ACM Symposium on Theory of Computing. p. 81–88. STOC ’79, Associ-
ation for Computing Machinery, New York, NY, USA (1979)

49. Vitto, G.: Factoring primes to factor moduli: Backdooring and distributed
generation of semiprimes. IACR Cryptol. ePrint Arch. p. 1610 (2021),
https://eprint.iacr.org/2021/1610

50. Walfish, M., Vutukuru, M., Balakrishnan, H., Karger, D., Shenker, S.: Ddos de-
fense by offense. In: Proceedings of the 2006 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications. p. 303–314.
SIGCOMM ’06, Association for Computing Machinery, New York, NY, USA (2006)

51. Wesolowski, B.: Efficient verifiable delay functions. J. Cryptol.
33(4), 2113–2147 (2020). https://doi.org/10.1007/s00145-020-09364-x,
https://doi.org/10.1007/s00145-020-09364-x

52. Youden, W.J.: Index for rating diagnostic tests. Cancer 3(1), 32–35 (Jan 1950)

