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Abstract. Urban segregation is a complex phenomenon associated with
different forms of social inequality. Segregation is reflected in parents’
school preferences, especially in context of free school choice modes.
Studies have shown that parents consider both distance and demographic
composition when selecting schools for their children, potentially exac-
erbating levels of residential segregation. This raises the question of how
intervening on transit networks — thereby affecting school accessibility
to citizens belonging to different groups — can alleviate spatial seg-
regation. In this work-in-progress paper, we propose a new agent-based
model to explore this question. Conducting experiments in synthetic and
real-life scenarios, we show that improving access to schools via trans-
port network interventions can lead to a reduction in school segregation
over time. The mathematical framework we propose provides the ba-
sis to simulate, in the future, how the dynamics of citizens preferences,
school capacity and public transportation availability might contribute
to patterns of residential segregation.

Keywords: Transportation Networks · One-sided Matching · Agent-
based Simulations · Dynamic Preferences

1 Introduction

Urban segregation is a complex phenomenon that reverberates across multiple
socio-economic contexts — from social mobility to educational opportunities. In
the context of education, centralized school admissions systems such as Deferred
Acceptance and Random Serial Dictatorship have been popularized across the
world for their simplicity and fairness in student allocation [8, 2]. However, school
segregation can emerge in such preference-based systems, reflecting (or even
amplifying) existing residential segregation patterns [6]. There is evidence that
parents do not send their children to schools in their residential neighborhoods;
if they did, schools would be less segregated than how they currently are [12].

Although parents might prefer schools outside their neighborhoods, distance
and commuting time are important factors for attending a school [6]. With the
exception of high-income households, most do not tend to move house and thus
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Fig. 1. Proposed agent-based model to study the impact of transport network interven-
tions on school segregation. We consider an environment where citizens, schools, and
a transportation graph are distributed in space (Section 2.1). At each round, agents
A generate preferences for schools F , using a preference model (section 2.2). Agents
are assigned to schools via an allocation method (Section 2.3), which is evaluated on
segregation (Section 2.4). An intervention model creates edge-based interventions to
the transportation network, aiming to improve segregation (Section 2.5).

their choice is limited by their location [3]. Intervening on public transporta-
tion networks can thereby affect segregation, by allowing citizens from different
societal groups to attend a wider set of schools. This raises a natural question:
Can transportation networks be designed, or extended, to efficiently reduce school
segregation?

Here we resort to agent-based modeling (ABM) to explore the previous ques-
tion. Prior studies focused on the complexity of residential and school segregation
via ABMs [15, 6], and preference models based on both school composition and
distance have been explored [6, 14]. However, these works do not study the effect
of strategically increasing accessibility to specific schools. Graph-based interven-
tions have been utilized before to reduce accessibility inequality [10], but not to
tackle school segregation. We assess whether graph-based transportation inter-
ventions can be used to reduce disparities in group composition within schools,
under a centralized admission system.

We test transport network intervention strategies based on greedy optimiza-
tion of classic graph centrality measures such as closeness, betweenness, and
degree centrality. We conduct experiments in a synthetic and a real-life environ-
ment in the city of Amsterdam and show that targeted interventions can lead
to a significant reduction in segregation over time.
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2 Methods

2.1 Environment: Citizens, Transportation, and Schools

We model the environment as an undirected graph G = (V,E), where V =
{v1, ..., vnv

} are nodes, one for each census tract in the city, and E = {ei,j}, i, j ∈
V, i ̸= j are edges that represent transportation connections between nodes. For
the sake of simplicity, the edges are unweighted, but the model can be used
with weighted edges too (e.g., representing transportation times). We define the
shortest path between i and j as ti,j , i, j ∈ V .

We define a set of N agents (citizens), A = {a1, ..., aN}. An agent is charac-
terized by its residence node va ∈ V . Each agent is belongs to a group g ∈ G, de-
fined based on characteristics such as ethnicity, income, or other socio-economic
status. Finally, each agent has a homophily attribute, hi ∈ [0, 1], defining a pref-
erence for an optimal fraction of agents from the same group attending a school
[6, 11]. Note that agents are abstract entities that represent students in a city.

We define schools f ∈ F , which are located in nodes vf ∈ V . Each school
is associated with a capacity (maximum number of allowed agents) sf ∈ [0, N ]
and a group composition (fraction of assigned agents from each group) cg,f ∈
[0, 1], g ∈ G. Note that

∑
g
cg,f = 1, ∀f ∈ F .

2.2 Preference Model

At every round, each agent ai ∈ A creates a preference list Pi ⊆ F , over schools.
Each school appears once. The preference list is based on a utility function
Uif , f ∈ F , and schools are sorted in descending order. We adopt the widely
used Cobb-Douglas utility function, based on a function of school composition
C : cg,f → R and travel time from the agent’s residence to the school ti,f [6, 14]

Ui,f = c α
g,f t

(1−α)
i,f , (1)

where g denotes the group that agent ai belongs to and 0 ≤ α ≤ 1 is a parameter
that controls the weight of the group composition over the travel time. Travel
time is normalized by the maximum value and is calculated as follows [6]:

t′i,f =


tmax,i − ti,f
tmaxi − tmin,i

, if ti,f ≤ tmax,i

0, otherwise.
(2)

For the school composition, we use a single-peaked utility function, that is max-
imized when the number of agents of the same group in a school xg,f is equal to
the homophily attribute hi [6, 14]. Values above hi incur a constant penalty M :

C(xg,f , hi,M) =


xg,f

hi
, if xg,f ≤ hi

M +
(1−xg,f )(1−M)

1−hi
, if xg,f > hi

(3)
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M controls the level of dissatisfaction when the fraction of similar agents exceeds
the optimal hi. With this formulation interventions in the transportation network
are performed to reduce the travel time ti,f of agents to school, with the goal of
increasing utility towards more segregated schools.

2.3 Allocation Method

Once the preference lists P have been generated at each simulation round for all
ai ∈ A, they are then provided as input to an allocation method R. R is defined
as a function R : P → F which takes as input a preference list pi for agent
ai and capacity sf for all f ∈ F and assigns a school fi ∈ pi. Random Serial
Dictatorship (RSD) is a popular mechanism for one-sided matching between
schools and students [2]. In RSD a lottery number is first uniformly drawn for
each student. The students are then serially allocated to the top-preferred school
with remaining capacity in increasing order of the lottery. For our simulations we
implement RSD and perform allocations at every round; schools have, overall,
capacity to allocate all students, i.e.,

∑
sf ≥ N . Additionally, for each student

the preference model from Section 2.2 provides a ranking for all schools, and RSD
can allocate all students. The allocation result is then aggregated for evaluation.

2.4 Allocation Evaluation

After each simulation round, the allocation of agents to schools is evaluated
on segregation. To measure segregation, we use the Dissimilarity Index (DI),
a measure that captures the differences in the proportions of agents from two
groups assigned to a school [7]. DI has been widely used in assessing segregation,
as it takes into account the total number of agents from each group, making it
suitable to use even when one group is a minority [1]. DI is defined as follows:

DI =
1

2

|F |∑
f=1

|g1,f
G1

− g2,f
G2

|, DI ∈ [0, 1] (4)

Where gj,f is the number of agents of group j in school f ; Gj is the number of
agents in group j. Segregation is minimum (maximum) when DI = 0 (DI = 1).

2.5 Intervention Model

We explore the impact that intervening on public transport networks has on
school choices. By improving transportation, we aim to elevate the rank of schools
composed of majority groups in the preference lists of minority groups, increasing
their accessibility to popular (yet distant) schools. Transport interventions are
performed in the form of graph augmentations, by creating a new edge set E′ :
G, B → G′ to the spatial graph, under a budget B [10]. It follows that G′ =
(V,E ∪ E′). Interventions can be seen as a proxy to the creation/expansion of
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(A) SBM Environment (B) Amsterdam Environment

Fig. 2. We study synthetic (left image) and real (right image) environments. Nodes
represent neighborhoods and yellow nodes (marked with *) indicate nodes with schools.

public transportation lines in a real city, such as bus, metro or tram. We constrain
the total number of interventions to a budget B, reflecting resource limitations.

The goal of interventions is to find the best set of edges E′ to add to the graph,
such that total segregation is reduced. Segregation depends on the allocation
method (section 2.3), which has a random element to it. Therefore, optimizing
directly for the dissimilarity index is not possible. We look for targeted interven-
tions that increase accessibility to certain schools for certain groups, aiming to
affect the agent’s preferences in such a way that segregation is reduced.

We test two classes of greedy interventions: 1) Centrality and 2) Group-
based Centrality Optimization. We identify the schools that have the lowest
network centrality measure (closeness, betweenness or degree) [4] with respect
to any group and then add the intervention that leads to the maximum increase
in that node’s corresponding 1) centrality or 2) group-based centrality.

3 Experimental Setup

We perform experiments on two graph environments: a real-life city environment
based on Amsterdam neighborhoods, demographic and transportation data; and
a synthethic environment based on the stochastic block model (SBM) [9], which
allows us to have full control over the level of modularity and segregation in a
hypothetical city. For more details please refer to Appendix B and Fig. 2.

4 Preliminary Results

In Figure 3, we present the 95% confidence interval of the Dissimilarity Index on
each simulation round, over a total of 50 rounds. Our preliminary experiments
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Fig. 3. We show that targeted interventions in the network can significantly decrease
segregation over time. Strategies based on closeness perform best over other centrality
measures. Vertical dashed lines indicate rounds with graph interventions.

show that, under the settings outlined above, all targeted network intervention
strategies proposed in Section 2.5 lead to a significant reduction of segregation
over time, when compared to a no-intervetion scenario (none) or random inter-
ventions. Specifically, we observe that greedy interventions aimed at increasing
the closeness of the least-accessible nodes lead to the highest reduction of seg-
regation over time. We also observe that degree-based interventions can have
similar effects to closeness, but only in small networks, like SBM. This is be-
cause, when the number of nodes is low, increasing a the degree of a node also
increases its closeness to other nodes. A betweenness-based strategy reduces seg-
regation and outperforms degree-based ones in a bigger environment, like that of
Amsterdam. Finally, there are seemingly not big differences between centrality
and group-based centrality strategies, but depending on the budget, group-based
closeness can outperform its classic counterpart.

5 Conclusion and Future Work

In this work-in-progress paper, we used an agent-based simulation model to study
the impact of transport network interventions on school segregation, under the
prevalence of a centralized school choice algorithm. We have demonstrated in
both a synthetic and a real-life environment that, by affecting citizens prefer-
ences for particular schools, targeted transportation interventions can ultimately
reduce school segregation over time. In the future, we plan to further experiment
with the parameters of the preference model, to assess the sensitivity of network
interventions to different types of agent school preferences. We plan to further
experiment with group-based interventions, aiming at identifying the contexts
where they become more efficient than centrality-based interventions.
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Appendix

A Intervention Methods

Section 2.5 introduces the design choice to test two classes of greedy algorithms
in the intervention model of the ABM. The algorithms and their usage as inter-
vention methods are discussed below:

A.1 Greedy Centrality Optimization

Making a school more accessible is a non-trivial optimization problem, especially
for large graphs [5]. We use a greedy algorithm to approximate the optimal
set of interventions to apply to the graph with respect to accessibility. This
translates to increasing a school node centrality C with respect to the other
nodes. We evaluate strategies based on the classic graph measures of closeness
(CC), betweenness (CB), and degree (CD) centrality.

At every intervention step, we find the school that has the lowest centrality
measure with respect to any group and then add the intervention that leads
to the maximum increase in this node’s centrality. The process is described in
Algorithm 1.

Algorithm 1 Greedy Centrality Optimization
Input G = (V,E)

E′ ← {}
for b = 1, 2, ...B do

vgmin ← argmin{C(v, g) | v ∈ V, g ∈ G}
Cmax = 0
emax ← null
for u ∈ V, u ̸= V do

e← (u, v)
Compute C(vgmin , E ∪ E′ ∪ e)
if C(vgmin , E ∪ E′ ∪ e) > Cmax then

Cmax = C(vgmin , E ∪ E′ ∪ e)
emax ← e

end if
end for
E′ ← E′ ∪ emax

end for
Output G′ = (V,E ∪ E′)



10 Michailidis, Tasnim et al.

A.2 Group-based Centrality

Classic centrality measures fail to capture group dynamics in a graph. In segre-
gated environments like cities, central areas can exhibit high closeness centrality,
despite having low accessibility to specific groups. Examples of this phenomenon
include cities where low-income households concentrate in the outskirts, while
high-income households are situated closer to the center. To account for this
disparity in measurement, we introduce group-based extensions of the classic
centrality measures Cg, g ∈ G, that take into account the distribution of groups
within nodes. These are namely group-based closeness Cg

C , betweenness Cg
B and

degree Cg
D. Let Dg, g ∈ G be the distribution of group g on all nodes V in the

network such that
∑

g Dg = 1.

Group-based Closeness Centrality Group-based closeness Cg
C of a node

v ∈ V is defined as the reciprocal of the sum of travel times from all other nodes
u, weighted by the fraction of agents of group g in u, p(g|u).

Cg
C(v) =

∑
u

1

t(u, v) p(g|u)
(5)

Where t(u, v) is the travel time between nodes u and v.

Group-based Betweenness Centrality Group-based betweenness Cg
B of a

node v ∈ V is defined as the number of shortest paths σ from all nodes o ∈ V to
all nodes d ∈ V, o ̸= d, that pass through v, weighted by the fraction of agents
of group g in d. p(g|d).

Cg
B(v) =

∑
o ̸=v ̸=d

σto,d(v)

σto,d

p(g|d) (6)

Group-based Degree Centrality Group-based degree Cg
D of a node v ∈ V is

defined as the total number of edges connected to a node Ev = eu,v, u ∈ V, u ̸= v,
weighted by the fraction of agents of group g in u, p(g|u).

Cg
D(v) =

∑
u∈V,u ̸=v,eu,v∈E

p(g|u) (7)

Optimizing for group-based centrality measures leads to interventions that tar-
get schools where specific groups are underrepresented, instead of arbitrarily
increasing the centrality of a school.
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B Simulation Environments

We perform experiments on two graph environments, a synthetic stochastic block
model (SBM) [9] and a real city environment based on Amsterdam, Netherlands.

SBM Environment The SBM graph is specifically generated to form clusters
of communities, where nodes are densely connected with other nodes in their
community and scarcely connected with nodes outside of it. We generated an
SBM graph of nv = 12 nodes and ne = 27 edges; nodes clustered in 2 communi-
ties, which represent the majority group of their respective nodes. The parame-
ters are chosen speficially to create a highly segregated graph, in which we aim
to study the impact of the proposed intervention strategies. In-community edge
probability is set to 0.7 and out-community probability is set to 0.01. In Figure
2 (A) we show the realization of the SBM graph we used for the simulation.

Further, we generated a population of N = 1000 agents and sampled both
their residence node and their group membership, from a total of 2 groups.
Group samples are chosen in such a way that each group, within their respective
community has a majority of ≥ 0.8 and outside of their community a minority of
≤ 0.2. Since agents do not start at random nodes and there is no moving action
in the model, we assume that the optimal fraction of similar agents is equal to the
fraction of the majority group of each node. Formally, the homophily parameter
of an agent i in a node v is set to hi,v = max{cg,v}, g ∈ G, where cg,v is the
composition of group g in node v.

Finally, we place two schools on the graph, located in the two most connected
nodes of the SBM graph. The initial group composition of each school is set to
be equal to the group composition of the node it is located in.

Amsterdam Environment To model the real-life environment of Amster-
dam, we create a graph where census tracts are converted to nodes, which are
connected with their neighboring tracts via an unweighted edge. This graph
structure has recently been used to quantify segregation because it provides a
scale-free and generalizable method [13]. In total, the graph consists of nv = 517
nodes and ne = 1611 edges. In Figure 2 (B) we show the graph used for the
Amsterdam experiments.

Similar to SBM, we generate a population of N = 7000 agents. However,
in this environment, agents are generated to represent the real-life population
of Amsterdam and are split in groups of western (W ) and non-western (NW )
ethnic background. More details on the population can be found in Table B. Here
the homophily parameter is set in the same way as in the SBM environment.

We use the publicly available Amsterdam secondary school dataset provided
by DUO1 which contains 47 secondary schools and their locations. We combine
this information with the admissions dataset collected by OSVO2 which provides

1 Education Executive Agency: http://duo.nl
2 The association of school boards in Amsterdam: https://www.verenigingosvo.nl/
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the capacities for each school based on the admission results of the previous year.

Table 1. Parameters used in running the experiments.

SBM Amsterdam
Groups g0, g2 W, NW
Total Population 1000 7000
Group Populations 524, 476 4547, 2453
Group Populations (%) 52%, 48% 65%, 35%
No. of Nodes 12 517
No. of Edges 27 1611
α, M 0.2, 0.6 0.2, 0.6
Budget (B) 1 1
Simulation Rounds 50 50
Allocation Rounds 5 5
Interventions 2 25

B.1 Simulation Parameters

For the experiments shown in this work, we follow the setup of Dignum et al.
and set the relative weight of the composition in the preference model to α =
0.2 and the constant M = 0.6 for both environments. All experiments are run
over 50 simulation rounds, with 5 random serial dictatorship allocations at each
environment. We perform 2 intervention rounds in the SBM environment with a
budget of B = 1 each, while in Amsterdam, we perform a total of 25 intervention
rounds, also with B = 1. Parameters including total number of intervention
rounds and budget B are determined beforehand. Other parameters and their
values used in the experimental studies are listed in Table 1.

At every simulation step of the agent-based model agents submit preferences
and are allocated to schools. However, interventions are applied to the transport
network in intervals. We evaluate the performance of the intervention strategies
against a null baseline, where no interventions are being done, and against a
random baseline, where interventions are performed randomly.


